flac-lpc patch by (Justin Ruggles jruggle earthlink net)

tabs removed and regression.sh fixed (it was missing in the patch) by me

Originally committed as revision 5572 to svn://svn.ffmpeg.org/ffmpeg/trunk
pull/126/head
Justin Ruggles 19 years ago committed by Michael Niedermayer
parent 78f67b7ad3
commit a403fc0324
  1. 52
      libavcodec/avcodec.h
  2. 609
      libavcodec/flacenc.c
  3. 15
      libavcodec/utils.c
  4. 4
      tests/ffmpeg.regression.ref
  5. 2
      tests/regression.sh
  6. 4
      tests/rotozoom.regression.ref

@ -1983,6 +1983,58 @@ typedef struct AVCodecContext {
* - decoding: unused
*/
int b_sensitivity;
/**
* - encoding: set by user.
* - decoding: unused
*/
int compression_level;
#define FF_COMPRESSION_DEFAULT -1
/**
* sets whether to use LPC mode - used by FLAC encoder
* - encoding: set by user.
* - decoding: unused.
*/
int use_lpc;
/**
* LPC coefficient precision - used by FLAC encoder
* - encoding: set by user.
* - decoding: unused.
*/
int lpc_coeff_precision;
/**
* - encoding: set by user.
* - decoding: unused.
*/
int min_prediction_order;
/**
* - encoding: set by user.
* - decoding: unused.
*/
int max_prediction_order;
/**
* search method for selecting prediction order
* - encoding: set by user.
* - decoding: unused.
*/
int prediction_order_method;
/**
* - encoding: set by user.
* - decoding: unused.
*/
int min_partition_order;
/**
* - encoding: set by user.
* - decoding: unused.
*/
int max_partition_order;
} AVCodecContext;
/**

@ -37,11 +37,38 @@
#define FLAC_CHMODE_RIGHT_SIDE 9
#define FLAC_CHMODE_MID_SIDE 10
#define ORDER_METHOD_EST 0
#define ORDER_METHOD_2LEVEL 1
#define ORDER_METHOD_4LEVEL 2
#define ORDER_METHOD_8LEVEL 3
#define ORDER_METHOD_SEARCH 4
#define FLAC_STREAMINFO_SIZE 34
#define MIN_LPC_ORDER 1
#define MAX_LPC_ORDER 32
#define MAX_FIXED_ORDER 4
#define MAX_PARTITION_ORDER 8
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
#define MAX_LPC_PRECISION 15
#define MAX_LPC_SHIFT 15
#define MAX_RICE_PARAM 14
typedef struct CompressionOptions {
int compression_level;
int block_time_ms;
int use_lpc;
int lpc_coeff_precision;
int min_prediction_order;
int max_prediction_order;
int prediction_order_method;
int min_partition_order;
int max_partition_order;
} CompressionOptions;
typedef struct RiceContext {
int porder;
int params[256];
int params[MAX_PARTITIONS];
} RiceContext;
typedef struct FlacSubframe {
@ -49,6 +76,8 @@ typedef struct FlacSubframe {
int type_code;
int obits;
int order;
int32_t coefs[MAX_LPC_ORDER];
int shift;
RiceContext rc;
int32_t samples[FLAC_MAX_BLOCKSIZE];
int32_t residual[FLAC_MAX_BLOCKSIZE];
@ -72,6 +101,7 @@ typedef struct FlacEncodeContext {
int max_framesize;
uint32_t frame_count;
FlacFrame frame;
CompressionOptions options;
AVCodecContext *avctx;
} FlacEncodeContext;
@ -112,13 +142,11 @@ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
/* MD5 signature = 0 */
}
#define BLOCK_TIME_MS 27
/**
* Sets blocksize based on samplerate
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
*/
static int select_blocksize(int samplerate)
static int select_blocksize(int samplerate, int block_time_ms)
{
int i;
int target;
@ -126,7 +154,7 @@ static int select_blocksize(int samplerate)
assert(samplerate > 0);
blocksize = flac_blocksizes[1];
target = (samplerate * BLOCK_TIME_MS) / 1000;
target = (samplerate * block_time_ms) / 1000;
for(i=0; i<16; i++) {
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
blocksize = flac_blocksizes[i];
@ -183,8 +211,198 @@ static int flac_encode_init(AVCodecContext *avctx)
s->samplerate = freq;
}
s->blocksize = select_blocksize(s->samplerate);
avctx->frame_size = s->blocksize;
/* set compression option defaults based on avctx->compression_level */
if(avctx->compression_level < 0) {
s->options.compression_level = 5;
} else {
s->options.compression_level = avctx->compression_level;
}
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
if(s->options.compression_level == 0) {
s->options.block_time_ms = 27;
s->options.use_lpc = 0;
s->options.min_prediction_order = 2;
s->options.max_prediction_order = 3;
s->options.prediction_order_method = ORDER_METHOD_EST;
s->options.min_partition_order = 2;
s->options.max_partition_order = 2;
} else if(s->options.compression_level == 1) {
s->options.block_time_ms = 27;
s->options.use_lpc = 0;
s->options.min_prediction_order = 0;
s->options.max_prediction_order = 4;
s->options.prediction_order_method = ORDER_METHOD_EST;
s->options.min_partition_order = 2;
s->options.max_partition_order = 2;
} else if(s->options.compression_level == 2) {
s->options.block_time_ms = 27;
s->options.use_lpc = 0;
s->options.min_prediction_order = 0;
s->options.max_prediction_order = 4;
s->options.prediction_order_method = ORDER_METHOD_EST;
s->options.min_partition_order = 0;
s->options.max_partition_order = 3;
} else if(s->options.compression_level == 3) {
s->options.block_time_ms = 105;
s->options.use_lpc = 1;
s->options.min_prediction_order = 1;
s->options.max_prediction_order = 6;
s->options.prediction_order_method = ORDER_METHOD_EST;
s->options.min_partition_order = 0;
s->options.max_partition_order = 3;
} else if(s->options.compression_level == 4) {
s->options.block_time_ms = 105;
s->options.use_lpc = 1;
s->options.min_prediction_order = 1;
s->options.max_prediction_order = 8;
s->options.prediction_order_method = ORDER_METHOD_EST;
s->options.min_partition_order = 0;
s->options.max_partition_order = 3;
} else if(s->options.compression_level == 5) {
s->options.block_time_ms = 105;
s->options.use_lpc = 1;
s->options.min_prediction_order = 1;
s->options.max_prediction_order = 8;
s->options.prediction_order_method = ORDER_METHOD_EST;
s->options.min_partition_order = 0;
s->options.max_partition_order = 8;
} else {
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
s->options.compression_level);
return -1;
}
/* set compression option overrides from AVCodecContext */
if(avctx->use_lpc >= 0) {
s->options.use_lpc = !!avctx->use_lpc;
}
av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n",
s->options.use_lpc? "yes" : "no");
if(avctx->min_prediction_order >= 0) {
if(s->options.use_lpc) {
if(avctx->min_prediction_order < MIN_LPC_ORDER ||
avctx->min_prediction_order > MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
avctx->min_prediction_order);
return -1;
}
} else {
if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
avctx->min_prediction_order);
return -1;
}
}
s->options.min_prediction_order = avctx->min_prediction_order;
}
if(avctx->max_prediction_order >= 0) {
if(s->options.use_lpc) {
if(avctx->max_prediction_order < MIN_LPC_ORDER ||
avctx->max_prediction_order > MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
avctx->max_prediction_order);
return -1;
}
} else {
if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
avctx->max_prediction_order);
return -1;
}
}
s->options.max_prediction_order = avctx->max_prediction_order;
}
if(s->options.max_prediction_order < s->options.min_prediction_order) {
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
s->options.min_prediction_order, s->options.max_prediction_order);
return -1;
}
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
s->options.min_prediction_order, s->options.max_prediction_order);
if(avctx->prediction_order_method >= 0) {
if(avctx->prediction_order_method > ORDER_METHOD_SEARCH) {
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
avctx->prediction_order_method);
return -1;
}
s->options.prediction_order_method = avctx->prediction_order_method;
}
switch(avctx->prediction_order_method) {
case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"estimate"); break;
case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"2-level"); break;
case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"4-level"); break;
case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"8-level"); break;
case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
"full search"); break;
}
if(avctx->min_partition_order >= 0) {
if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
avctx->min_partition_order);
return -1;
}
s->options.min_partition_order = avctx->min_partition_order;
}
if(avctx->max_partition_order >= 0) {
if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
avctx->max_partition_order);
return -1;
}
s->options.max_partition_order = avctx->max_partition_order;
}
if(s->options.max_partition_order < s->options.min_partition_order) {
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
s->options.min_partition_order, s->options.max_partition_order);
return -1;
}
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
s->options.min_partition_order, s->options.max_partition_order);
if(avctx->frame_size > 0) {
if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
avctx->frame_size > FLAC_MIN_BLOCKSIZE) {
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
avctx->frame_size);
return -1;
}
s->blocksize = avctx->frame_size;
} else {
s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
avctx->frame_size = s->blocksize;
}
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
/* set LPC precision */
if(avctx->lpc_coeff_precision > 0) {
if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
avctx->lpc_coeff_precision);
return -1;
}
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
} else {
/* select LPC precision based on block size */
if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7;
else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8;
else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9;
else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10;
else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11;
else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12;
else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13;
else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
else s->options.lpc_coeff_precision = 15;
}
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
s->options.lpc_coeff_precision);
/* set maximum encoded frame size in verbatim mode */
if(s->channels == 2) {
@ -259,14 +477,13 @@ static void copy_samples(FlacEncodeContext *s, int16_t *samples)
static int find_optimal_param(uint32_t sum, int n)
{
int k, k_opt;
uint32_t nbits, nbits_opt;
uint32_t nbits[MAX_RICE_PARAM+1];
k_opt = 0;
nbits_opt = rice_encode_count(sum, n, 0);
for(k=1; k<=14; k++) {
nbits = rice_encode_count(sum, n, k);
if(nbits < nbits_opt) {
nbits_opt = nbits;
nbits[0] = UINT32_MAX;
for(k=0; k<=MAX_RICE_PARAM; k++) {
nbits[k] = rice_encode_count(sum, n, k);
if(nbits[k] < nbits[k_opt]) {
k_opt = k;
}
}
@ -297,8 +514,8 @@ static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
return all_bits;
}
static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
uint32_t sums[][256])
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
uint32_t sums[][MAX_PARTITIONS])
{
int i, j;
int parts;
@ -316,7 +533,7 @@ static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
res_end+= n >> pmax;
}
/* sums for lower levels */
for(i=pmax-1; i>=0; i--) {
for(i=pmax-1; i>=pmin; i--) {
parts = (1 << i);
for(j=0; j<parts; j++) {
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
@ -324,59 +541,262 @@ static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
}
}
static uint32_t calc_rice_params(RiceContext *rc, int pmax, int32_t *data,
int n, int pred_order)
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
int32_t *data, int n, int pred_order)
{
int i;
uint32_t bits, opt_bits;
uint32_t bits[MAX_PARTITION_ORDER+1];
int opt_porder;
RiceContext opt_rc;
RiceContext tmp_rc;
uint32_t *udata;
uint32_t sums[9][256];
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
assert(pmax >= 0 && pmax <= 8);
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
assert(pmin <= pmax);
udata = av_malloc(n * sizeof(uint32_t));
for(i=0; i<n; i++) {
udata[i] = (2*data[i]) ^ (data[i]>>31);
}
calc_sums(pmax, udata, n, pred_order, sums);
calc_sums(pmin, pmax, udata, n, pred_order, sums);
opt_porder = 0;
opt_bits = UINT32_MAX;
for(i=0; i<=pmax; i++) {
bits = calc_optimal_rice_params(rc, i, sums[i], n, pred_order);
if(bits < opt_bits) {
opt_bits = bits;
opt_porder = pmin;
bits[pmin] = UINT32_MAX;
for(i=pmin; i<=pmax; i++) {
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
if(bits[i] <= bits[opt_porder]) {
opt_porder = i;
memcpy(&opt_rc, rc, sizeof(RiceContext));
memcpy(rc, &tmp_rc, sizeof(RiceContext));
}
}
if(opt_porder != pmax) {
memcpy(rc, &opt_rc, sizeof(RiceContext));
}
av_freep(&udata);
return opt_bits;
return bits[opt_porder];
}
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmax, int32_t *data,
int n, int pred_order, int bps)
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
int32_t *data, int n, int pred_order,
int bps)
{
uint32_t bits;
bits = pred_order*bps + 6;
bits += calc_rice_params(rc, pmax, data, n, pred_order);
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
return bits;
}
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
int32_t *data, int n, int pred_order,
int bps, int precision)
{
uint32_t bits;
bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
return bits;
}
/**
* Apply Welch window function to audio block
*/
static void apply_welch_window(const int32_t *data, int len, double *w_data)
{
int i, n2;
double w;
double c;
n2 = (len >> 1);
c = 2.0 / (len - 1.0);
for(i=0; i<n2; i++) {
w = c - i - 1.0;
w = 1.0 - (w * w);
w_data[i] = data[i] * w;
w_data[len-1-i] = data[len-1-i] * w;
}
}
/**
* Calculates autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
static void compute_autocorr(const int32_t *data, int len, int lag,
double *autoc)
{
int i;
double *data1;
int lag_ptr, ptr;
data1 = av_malloc(len * sizeof(double));
apply_welch_window(data, len, data1);
for(i=0; i<lag; i++) autoc[i] = 1.0;
ptr = 0;
while(ptr <= lag) {
lag_ptr = 0;
while(lag_ptr <= ptr) {
autoc[ptr-lag_ptr] += data1[ptr] * data1[lag_ptr];
lag_ptr++;
}
ptr++;
}
while(ptr < len) {
lag_ptr = ptr - lag;
while(lag_ptr <= ptr) {
autoc[ptr-lag_ptr] += data1[ptr] * data1[lag_ptr];
lag_ptr++;
}
ptr++;
}
av_freep(&data1);
}
/**
* Levinson-Durbin recursion.
* Produces LPC coefficients from autocorrelation data.
*/
static void compute_lpc_coefs(const double *autoc, int max_order,
double lpc[][MAX_LPC_ORDER], double *ref)
{
int i, j, i2;
double r, err, tmp;
double lpc_tmp[MAX_LPC_ORDER];
for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
err = autoc[0];
for(i=0; i<max_order; i++) {
r = -autoc[i+1];
for(j=0; j<i; j++) {
r -= lpc_tmp[j] * autoc[i-j];
}
r /= err;
ref[i] = fabs(r);
err *= 1.0 - (r * r);
i2 = (i >> 1);
lpc_tmp[i] = r;
for(j=0; j<i2; j++) {
tmp = lpc_tmp[j];
lpc_tmp[j] += r * lpc_tmp[i-1-j];
lpc_tmp[i-1-j] += r * tmp;
}
if(i & 1) {
lpc_tmp[j] += lpc_tmp[j] * r;
}
for(j=0; j<=i; j++) {
lpc[i][j] = -lpc_tmp[j];
}
}
}
/**
* Quantize LPC coefficients
*/
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
int32_t *lpc_out, int *shift)
{
int i;
double d, cmax;
int32_t qmax;
int sh;
/* define maximum levels */
qmax = (1 << (precision - 1)) - 1;
/* find maximum coefficient value */
cmax = 0.0;
for(i=0; i<order; i++) {
d = lpc_in[i];
if(d < 0) d = -d;
if(d > cmax)
cmax = d;
}
/* if maximum value quantizes to zero, return all zeros */
if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
*shift = 0;
for(i=0; i<order; i++) {
lpc_out[i] = 0;
}
return;
}
/* calculate level shift which scales max coeff to available bits */
sh = MAX_LPC_SHIFT;
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
sh--;
}
/* since negative shift values are unsupported in decoder, scale down
coefficients instead */
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
/* output quantized coefficients and level shift */
for(i=0; i<order; i++) {
lpc_out[i] = (int32_t)(lpc_in[i] * (1 << sh));
}
*shift = sh;
}
static int estimate_best_order(double *ref, int max_order)
{
int i, est;
est = 1;
for(i=max_order-1; i>=0; i--) {
if(ref[i] > 0.10) {
est = i+1;
break;
}
}
return est;
}
/**
* Calculate LPC coefficients for multiple orders
*/
static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
int precision, int32_t coefs[][MAX_LPC_ORDER],
int *shift)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i;
int opt_order;
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
compute_autocorr(samples, blocksize, max_order+1, autoc);
compute_lpc_coefs(autoc, max_order, lpc, ref);
opt_order = estimate_best_order(ref, max_order);
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
return opt_order;
}
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
{
assert(n > 0);
memcpy(res, smp, n * sizeof(int32_t));
}
static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
int order)
{
int i;
@ -402,6 +822,24 @@ static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
}
}
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
int order, const int32_t *coefs, int shift)
{
int i, j;
int32_t pred;
for(i=0; i<order; i++) {
res[i] = smp[i];
}
for(i=order; i<n; i++) {
pred = 0;
for(j=0; j<order; j++) {
pred += coefs[j] * smp[i-j-1];
}
res[i] = smp[i] - (pred >> shift);
}
}
static int get_max_p_order(int max_porder, int n, int order)
{
int porder, max_parts;
@ -419,10 +857,13 @@ static int get_max_p_order(int max_porder, int n, int order)
static int encode_residual(FlacEncodeContext *ctx, int ch)
{
int i, opt_order, porder, max_porder, n;
int i, n;
int min_order, max_order, opt_order, precision;
int porder, min_porder, max_porder;
FlacFrame *frame;
FlacSubframe *sub;
uint32_t bits[5];
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
int shift[MAX_LPC_ORDER];
int32_t *res, *smp;
frame = &ctx->frame;
@ -448,28 +889,51 @@ static int encode_residual(FlacEncodeContext *ctx, int ch)
return sub->obits * n;
}
max_porder = 3;
min_order = ctx->options.min_prediction_order;
max_order = ctx->options.max_prediction_order;
min_porder = ctx->options.min_partition_order;
max_porder = ctx->options.max_partition_order;
precision = ctx->options.lpc_coeff_precision;
/* FIXED */
opt_order = 0;
bits[0] = UINT32_MAX;
for(i=0; i<=4; i++) {
encode_residual_fixed(res, smp, n, i);
porder = get_max_p_order(max_porder, n, i);
bits[i] = calc_rice_params_fixed(&sub->rc, porder, res, n, i, sub->obits);
if(bits[i] < bits[opt_order]) {
opt_order = i;
if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
uint32_t bits[MAX_FIXED_ORDER+1];
if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
opt_order = 0;
bits[0] = UINT32_MAX;
for(i=min_order; i<=max_order; i++) {
encode_residual_fixed(res, smp, n, i);
porder = get_max_p_order(max_porder, n, i);
bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, porder, res,
n, i, sub->obits);
if(bits[i] < bits[opt_order]) {
opt_order = i;
}
}
sub->order = opt_order;
sub->type = FLAC_SUBFRAME_FIXED;
sub->type_code = sub->type | sub->order;
if(sub->order != max_order) {
encode_residual_fixed(res, smp, n, sub->order);
porder = get_max_p_order(max_porder, n, sub->order);
return calc_rice_params_fixed(&sub->rc, min_porder, porder, res, n,
sub->order, sub->obits);
}
return bits[sub->order];
}
sub->order = opt_order;
sub->type = FLAC_SUBFRAME_FIXED;
sub->type_code = sub->type | sub->order;
if(sub->order != 4) {
encode_residual_fixed(res, smp, n, sub->order);
porder = get_max_p_order(max_porder, n, sub->order);
calc_rice_params_fixed(&sub->rc, porder, res, n, sub->order, sub->obits);
/* LPC */
sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift);
sub->type = FLAC_SUBFRAME_LPC;
sub->type_code = sub->type | (sub->order-1);
sub->shift = shift[sub->order-1];
for(i=0; i<sub->order; i++) {
sub->coefs[i] = coefs[sub->order-1][i];
}
return bits[sub->order];
porder = get_max_p_order(max_porder, n, sub->order);
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
return calc_rice_params_lpc(&sub->rc, 0, porder, res, n, sub->order,
sub->obits, precision);
}
static int encode_residual_v(FlacEncodeContext *ctx, int ch)
@ -509,7 +973,7 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
uint64_t score[4];
int k;
/* calculate sum of squares for each channel */
/* calculate sum of 2nd order residual for each channel */
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for(i=2; i<n; i++) {
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
@ -519,6 +983,7 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
sum[0] += ABS(lt);
sum[1] += ABS(rt);
}
/* estimate bit counts */
for(i=0; i<4; i++) {
k = find_optimal_param(2*sum[i], n);
sum[i] = rice_encode_count(2*sum[i], n, k);
@ -731,6 +1196,32 @@ static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
output_residual(ctx, ch);
}
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
{
int i, cbits;
FlacFrame *frame;
FlacSubframe *sub;
frame = &ctx->frame;
sub = &frame->subframes[ch];
/* warm-up samples */
for(i=0; i<sub->order; i++) {
put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
}
/* LPC coefficients */
cbits = ctx->options.lpc_coeff_precision;
put_bits(&ctx->pb, 4, cbits-1);
put_sbits(&ctx->pb, 5, sub->shift);
for(i=0; i<sub->order; i++) {
put_sbits(&ctx->pb, cbits, sub->coefs[i]);
}
/* residual */
output_residual(ctx, ch);
}
static void output_subframes(FlacEncodeContext *s)
{
FlacFrame *frame;
@ -754,6 +1245,8 @@ static void output_subframes(FlacEncodeContext *s)
output_subframe_verbatim(s, ch);
} else if(sub->type == FLAC_SUBFRAME_FIXED) {
output_subframe_fixed(s, ch);
} else if(sub->type == FLAC_SUBFRAME_LPC) {
output_subframe_lpc(s, ch);
}
}
}

@ -744,6 +744,14 @@ static AVOption options[]={
{"mv0_threshold", NULL, OFFSET(mv0_threshold), FF_OPT_TYPE_INT, 256, 0, INT_MAX, V|E},
{"ivlc", "intra vlc table", 0, FF_OPT_TYPE_CONST, CODEC_FLAG2_INTRA_VLC, INT_MIN, INT_MAX, V|E, "flags2"},
{"b_sensitivity", NULL, OFFSET(b_sensitivity), FF_OPT_TYPE_INT, 40, 1, INT_MAX, V|E},
{"compression_level", NULL, OFFSET(compression_level), FF_OPT_TYPE_INT, FF_COMPRESSION_DEFAULT, INT_MIN, INT_MAX, V|A|E},
{"use_lpc", NULL, OFFSET(use_lpc), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
{"lpc_coeff_precision", NULL, OFFSET(lpc_coeff_precision), FF_OPT_TYPE_INT, DEFAULT, 0, INT_MAX, A|E},
{"min_prediction_order", NULL, OFFSET(min_prediction_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
{"max_prediction_order", NULL, OFFSET(max_prediction_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
{"prediction_order_method", NULL, OFFSET(prediction_order_method), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
{"min_partition_order", NULL, OFFSET(min_partition_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
{"max_partition_order", NULL, OFFSET(max_partition_order), FF_OPT_TYPE_INT, -1, INT_MIN, INT_MAX, A|E},
{NULL},
};
@ -800,6 +808,13 @@ void avcodec_get_context_defaults(AVCodecContext *s){
s->sample_fmt= SAMPLE_FMT_S16; // FIXME: set to NONE
s->mv0_threshold= 256;
s->b_sensitivity= 40;
s->compression_level = FF_COMPRESSION_DEFAULT;
s->use_lpc = -1;
s->min_prediction_order = -1;
s->max_prediction_order = -1;
s->prediction_order_method = -1;
s->min_partition_order = -1;
s->max_partition_order = -1;
s->intra_quant_bias= FF_DEFAULT_QUANT_BIAS;
s->inter_quant_bias= FF_DEFAULT_QUANT_BIAS;

@ -176,7 +176,7 @@ stddev:1050.18 PSNR:35.89 bytes:1054720
264236 ./data/a-adpcm_yam.wav
e92cec8c07913ffb91ad2b11f79cdc00 *./data/out.wav
stddev:18312.68 PSNR:11.06 bytes:1056768
9ab5f311b70bc1fa8591b891db50b386 *./data/a-flac.flac
353384 ./data/a-flac.flac
c3382f03ce2efb5d475240d288a33898 *./data/a-flac.flac
353368 ./data/a-flac.flac
c4228df189aad9567a037727d0e763e4 *./data/out.wav
stddev: 33.31 PSNR:65.87 bytes:1040384

@ -599,7 +599,7 @@ fi
if [ -n "$do_flac" ] ; then
# encoding
file=${outfile}flac.flac
do_ffmpeg $file -y -ab 128 -ac 2 -ar 44100 -f s16le -i $pcm_src -acodec flac $file
do_ffmpeg $file -y -ab 128 -ac 2 -ar 44100 -f s16le -i $pcm_src -acodec flac -compression_level 2 $file
# decoding
do_ffmpeg $pcm_dst -y -i $file -f wav $pcm_dst

@ -176,7 +176,7 @@ stddev:1050.18 PSNR:35.89 bytes:1054720
264236 ./data/a-adpcm_yam.wav
e92cec8c07913ffb91ad2b11f79cdc00 *./data/out.wav
stddev:18312.68 PSNR:11.06 bytes:1056768
9ab5f311b70bc1fa8591b891db50b386 *./data/a-flac.flac
353384 ./data/a-flac.flac
c3382f03ce2efb5d475240d288a33898 *./data/a-flac.flac
353368 ./data/a-flac.flac
c4228df189aad9567a037727d0e763e4 *./data/out.wav
stddev: 33.31 PSNR:65.87 bytes:1040384

Loading…
Cancel
Save