mirror of https://github.com/FFmpeg/FFmpeg.git
Originally committed as revision 3228 to svn://svn.ffmpeg.org/ffmpeg/trunkpull/126/head
parent
4904d6c2d3
commit
aaaf1635c0
4 changed files with 249 additions and 174 deletions
@ -0,0 +1,214 @@ |
||||
/*
|
||||
* audio resampling |
||||
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
||||
* |
||||
* This library is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2 of the License, or (at your option) any later version. |
||||
* |
||||
* This library is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with this library; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||||
* |
||||
*/ |
||||
|
||||
/**
|
||||
* @file resample2.c |
||||
* audio resampling |
||||
* @author Michael Niedermayer <michaelni@gmx.at> |
||||
*/ |
||||
|
||||
#include "avcodec.h" |
||||
#include "common.h" |
||||
|
||||
#define PHASE_SHIFT 10 |
||||
#define PHASE_COUNT (1<<PHASE_SHIFT) |
||||
#define PHASE_MASK (PHASE_COUNT-1) |
||||
#define FILTER_SHIFT 15 |
||||
|
||||
typedef struct AVResampleContext{ |
||||
short *filter_bank; |
||||
int filter_length; |
||||
int ideal_dst_incr; |
||||
int dst_incr; |
||||
int index; |
||||
int frac; |
||||
int src_incr; |
||||
int compensation_distance; |
||||
}AVResampleContext; |
||||
|
||||
/**
|
||||
* 0th order modified bessel function of the first kind. |
||||
*/ |
||||
double bessel(double x){ |
||||
double v=1; |
||||
double t=1; |
||||
int i; |
||||
|
||||
for(i=1; i<50; i++){ |
||||
t *= i; |
||||
v += pow(x*x/4, i)/(t*t); |
||||
} |
||||
return v; |
||||
} |
||||
|
||||
/**
|
||||
* builds a polyphase filterbank. |
||||
* @param factor resampling factor |
||||
* @param scale wanted sum of coefficients for each filter |
||||
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16 |
||||
*/ |
||||
void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){ |
||||
int ph, i, v; |
||||
double x, y, w, tab[tap_count]; |
||||
const int center= (tap_count-1)/2; |
||||
|
||||
/* if upsampling, only need to interpolate, no filter */ |
||||
if (factor > 1.0) |
||||
factor = 1.0; |
||||
|
||||
for(ph=0;ph<phase_count;ph++) { |
||||
double norm = 0; |
||||
double e= 0; |
||||
for(i=0;i<tap_count;i++) { |
||||
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; |
||||
if (x == 0) y = 1.0; |
||||
else y = sin(x) / x; |
||||
switch(type){ |
||||
case 0:{ |
||||
const float d= -0.5; //first order derivative = -0.5
|
||||
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); |
||||
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); |
||||
else y= d*(-4 + 8*x - 5*x*x + x*x*x); |
||||
break;} |
||||
case 1: |
||||
w = 2.0*x / (factor*tap_count) + M_PI; |
||||
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); |
||||
break; |
||||
case 2: |
||||
w = 2.0*x / (factor*tap_count*M_PI); |
||||
y *= bessel(16*sqrt(FFMAX(1-w*w, 0))) / bessel(16); |
||||
break; |
||||
} |
||||
|
||||
tab[i] = y; |
||||
norm += y; |
||||
} |
||||
|
||||
/* normalize so that an uniform color remains the same */ |
||||
for(i=0;i<tap_count;i++) { |
||||
v = clip(lrintf(tab[i] * scale / norm) + e, -32768, 32767); |
||||
filter[ph * tap_count + i] = v; |
||||
e += tab[i] * scale / norm - v; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* initalizes a audio resampler. |
||||
* note, if either rate is not a integer then simply scale both rates up so they are |
||||
*/ |
||||
AVResampleContext *av_resample_init(int out_rate, int in_rate){ |
||||
AVResampleContext *c= av_mallocz(sizeof(AVResampleContext)); |
||||
double factor= FFMIN(out_rate / (double)in_rate, 1.0); |
||||
|
||||
memset(c, 0, sizeof(AVResampleContext)); |
||||
|
||||
c->filter_length= ceil(16.0/factor); |
||||
c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(short)); |
||||
av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1); |
||||
c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 1]= (1<<FILTER_SHIFT)-1; |
||||
c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 2]= 1; |
||||
|
||||
c->src_incr= out_rate; |
||||
c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT; |
||||
c->index= -PHASE_COUNT*((c->filter_length-1)/2); |
||||
|
||||
return c; |
||||
} |
||||
|
||||
void av_resample_close(AVResampleContext *c){ |
||||
av_freep(&c->filter_bank); |
||||
av_freep(&c); |
||||
} |
||||
|
||||
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){ |
||||
assert(!c->compensation_distance); //FIXME
|
||||
|
||||
c->compensation_distance= compensation_distance; |
||||
c->dst_incr-= c->ideal_dst_incr * sample_delta / compensation_distance; |
||||
} |
||||
|
||||
/**
|
||||
* resamples. |
||||
* @param src an array of unconsumed samples |
||||
* @param consumed the number of samples of src which have been consumed are returned here |
||||
* @param src_size the number of unconsumed samples available |
||||
* @param dst_size the amount of space in samples available in dst |
||||
* @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context |
||||
* @return the number of samples written in dst or -1 if an error occured |
||||
*/ |
||||
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){ |
||||
int dst_index, i; |
||||
int index= c->index; |
||||
int frac= c->frac; |
||||
int dst_incr_frac= c->dst_incr % c->src_incr; |
||||
int dst_incr= c->dst_incr / c->src_incr; |
||||
|
||||
if(c->compensation_distance && c->compensation_distance < dst_size) |
||||
dst_size= c->compensation_distance; |
||||
|
||||
for(dst_index=0; dst_index < dst_size; dst_index++){ |
||||
short *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK); |
||||
int sample_index= index >> PHASE_SHIFT; |
||||
int val=0; |
||||
|
||||
if(sample_index < 0){ |
||||
for(i=0; i<c->filter_length; i++) |
||||
val += src[ABS(sample_index + i)] * filter[i]; |
||||
}else if(sample_index + c->filter_length > src_size){ |
||||
break; |
||||
}else{ |
||||
#if 0 |
||||
int64_t v=0; |
||||
int sub_phase= (frac<<12) / c->src_incr; |
||||
for(i=0; i<c->filter_length; i++){ |
||||
int64_t coeff= filter[i]*(4096 - sub_phase) + filter[i + c->filter_length]*sub_phase; |
||||
v += src[sample_index + i] * coeff; |
||||
} |
||||
val= v>>12; |
||||
#else |
||||
for(i=0; i<c->filter_length; i++){ |
||||
val += src[sample_index + i] * filter[i]; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT; |
||||
dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val; |
||||
|
||||
frac += dst_incr_frac; |
||||
index += dst_incr; |
||||
if(frac >= c->src_incr){ |
||||
frac -= c->src_incr; |
||||
index++; |
||||
} |
||||
} |
||||
if(update_ctx){ |
||||
if(c->compensation_distance){ |
||||
c->compensation_distance -= index; |
||||
if(!c->compensation_distance) |
||||
c->dst_incr= c->ideal_dst_incr; |
||||
} |
||||
c->frac= frac; |
||||
c->index=0; |
||||
} |
||||
*consumed= index >> PHASE_SHIFT; |
||||
return dst_index; |
||||
} |
Loading…
Reference in new issue