mirror of https://github.com/FFmpeg/FFmpeg.git
parent
5b5746b1e0
commit
b29c7bcbf6
8 changed files with 2924 additions and 1 deletions
@ -0,0 +1,647 @@ |
||||
/* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
* |
||||
* Copyright (C) 2000, Intel Corporation, all rights reserved. |
||||
* Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
||||
* Third party copyrights are property of their respective owners. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without modification, |
||||
* are permitted provided that the following conditions are met: |
||||
* |
||||
* * Redistribution's of source code must retain the above copyright notice, |
||||
* this list of conditions and the following disclaimer. |
||||
* |
||||
* * Redistribution's in binary form must reproduce the above copyright notice, |
||||
* this list of conditions and the following disclaimer in the documentation |
||||
* and/or other materials provided with the distribution. |
||||
* |
||||
* * The name of the copyright holders may not be used to endorse or promote products |
||||
* derived from this software without specific prior written permission. |
||||
* |
||||
* This software is provided by the copyright holders and contributors "as is" and |
||||
* any express or implied warranties, including, but not limited to, the implied |
||||
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
* In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
* indirect, incidental, special, exemplary, or consequential damages |
||||
* (including, but not limited to, procurement of substitute goods or services; |
||||
* loss of use, data, or profits; or business interruption) however caused |
||||
* and on any theory of liability, whether in contract, strict liability, |
||||
* or tort (including negligence or otherwise) arising in any way out of |
||||
* the use of this software, even if advised of the possibility of such damage. |
||||
*/ |
||||
|
||||
#define HARRIS_THRESHOLD 3.0f |
||||
// Block size over which to compute harris response |
||||
// |
||||
// Note that changing this will require fiddling with the local array sizes in |
||||
// harris_response |
||||
#define HARRIS_RADIUS 2 |
||||
#define DISTANCE_THRESHOLD 80 |
||||
|
||||
// Sub-pixel refinement window for feature points |
||||
#define REFINE_WIN_HALF_W 5 |
||||
#define REFINE_WIN_HALF_H 5 |
||||
#define REFINE_WIN_W 11 // REFINE_WIN_HALF_W * 2 + 1 |
||||
#define REFINE_WIN_H 11 |
||||
|
||||
// Non-maximum suppression window size |
||||
#define NONMAX_WIN 30 |
||||
#define NONMAX_WIN_HALF 15 // NONMAX_WIN / 2 |
||||
|
||||
typedef struct PointPair { |
||||
// Previous frame |
||||
float2 p1; |
||||
// Current frame |
||||
float2 p2; |
||||
} PointPair; |
||||
|
||||
typedef struct SmoothedPointPair { |
||||
// Non-smoothed point in current frame |
||||
int2 p1; |
||||
// Smoothed point in current frame |
||||
float2 p2; |
||||
} SmoothedPointPair; |
||||
|
||||
typedef struct MotionVector { |
||||
PointPair p; |
||||
// Used to mark vectors as potential outliers |
||||
int should_consider; |
||||
} MotionVector; |
||||
|
||||
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | |
||||
CLK_ADDRESS_CLAMP_TO_EDGE | |
||||
CLK_FILTER_NEAREST; |
||||
|
||||
const sampler_t sampler_linear = CLK_NORMALIZED_COORDS_FALSE | |
||||
CLK_ADDRESS_CLAMP_TO_EDGE | |
||||
CLK_FILTER_LINEAR; |
||||
|
||||
const sampler_t sampler_linear_mirror = CLK_NORMALIZED_COORDS_TRUE | |
||||
CLK_ADDRESS_MIRRORED_REPEAT | |
||||
CLK_FILTER_LINEAR; |
||||
|
||||
// Writes to a 1D array at loc, treating it as a 2D array with the same |
||||
// dimensions as the global work size. |
||||
static void write_to_1d_arrf(__global float *buf, int2 loc, float val) { |
||||
buf[loc.x + loc.y * get_global_size(0)] = val; |
||||
} |
||||
|
||||
static void write_to_1d_arrul8(__global ulong8 *buf, int2 loc, ulong8 val) { |
||||
buf[loc.x + loc.y * get_global_size(0)] = val; |
||||
} |
||||
|
||||
static void write_to_1d_arrvec(__global MotionVector *buf, int2 loc, MotionVector val) { |
||||
buf[loc.x + loc.y * get_global_size(0)] = val; |
||||
} |
||||
|
||||
static void write_to_1d_arrf2(__global float2 *buf, int2 loc, float2 val) { |
||||
buf[loc.x + loc.y * get_global_size(0)] = val; |
||||
} |
||||
|
||||
static ulong8 read_from_1d_arrul8(__global const ulong8 *buf, int2 loc) { |
||||
return buf[loc.x + loc.y * get_global_size(0)]; |
||||
} |
||||
|
||||
static float2 read_from_1d_arrf2(__global const float2 *buf, int2 loc) { |
||||
return buf[loc.x + loc.y * get_global_size(0)]; |
||||
} |
||||
|
||||
// Returns the grayscale value at the given point. |
||||
static float pixel_grayscale(__read_only image2d_t src, int2 loc) { |
||||
float4 pixel = read_imagef(src, sampler, loc); |
||||
return (pixel.x + pixel.y + pixel.z) / 3.0f; |
||||
} |
||||
|
||||
static float convolve( |
||||
__local const float *grayscale, |
||||
int local_idx_x, |
||||
int local_idx_y, |
||||
float mask[3][3] |
||||
) { |
||||
float ret = 0; |
||||
|
||||
// These loops touch each pixel surrounding loc as well as loc itself |
||||
for (int i = 1, i2 = 0; i >= -1; --i, ++i2) { |
||||
for (int j = -1, j2 = 0; j <= 1; ++j, ++j2) { |
||||
ret += mask[i2][j2] * grayscale[(local_idx_x + 3 + j) + (local_idx_y + 3 + i) * 14]; |
||||
} |
||||
} |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// Sums dx * dy for all pixels within radius of loc |
||||
static float sum_deriv_prod( |
||||
__local const float *grayscale, |
||||
float mask_x[3][3], |
||||
float mask_y[3][3] |
||||
) { |
||||
float ret = 0; |
||||
|
||||
for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) { |
||||
for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) { |
||||
ret += convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_x) * |
||||
convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_y); |
||||
} |
||||
} |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// Sums d<>^2 (determined by mask) for all pixels within radius of loc |
||||
static float sum_deriv_pow(__local const float *grayscale, float mask[3][3]) |
||||
{ |
||||
float ret = 0; |
||||
|
||||
for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) { |
||||
for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) { |
||||
float deriv = convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask); |
||||
ret += deriv * deriv; |
||||
} |
||||
} |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// Fills a box with the given radius and pixel around loc |
||||
static void draw_box(__write_only image2d_t dst, int2 loc, float4 pixel, int radius) |
||||
{ |
||||
for (int i = -radius; i <= radius; ++i) { |
||||
for (int j = -radius; j <= radius; ++j) { |
||||
write_imagef( |
||||
dst, |
||||
(int2)( |
||||
// Clamp to avoid writing outside image bounds |
||||
clamp(loc.x + i, 0, get_image_dim(dst).x - 1), |
||||
clamp(loc.y + j, 0, get_image_dim(dst).y - 1) |
||||
), |
||||
pixel |
||||
); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Converts the src image to grayscale |
||||
__kernel void grayscale( |
||||
__read_only image2d_t src, |
||||
__write_only image2d_t grayscale |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
write_imagef(grayscale, loc, (float4)(pixel_grayscale(src, loc), 0.0f, 0.0f, 1.0f)); |
||||
} |
||||
|
||||
// This kernel computes the harris response for the given grayscale src image |
||||
// within the given radius and writes it to harris_buf |
||||
__kernel void harris_response( |
||||
__read_only image2d_t grayscale, |
||||
__global float *harris_buf |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
|
||||
if (loc.x > get_image_width(grayscale) - 1 || loc.y > get_image_height(grayscale) - 1) { |
||||
write_to_1d_arrf(harris_buf, loc, 0); |
||||
return; |
||||
} |
||||
|
||||
float scale = 1.0f / ((1 << 2) * HARRIS_RADIUS * 255.0f); |
||||
|
||||
float sobel_mask_x[3][3] = { |
||||
{-1, 0, 1}, |
||||
{-2, 0, 2}, |
||||
{-1, 0, 1} |
||||
}; |
||||
|
||||
float sobel_mask_y[3][3] = { |
||||
{ 1, 2, 1}, |
||||
{ 0, 0, 0}, |
||||
{-1, -2, -1} |
||||
}; |
||||
|
||||
// 8 x 8 local work + 3 pixels around each side (needed to accomodate for the |
||||
// block size radius of 2) |
||||
__local float grayscale_data[196]; |
||||
|
||||
int idx = get_group_id(0) * get_local_size(0); |
||||
int idy = get_group_id(1) * get_local_size(1); |
||||
|
||||
for (int i = idy - 3, it = 0; i < idy + (int)get_local_size(1) + 3; i++, it++) { |
||||
for (int j = idx - 3, jt = 0; j < idx + (int)get_local_size(0) + 3; j++, jt++) { |
||||
grayscale_data[jt + it * 14] = read_imagef(grayscale, sampler, (int2)(j, i)).x; |
||||
} |
||||
} |
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
float sumdxdy = sum_deriv_prod(grayscale_data, sobel_mask_x, sobel_mask_y); |
||||
float sumdx2 = sum_deriv_pow(grayscale_data, sobel_mask_x); |
||||
float sumdy2 = sum_deriv_pow(grayscale_data, sobel_mask_y); |
||||
|
||||
float trace = sumdx2 + sumdy2; |
||||
// r = det(M) - k(trace(M))^2 |
||||
// k usually between 0.04 to 0.06 |
||||
float r = (sumdx2 * sumdy2 - sumdxdy * sumdxdy) - 0.04f * (trace * trace) * pown(scale, 4); |
||||
|
||||
// Threshold the r value |
||||
harris_buf[loc.x + loc.y * get_image_width(grayscale)] = r * step(HARRIS_THRESHOLD, r); |
||||
} |
||||
|
||||
// Gets a patch centered around a float coordinate from a grayscale image using |
||||
// bilinear interpolation |
||||
static void get_rect_sub_pix( |
||||
__read_only image2d_t grayscale, |
||||
float *buffer, |
||||
int size_x, |
||||
int size_y, |
||||
float2 center |
||||
) { |
||||
float2 offset = ((float2)(size_x, size_y) - 1.0f) * 0.5f; |
||||
|
||||
for (int i = 0; i < size_y; i++) { |
||||
for (int j = 0; j < size_x; j++) { |
||||
buffer[i * size_x + j] = read_imagef( |
||||
grayscale, |
||||
sampler_linear, |
||||
(float2)(j, i) + center - offset |
||||
).x * 255.0f; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Refines detected features at a sub-pixel level |
||||
// |
||||
// This function is ported from OpenCV |
||||
static float2 corner_sub_pix( |
||||
__read_only image2d_t grayscale, |
||||
float2 feature, |
||||
float *mask |
||||
) { |
||||
float2 init = feature; |
||||
int src_width = get_global_size(0); |
||||
int src_height = get_global_size(1); |
||||
|
||||
const int max_iters = 40; |
||||
const float eps = 0.001f * 0.001f; |
||||
int i, j, k; |
||||
|
||||
int iter = 0; |
||||
float err = 0; |
||||
float subpix[(REFINE_WIN_W + 2) * (REFINE_WIN_H + 2)]; |
||||
const float flt_epsilon = 0x1.0p-23f; |
||||
|
||||
do { |
||||
float2 feature_tmp; |
||||
float a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0; |
||||
|
||||
get_rect_sub_pix(grayscale, subpix, REFINE_WIN_W + 2, REFINE_WIN_H + 2, feature); |
||||
float *subpix_ptr = subpix; |
||||
subpix_ptr += REFINE_WIN_W + 2 + 1; |
||||
|
||||
// process gradient |
||||
for (i = 0, k = 0; i < REFINE_WIN_H; i++, subpix_ptr += REFINE_WIN_W + 2) { |
||||
float py = i - REFINE_WIN_HALF_H; |
||||
|
||||
for (j = 0; j < REFINE_WIN_W; j++, k++) { |
||||
float m = mask[k]; |
||||
float tgx = subpix_ptr[j + 1] - subpix_ptr[j - 1]; |
||||
float tgy = subpix_ptr[j + REFINE_WIN_W + 2] - subpix_ptr[j - REFINE_WIN_W - 2]; |
||||
float gxx = tgx * tgx * m; |
||||
float gxy = tgx * tgy * m; |
||||
float gyy = tgy * tgy * m; |
||||
float px = j - REFINE_WIN_HALF_W; |
||||
|
||||
a += gxx; |
||||
b += gxy; |
||||
c += gyy; |
||||
|
||||
bb1 += gxx * px + gxy * py; |
||||
bb2 += gxy * px + gyy * py; |
||||
} |
||||
} |
||||
|
||||
float det = a * c - b * b; |
||||
if (fabs(det) <= flt_epsilon * flt_epsilon) { |
||||
break; |
||||
} |
||||
|
||||
// 2x2 matrix inversion |
||||
float scale = 1.0f / det; |
||||
feature_tmp.x = (float)(feature.x + (c * scale * bb1) - (b * scale * bb2)); |
||||
feature_tmp.y = (float)(feature.y - (b * scale * bb1) + (a * scale * bb2)); |
||||
err = dot(feature_tmp - feature, feature_tmp - feature); |
||||
|
||||
feature = feature_tmp; |
||||
if (feature.x < 0 || feature.x >= src_width || feature.y < 0 || feature.y >= src_height) { |
||||
break; |
||||
} |
||||
} while (++iter < max_iters && err > eps); |
||||
|
||||
// Make sure new point isn't too far from the initial point (indicates poor convergence) |
||||
if (fabs(feature.x - init.x) > REFINE_WIN_HALF_W || fabs(feature.y - init.y) > REFINE_WIN_HALF_H) { |
||||
feature = init; |
||||
} |
||||
|
||||
return feature; |
||||
} |
||||
|
||||
// Performs non-maximum suppression on the harris response and writes the resulting |
||||
// feature locations to refined_features. |
||||
// |
||||
// Assumes that refined_features and the global work sizes are set up such that the image |
||||
// is split up into a grid of 32x32 blocks where each block has a single slot in the |
||||
// refined_features buffer. This kernel finds the best corner in each block (if the |
||||
// block has any) and writes it to the corresponding slot in the buffer. |
||||
// |
||||
// If subpixel_refine is true, the features are additionally refined at a sub-pixel |
||||
// level for increased precision. |
||||
__kernel void refine_features( |
||||
__read_only image2d_t grayscale, |
||||
__global const float *harris_buf, |
||||
__global float2 *refined_features, |
||||
int subpixel_refine |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
// The location in the grayscale buffer rather than the compacted grid |
||||
int2 loc_i = (int2)(loc.x * 32, loc.y * 32); |
||||
|
||||
float new_val; |
||||
float max_val = 0; |
||||
float2 loc_max = (float2)(-1, -1); |
||||
|
||||
int end_x = min(loc_i.x + 32, (int)get_image_dim(grayscale).x - 1); |
||||
int end_y = min(loc_i.y + 32, (int)get_image_dim(grayscale).y - 1); |
||||
|
||||
for (int i = loc_i.x; i < end_x; ++i) { |
||||
for (int j = loc_i.y; j < end_y; ++j) { |
||||
new_val = harris_buf[i + j * get_image_dim(grayscale).x]; |
||||
|
||||
if (new_val > max_val) { |
||||
max_val = new_val; |
||||
loc_max = (float2)(i, j); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (max_val == 0) { |
||||
// There are no features in this part of the frame |
||||
write_to_1d_arrf2(refined_features, loc, loc_max); |
||||
return; |
||||
} |
||||
|
||||
if (subpixel_refine) { |
||||
float mask[REFINE_WIN_H * REFINE_WIN_W]; |
||||
for (int i = 0; i < REFINE_WIN_H; i++) { |
||||
float y = (float)(i - REFINE_WIN_HALF_H) / REFINE_WIN_HALF_H; |
||||
float vy = exp(-y * y); |
||||
|
||||
for (int j = 0; j < REFINE_WIN_W; j++) { |
||||
float x = (float)(j - REFINE_WIN_HALF_W) / REFINE_WIN_HALF_W; |
||||
mask[i * REFINE_WIN_W + j] = (float)(vy * exp(-x * x)); |
||||
} |
||||
} |
||||
|
||||
loc_max = corner_sub_pix(grayscale, loc_max, mask); |
||||
} |
||||
|
||||
write_to_1d_arrf2(refined_features, loc, loc_max); |
||||
} |
||||
|
||||
// Extracts BRIEF descriptors from the grayscale src image for the given features |
||||
// using the provided sampler. |
||||
__kernel void brief_descriptors( |
||||
__read_only image2d_t grayscale, |
||||
__global const float2 *refined_features, |
||||
// for 512 bit descriptors |
||||
__global ulong8 *desc_buf, |
||||
__global const PointPair *brief_pattern |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
float2 feature = read_from_1d_arrf2(refined_features, loc); |
||||
|
||||
// There was no feature in this part of the frame |
||||
if (feature.x == -1) { |
||||
write_to_1d_arrul8(desc_buf, loc, (ulong8)(0)); |
||||
return; |
||||
} |
||||
|
||||
ulong8 desc = 0; |
||||
ulong *p = &desc; |
||||
|
||||
for (int i = 0; i < 8; ++i) { |
||||
for (int j = 0; j < 64; ++j) { |
||||
PointPair pair = brief_pattern[j * (i + 1)]; |
||||
float l1 = read_imagef(grayscale, sampler_linear, feature + pair.p1).x; |
||||
float l2 = read_imagef(grayscale, sampler_linear, feature + pair.p2).x; |
||||
|
||||
if (l1 < l2) { |
||||
p[i] |= 1UL << j; |
||||
} |
||||
} |
||||
} |
||||
|
||||
write_to_1d_arrul8(desc_buf, loc, desc); |
||||
} |
||||
|
||||
// Given buffers with descriptors for the current and previous frame, determines |
||||
// which ones match, writing correspondences to matches_buf. |
||||
// |
||||
// Feature and descriptor buffers are assumed to be compacted (each element sourced |
||||
// from a 32x32 block in the frame being processed). |
||||
__kernel void match_descriptors( |
||||
__global const float2 *prev_refined_features, |
||||
__global const float2 *refined_features, |
||||
__global const ulong8 *desc_buf, |
||||
__global const ulong8 *prev_desc_buf, |
||||
__global MotionVector *matches_buf |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
ulong8 desc = read_from_1d_arrul8(desc_buf, loc); |
||||
const int search_radius = 3; |
||||
|
||||
MotionVector invalid_vector = (MotionVector) { |
||||
(PointPair) { |
||||
(float2)(-1, -1), |
||||
(float2)(-1, -1) |
||||
}, |
||||
0 |
||||
}; |
||||
|
||||
if (desc.s0 == 0 && desc.s1 == 0) { |
||||
// There was no feature in this part of the frame |
||||
write_to_1d_arrvec( |
||||
matches_buf, |
||||
loc, |
||||
invalid_vector |
||||
); |
||||
return; |
||||
} |
||||
|
||||
int2 start = max(loc - search_radius, 0); |
||||
int2 end = min(loc + search_radius, (int2)(get_global_size(0) - 1, get_global_size(1) - 1)); |
||||
|
||||
for (int i = start.x; i < end.x; ++i) { |
||||
for (int j = start.y; j < end.y; ++j) { |
||||
int2 prev_point = (int2)(i, j); |
||||
int total_dist = 0; |
||||
|
||||
ulong8 prev_desc = read_from_1d_arrul8(prev_desc_buf, prev_point); |
||||
|
||||
if (prev_desc.s0 == 0 && prev_desc.s1 == 0) { |
||||
continue; |
||||
} |
||||
|
||||
ulong *prev_desc_p = &prev_desc; |
||||
ulong *desc_p = &desc; |
||||
|
||||
for (int i = 0; i < 8; i++) { |
||||
total_dist += popcount(desc_p[i] ^ prev_desc_p[i]); |
||||
} |
||||
|
||||
if (total_dist < DISTANCE_THRESHOLD) { |
||||
write_to_1d_arrvec( |
||||
matches_buf, |
||||
loc, |
||||
(MotionVector) { |
||||
(PointPair) { |
||||
read_from_1d_arrf2(prev_refined_features, prev_point), |
||||
read_from_1d_arrf2(refined_features, loc) |
||||
}, |
||||
1 |
||||
} |
||||
); |
||||
|
||||
return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// There is no found match for this point |
||||
write_to_1d_arrvec( |
||||
matches_buf, |
||||
loc, |
||||
invalid_vector |
||||
); |
||||
} |
||||
|
||||
// Returns the position of the given point after the transform is applied |
||||
static float2 transformed_point(float2 p, __global const float *transform) { |
||||
float2 ret; |
||||
|
||||
ret.x = p.x * transform[0] + p.y * transform[1] + transform[2]; |
||||
ret.y = p.x * transform[3] + p.y * transform[4] + transform[5]; |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
|
||||
// Performs the given transform on the src image |
||||
__kernel void transform( |
||||
__read_only image2d_t src, |
||||
__write_only image2d_t dst, |
||||
__global const float *transform |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
float2 norm = convert_float2(get_image_dim(src)); |
||||
|
||||
write_imagef( |
||||
dst, |
||||
loc, |
||||
read_imagef( |
||||
src, |
||||
sampler_linear_mirror, |
||||
transformed_point((float2)(loc.x, loc.y), transform) / norm |
||||
) |
||||
); |
||||
} |
||||
|
||||
// Returns the new location of the given point using the given crop bounding box |
||||
// and the width and height of the original frame. |
||||
static float2 cropped_point( |
||||
float2 p, |
||||
float2 top_left, |
||||
float2 bottom_right, |
||||
int2 orig_dim |
||||
) { |
||||
float2 ret; |
||||
|
||||
float crop_width = bottom_right.x - top_left.x; |
||||
float crop_height = bottom_right.y - top_left.y; |
||||
|
||||
float width_norm = p.x / (float)orig_dim.x; |
||||
float height_norm = p.y / (float)orig_dim.y; |
||||
|
||||
ret.x = (width_norm * crop_width) + top_left.x; |
||||
ret.y = (height_norm * crop_height) + ((float)orig_dim.y - bottom_right.y); |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
// Upscales the given cropped region to the size of the original frame |
||||
__kernel void crop_upscale( |
||||
__read_only image2d_t src, |
||||
__write_only image2d_t dst, |
||||
float2 top_left, |
||||
float2 bottom_right |
||||
) { |
||||
int2 loc = (int2)(get_global_id(0), get_global_id(1)); |
||||
|
||||
write_imagef( |
||||
dst, |
||||
loc, |
||||
read_imagef( |
||||
src, |
||||
sampler_linear, |
||||
cropped_point((float2)(loc.x, loc.y), top_left, bottom_right, get_image_dim(dst)) |
||||
) |
||||
); |
||||
} |
||||
|
||||
// Draws boxes to represent the given point matches and uses the given transform |
||||
// and crop info to make sure their positions are accurate on the transformed frame. |
||||
// |
||||
// model_matches is an array of three points that were used by the RANSAC process |
||||
// to generate the given transform |
||||
__kernel void draw_debug_info( |
||||
__write_only image2d_t dst, |
||||
__global const MotionVector *matches, |
||||
__global const MotionVector *model_matches, |
||||
int num_model_matches, |
||||
__global const float *transform |
||||
) { |
||||
int loc = get_global_id(0); |
||||
MotionVector vec = matches[loc]; |
||||
// Black box: matched point that RANSAC considered an outlier |
||||
float4 big_rect_color = (float4)(0.1f, 0.1f, 0.1f, 1.0f); |
||||
|
||||
if (vec.should_consider) { |
||||
// Green box: matched point that RANSAC considered an inlier |
||||
big_rect_color = (float4)(0.0f, 1.0f, 0.0f, 1.0f); |
||||
} |
||||
|
||||
for (int i = 0; i < num_model_matches; i++) { |
||||
if (vec.p.p2.x == model_matches[i].p.p2.x && vec.p.p2.y == model_matches[i].p.p2.y) { |
||||
// Orange box: point used to calculate model |
||||
big_rect_color = (float4)(1.0f, 0.5f, 0.0f, 1.0f); |
||||
} |
||||
} |
||||
|
||||
float2 transformed_p1 = transformed_point(vec.p.p1, transform); |
||||
float2 transformed_p2 = transformed_point(vec.p.p2, transform); |
||||
|
||||
draw_box(dst, (int2)(transformed_p2.x, transformed_p2.y), big_rect_color, 5); |
||||
// Small light blue box: the point in the previous frame |
||||
draw_box(dst, (int2)(transformed_p1.x, transformed_p1.y), (float4)(0.0f, 0.3f, 0.7f, 1.0f), 3); |
||||
} |
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue