|
|
|
@ -42,24 +42,406 @@ |
|
|
|
|
#define M_E 2.718281828 |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
static int init_pass2(MpegEncContext *s); |
|
|
|
|
static inline double qp2bits(RateControlEntry *rce, double qp) |
|
|
|
|
{ |
|
|
|
|
if (qp <= 0.0) { |
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); |
|
|
|
|
} |
|
|
|
|
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static inline double bits2qp(RateControlEntry *rce, double bits) |
|
|
|
|
{ |
|
|
|
|
if (bits < 0.9) { |
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); |
|
|
|
|
} |
|
|
|
|
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
AVCodecContext *a = s->avctx; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; |
|
|
|
|
const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type]; |
|
|
|
|
|
|
|
|
|
if (pict_type == AV_PICTURE_TYPE_I && |
|
|
|
|
(a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P)) |
|
|
|
|
q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset; |
|
|
|
|
else if (pict_type == AV_PICTURE_TYPE_B && |
|
|
|
|
a->b_quant_factor > 0.0) |
|
|
|
|
q = last_non_b_q * a->b_quant_factor + a->b_quant_offset; |
|
|
|
|
if (q < 1) |
|
|
|
|
q = 1; |
|
|
|
|
|
|
|
|
|
/* last qscale / qdiff stuff */ |
|
|
|
|
if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) { |
|
|
|
|
double last_q = rcc->last_qscale_for[pict_type]; |
|
|
|
|
const int maxdiff = FF_QP2LAMBDA * a->max_qdiff; |
|
|
|
|
|
|
|
|
|
if (q > last_q + maxdiff) |
|
|
|
|
q = last_q + maxdiff; |
|
|
|
|
else if (q < last_q - maxdiff) |
|
|
|
|
q = last_q - maxdiff; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
|
|
|
|
|
|
|
|
|
|
if (pict_type != AV_PICTURE_TYPE_B) |
|
|
|
|
rcc->last_non_b_pict_type = pict_type; |
|
|
|
|
|
|
|
|
|
return q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Get the qmin & qmax for pict_type. |
|
|
|
|
*/ |
|
|
|
|
static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type) |
|
|
|
|
{ |
|
|
|
|
int qmin = s->lmin; |
|
|
|
|
int qmax = s->lmax; |
|
|
|
|
|
|
|
|
|
assert(qmin <= qmax); |
|
|
|
|
|
|
|
|
|
switch (pict_type) { |
|
|
|
|
case AV_PICTURE_TYPE_B: |
|
|
|
|
qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); |
|
|
|
|
qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); |
|
|
|
|
break; |
|
|
|
|
case AV_PICTURE_TYPE_I: |
|
|
|
|
qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); |
|
|
|
|
qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
qmin = av_clip(qmin, 1, FF_LAMBDA_MAX); |
|
|
|
|
qmax = av_clip(qmax, 1, FF_LAMBDA_MAX); |
|
|
|
|
|
|
|
|
|
if (qmax < qmin) |
|
|
|
|
qmax = qmin; |
|
|
|
|
|
|
|
|
|
*qmin_ret = qmin; |
|
|
|
|
*qmax_ret = qmax; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, |
|
|
|
|
double q, int frame_num) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
const double buffer_size = s->avctx->rc_buffer_size; |
|
|
|
|
const double fps = 1 / av_q2d(s->avctx->time_base); |
|
|
|
|
const double min_rate = s->avctx->rc_min_rate / fps; |
|
|
|
|
const double max_rate = s->avctx->rc_max_rate / fps; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
int qmin, qmax; |
|
|
|
|
|
|
|
|
|
get_qminmax(&qmin, &qmax, s, pict_type); |
|
|
|
|
|
|
|
|
|
/* modulation */ |
|
|
|
|
if (s->rc_qmod_freq && |
|
|
|
|
frame_num % s->rc_qmod_freq == 0 && |
|
|
|
|
pict_type == AV_PICTURE_TYPE_P) |
|
|
|
|
q *= s->rc_qmod_amp; |
|
|
|
|
|
|
|
|
|
/* buffer overflow/underflow protection */ |
|
|
|
|
if (buffer_size) { |
|
|
|
|
double expected_size = rcc->buffer_index; |
|
|
|
|
double q_limit; |
|
|
|
|
|
|
|
|
|
if (min_rate) { |
|
|
|
|
double d = 2 * (buffer_size - expected_size) / buffer_size; |
|
|
|
|
if (d > 1.0) |
|
|
|
|
d = 1.0; |
|
|
|
|
else if (d < 0.0001) |
|
|
|
|
d = 0.0001; |
|
|
|
|
q *= pow(d, 1.0 / s->rc_buffer_aggressivity); |
|
|
|
|
|
|
|
|
|
q_limit = bits2qp(rce, |
|
|
|
|
FFMAX((min_rate - buffer_size + rcc->buffer_index) * |
|
|
|
|
s->avctx->rc_min_vbv_overflow_use, 1)); |
|
|
|
|
|
|
|
|
|
if (q > q_limit) { |
|
|
|
|
if (s->avctx->debug & FF_DEBUG_RC) |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"limiting QP %f -> %f\n", q, q_limit); |
|
|
|
|
q = q_limit; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (max_rate) { |
|
|
|
|
double d = 2 * expected_size / buffer_size; |
|
|
|
|
if (d > 1.0) |
|
|
|
|
d = 1.0; |
|
|
|
|
else if (d < 0.0001) |
|
|
|
|
d = 0.0001; |
|
|
|
|
q /= pow(d, 1.0 / s->rc_buffer_aggressivity); |
|
|
|
|
|
|
|
|
|
q_limit = bits2qp(rce, |
|
|
|
|
FFMAX(rcc->buffer_index * |
|
|
|
|
s->avctx->rc_max_available_vbv_use, |
|
|
|
|
1)); |
|
|
|
|
if (q < q_limit) { |
|
|
|
|
if (s->avctx->debug & FF_DEBUG_RC) |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"limiting QP %f -> %f\n", q, q_limit); |
|
|
|
|
q = q_limit; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n", |
|
|
|
|
q, max_rate, min_rate, buffer_size, rcc->buffer_index, |
|
|
|
|
s->rc_buffer_aggressivity); |
|
|
|
|
if (s->rc_qsquish == 0.0 || qmin == qmax) { |
|
|
|
|
if (q < qmin) |
|
|
|
|
q = qmin; |
|
|
|
|
else if (q > qmax) |
|
|
|
|
q = qmax; |
|
|
|
|
} else { |
|
|
|
|
double min2 = log(qmin); |
|
|
|
|
double max2 = log(qmax); |
|
|
|
|
|
|
|
|
|
q = log(q); |
|
|
|
|
q = (q - min2) / (max2 - min2) - 0.5; |
|
|
|
|
q *= -4.0; |
|
|
|
|
q = 1.0 / (1.0 + exp(q)); |
|
|
|
|
q = q * (max2 - min2) + min2; |
|
|
|
|
|
|
|
|
|
q = exp(q); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Modify the bitrate curve from pass1 for one frame. |
|
|
|
|
*/ |
|
|
|
|
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, |
|
|
|
|
double rate_factor, int frame_num); |
|
|
|
|
double rate_factor, int frame_num) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
AVCodecContext *a = s->avctx; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
const double mb_num = s->mb_num; |
|
|
|
|
double q, bits; |
|
|
|
|
int i; |
|
|
|
|
|
|
|
|
|
double const_values[] = { |
|
|
|
|
M_PI, |
|
|
|
|
M_E, |
|
|
|
|
rce->i_tex_bits * rce->qscale, |
|
|
|
|
rce->p_tex_bits * rce->qscale, |
|
|
|
|
(rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale, |
|
|
|
|
rce->mv_bits / mb_num, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code, |
|
|
|
|
rce->i_count / mb_num, |
|
|
|
|
rce->mc_mb_var_sum / mb_num, |
|
|
|
|
rce->mb_var_sum / mb_num, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_I, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_P, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_B, |
|
|
|
|
rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], |
|
|
|
|
a->qcompress, |
|
|
|
|
rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], |
|
|
|
|
rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], |
|
|
|
|
rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], |
|
|
|
|
rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B], |
|
|
|
|
(rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], |
|
|
|
|
0 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce); |
|
|
|
|
if (isnan(bits)) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rcc->pass1_rc_eq_output_sum += bits; |
|
|
|
|
bits *= rate_factor; |
|
|
|
|
if (bits < 0.0) |
|
|
|
|
bits = 0.0; |
|
|
|
|
bits += 1.0; // avoid 1/0 issues
|
|
|
|
|
|
|
|
|
|
/* user override */ |
|
|
|
|
for (i = 0; i < s->avctx->rc_override_count; i++) { |
|
|
|
|
RcOverride *rco = s->avctx->rc_override; |
|
|
|
|
if (rco[i].start_frame > frame_num) |
|
|
|
|
continue; |
|
|
|
|
if (rco[i].end_frame < frame_num) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
if (rco[i].qscale) |
|
|
|
|
bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
|
|
|
|
|
else |
|
|
|
|
bits *= rco[i].quality_factor; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
q = bits2qp(rce, bits); |
|
|
|
|
|
|
|
|
|
/* I/B difference */ |
|
|
|
|
if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0) |
|
|
|
|
q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset; |
|
|
|
|
else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0) |
|
|
|
|
q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset; |
|
|
|
|
if (q < 1) |
|
|
|
|
q = 1; |
|
|
|
|
|
|
|
|
|
return q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int init_pass2(MpegEncContext *s) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
AVCodecContext *a = s->avctx; |
|
|
|
|
int i, toobig; |
|
|
|
|
double fps = 1 / av_q2d(s->avctx->time_base); |
|
|
|
|
double complexity[5] = { 0 }; // approximate bits at quant=1
|
|
|
|
|
uint64_t const_bits[5] = { 0 }; // quantizer independent bits
|
|
|
|
|
uint64_t all_const_bits; |
|
|
|
|
uint64_t all_available_bits = (uint64_t)(s->bit_rate * |
|
|
|
|
(double)rcc->num_entries / fps); |
|
|
|
|
double rate_factor = 0; |
|
|
|
|
double step; |
|
|
|
|
const int filter_size = (int)(a->qblur * 4) | 1; |
|
|
|
|
double expected_bits; |
|
|
|
|
double *qscale, *blurred_qscale, qscale_sum; |
|
|
|
|
|
|
|
|
|
/* find complexity & const_bits & decide the pict_types */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
|
|
|
|
|
rce->new_pict_type = rce->pict_type; |
|
|
|
|
rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale; |
|
|
|
|
rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale; |
|
|
|
|
rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; |
|
|
|
|
rcc->frame_count[rce->pict_type]++; |
|
|
|
|
|
|
|
|
|
complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) * |
|
|
|
|
(double)rce->qscale; |
|
|
|
|
const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
all_const_bits = const_bits[AV_PICTURE_TYPE_I] + |
|
|
|
|
const_bits[AV_PICTURE_TYPE_P] + |
|
|
|
|
const_bits[AV_PICTURE_TYPE_B]; |
|
|
|
|
|
|
|
|
|
if (all_available_bits < all_const_bits) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
qscale = av_malloc(sizeof(double) * rcc->num_entries); |
|
|
|
|
blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries); |
|
|
|
|
if (!qscale || !blurred_qscale) { |
|
|
|
|
av_free(qscale); |
|
|
|
|
av_free(blurred_qscale); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
} |
|
|
|
|
toobig = 0; |
|
|
|
|
|
|
|
|
|
for (step = 256 * 256; step > 0.0000001; step *= 0.5) { |
|
|
|
|
expected_bits = 0; |
|
|
|
|
rate_factor += step; |
|
|
|
|
|
|
|
|
|
rcc->buffer_index = s->avctx->rc_buffer_size / 2; |
|
|
|
|
|
|
|
|
|
/* find qscale */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
|
|
|
|
|
qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i); |
|
|
|
|
rcc->last_qscale_for[rce->pict_type] = qscale[i]; |
|
|
|
|
} |
|
|
|
|
assert(filter_size % 2 == 1); |
|
|
|
|
|
|
|
|
|
/* fixed I/B QP relative to P mode */ |
|
|
|
|
for (i = rcc->num_entries - 1; i >= 0; i--) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
|
|
|
|
|
qscale[i] = get_diff_limited_q(s, rce, qscale[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* smooth curve */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
int j; |
|
|
|
|
double q = 0.0, sum = 0.0; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < filter_size; j++) { |
|
|
|
|
int index = i + j - filter_size / 2; |
|
|
|
|
double d = index - i; |
|
|
|
|
double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur)); |
|
|
|
|
|
|
|
|
|
if (index < 0 || index >= rcc->num_entries) |
|
|
|
|
continue; |
|
|
|
|
if (pict_type != rcc->entry[index].new_pict_type) |
|
|
|
|
continue; |
|
|
|
|
q += qscale[index] * coeff; |
|
|
|
|
sum += coeff; |
|
|
|
|
} |
|
|
|
|
blurred_qscale[i] = q / sum; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* find expected bits */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
double bits; |
|
|
|
|
|
|
|
|
|
rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i); |
|
|
|
|
|
|
|
|
|
bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; |
|
|
|
|
bits += 8 * ff_vbv_update(s, bits); |
|
|
|
|
|
|
|
|
|
rce->expected_bits = expected_bits; |
|
|
|
|
expected_bits += bits; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static inline double qp2bits(RateControlEntry *rce, double qp) |
|
|
|
|
{ |
|
|
|
|
if (qp <= 0.0) { |
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); |
|
|
|
|
ff_dlog(s->avctx, |
|
|
|
|
"expected_bits: %f all_available_bits: %d rate_factor: %f\n", |
|
|
|
|
expected_bits, (int)all_available_bits, rate_factor); |
|
|
|
|
if (expected_bits > all_available_bits) { |
|
|
|
|
rate_factor -= step; |
|
|
|
|
++toobig; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp; |
|
|
|
|
} |
|
|
|
|
av_free(qscale); |
|
|
|
|
av_free(blurred_qscale); |
|
|
|
|
|
|
|
|
|
static inline double bits2qp(RateControlEntry *rce, double bits) |
|
|
|
|
{ |
|
|
|
|
if (bits < 0.9) { |
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); |
|
|
|
|
/* check bitrate calculations and print info */ |
|
|
|
|
qscale_sum = 0.0; |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", |
|
|
|
|
i, |
|
|
|
|
rcc->entry[i].new_qscale, |
|
|
|
|
rcc->entry[i].new_qscale / FF_QP2LAMBDA); |
|
|
|
|
qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, |
|
|
|
|
s->avctx->qmin, s->avctx->qmax); |
|
|
|
|
} |
|
|
|
|
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits; |
|
|
|
|
assert(toobig <= 40); |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", |
|
|
|
|
s->bit_rate, |
|
|
|
|
(int)(expected_bits / ((double)all_available_bits / s->bit_rate))); |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"[lavc rc] estimated target average qp: %.3f\n", |
|
|
|
|
(float)qscale_sum / rcc->num_entries); |
|
|
|
|
if (toobig == 0) { |
|
|
|
|
av_log(s->avctx, AV_LOG_INFO, |
|
|
|
|
"[lavc rc] Using all of requested bitrate is not " |
|
|
|
|
"necessary for this video with these parameters.\n"); |
|
|
|
|
} else if (toobig == 40) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, |
|
|
|
|
"[lavc rc] Error: bitrate too low for this video " |
|
|
|
|
"with these parameters.\n"); |
|
|
|
|
return -1; |
|
|
|
|
} else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, |
|
|
|
|
"[lavc rc] Error: 2pass curve failed to converge\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
av_cold int ff_rate_control_init(MpegEncContext *s) |
|
|
|
@ -253,288 +635,54 @@ av_cold int ff_rate_control_init(MpegEncContext *s) |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
av_cold void ff_rate_control_uninit(MpegEncContext *s) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
emms_c(); |
|
|
|
|
|
|
|
|
|
av_expr_free(rcc->rc_eq_eval); |
|
|
|
|
av_freep(&rcc->entry); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int ff_vbv_update(MpegEncContext *s, int frame_size) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
const double fps = 1 / av_q2d(s->avctx->time_base); |
|
|
|
|
const int buffer_size = s->avctx->rc_buffer_size; |
|
|
|
|
const double min_rate = s->avctx->rc_min_rate / fps; |
|
|
|
|
const double max_rate = s->avctx->rc_max_rate / fps; |
|
|
|
|
|
|
|
|
|
ff_dlog(s, "%d %f %d %f %f\n", |
|
|
|
|
buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); |
|
|
|
|
|
|
|
|
|
if (buffer_size) { |
|
|
|
|
int left; |
|
|
|
|
|
|
|
|
|
rcc->buffer_index -= frame_size; |
|
|
|
|
if (rcc->buffer_index < 0) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); |
|
|
|
|
rcc->buffer_index = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
left = buffer_size - rcc->buffer_index - 1; |
|
|
|
|
rcc->buffer_index += av_clip(left, min_rate, max_rate); |
|
|
|
|
|
|
|
|
|
if (rcc->buffer_index > buffer_size) { |
|
|
|
|
int stuffing = ceil((rcc->buffer_index - buffer_size) / 8); |
|
|
|
|
|
|
|
|
|
if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4) |
|
|
|
|
stuffing = 4; |
|
|
|
|
rcc->buffer_index -= 8 * stuffing; |
|
|
|
|
|
|
|
|
|
if (s->avctx->debug & FF_DEBUG_RC) |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); |
|
|
|
|
|
|
|
|
|
return stuffing; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Modify the bitrate curve from pass1 for one frame. |
|
|
|
|
*/ |
|
|
|
|
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, |
|
|
|
|
double rate_factor, int frame_num) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
AVCodecContext *a = s->avctx; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
const double mb_num = s->mb_num; |
|
|
|
|
double q, bits; |
|
|
|
|
int i; |
|
|
|
|
|
|
|
|
|
double const_values[] = { |
|
|
|
|
M_PI, |
|
|
|
|
M_E, |
|
|
|
|
rce->i_tex_bits * rce->qscale, |
|
|
|
|
rce->p_tex_bits * rce->qscale, |
|
|
|
|
(rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale, |
|
|
|
|
rce->mv_bits / mb_num, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code, |
|
|
|
|
rce->i_count / mb_num, |
|
|
|
|
rce->mc_mb_var_sum / mb_num, |
|
|
|
|
rce->mb_var_sum / mb_num, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_I, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_P, |
|
|
|
|
rce->pict_type == AV_PICTURE_TYPE_B, |
|
|
|
|
rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], |
|
|
|
|
a->qcompress, |
|
|
|
|
rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], |
|
|
|
|
rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], |
|
|
|
|
rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], |
|
|
|
|
rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B], |
|
|
|
|
(rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], |
|
|
|
|
0 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce); |
|
|
|
|
if (isnan(bits)) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rcc->pass1_rc_eq_output_sum += bits; |
|
|
|
|
bits *= rate_factor; |
|
|
|
|
if (bits < 0.0) |
|
|
|
|
bits = 0.0; |
|
|
|
|
bits += 1.0; // avoid 1/0 issues
|
|
|
|
|
|
|
|
|
|
/* user override */ |
|
|
|
|
for (i = 0; i < s->avctx->rc_override_count; i++) { |
|
|
|
|
RcOverride *rco = s->avctx->rc_override; |
|
|
|
|
if (rco[i].start_frame > frame_num) |
|
|
|
|
continue; |
|
|
|
|
if (rco[i].end_frame < frame_num) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
if (rco[i].qscale) |
|
|
|
|
bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
|
|
|
|
|
else |
|
|
|
|
bits *= rco[i].quality_factor; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
q = bits2qp(rce, bits); |
|
|
|
|
|
|
|
|
|
/* I/B difference */ |
|
|
|
|
if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0) |
|
|
|
|
q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset; |
|
|
|
|
else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0) |
|
|
|
|
q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset; |
|
|
|
|
if (q < 1) |
|
|
|
|
q = 1; |
|
|
|
|
|
|
|
|
|
return q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
AVCodecContext *a = s->avctx; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; |
|
|
|
|
const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type]; |
|
|
|
|
|
|
|
|
|
if (pict_type == AV_PICTURE_TYPE_I && |
|
|
|
|
(a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P)) |
|
|
|
|
q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset; |
|
|
|
|
else if (pict_type == AV_PICTURE_TYPE_B && |
|
|
|
|
a->b_quant_factor > 0.0) |
|
|
|
|
q = last_non_b_q * a->b_quant_factor + a->b_quant_offset; |
|
|
|
|
if (q < 1) |
|
|
|
|
q = 1; |
|
|
|
|
|
|
|
|
|
/* last qscale / qdiff stuff */ |
|
|
|
|
if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) { |
|
|
|
|
double last_q = rcc->last_qscale_for[pict_type]; |
|
|
|
|
const int maxdiff = FF_QP2LAMBDA * a->max_qdiff; |
|
|
|
|
|
|
|
|
|
if (q > last_q + maxdiff) |
|
|
|
|
q = last_q + maxdiff; |
|
|
|
|
else if (q < last_q - maxdiff) |
|
|
|
|
q = last_q - maxdiff; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
|
|
|
|
|
|
|
|
|
|
if (pict_type != AV_PICTURE_TYPE_B) |
|
|
|
|
rcc->last_non_b_pict_type = pict_type; |
|
|
|
|
|
|
|
|
|
return q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Get the qmin & qmax for pict_type. |
|
|
|
|
*/ |
|
|
|
|
static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type) |
|
|
|
|
{ |
|
|
|
|
int qmin = s->lmin; |
|
|
|
|
int qmax = s->lmax; |
|
|
|
|
|
|
|
|
|
assert(qmin <= qmax); |
|
|
|
|
|
|
|
|
|
switch (pict_type) { |
|
|
|
|
case AV_PICTURE_TYPE_B: |
|
|
|
|
qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); |
|
|
|
|
qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); |
|
|
|
|
break; |
|
|
|
|
case AV_PICTURE_TYPE_I: |
|
|
|
|
qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); |
|
|
|
|
qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
qmin = av_clip(qmin, 1, FF_LAMBDA_MAX); |
|
|
|
|
qmax = av_clip(qmax, 1, FF_LAMBDA_MAX); |
|
|
|
|
|
|
|
|
|
if (qmax < qmin) |
|
|
|
|
qmax = qmin; |
|
|
|
|
|
|
|
|
|
*qmin_ret = qmin; |
|
|
|
|
*qmax_ret = qmax; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, |
|
|
|
|
double q, int frame_num) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
const double buffer_size = s->avctx->rc_buffer_size; |
|
|
|
|
const double fps = 1 / av_q2d(s->avctx->time_base); |
|
|
|
|
const double min_rate = s->avctx->rc_min_rate / fps; |
|
|
|
|
const double max_rate = s->avctx->rc_max_rate / fps; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
int qmin, qmax; |
|
|
|
|
|
|
|
|
|
get_qminmax(&qmin, &qmax, s, pict_type); |
|
|
|
|
av_cold void ff_rate_control_uninit(MpegEncContext *s) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
emms_c(); |
|
|
|
|
|
|
|
|
|
/* modulation */ |
|
|
|
|
if (s->rc_qmod_freq && |
|
|
|
|
frame_num % s->rc_qmod_freq == 0 && |
|
|
|
|
pict_type == AV_PICTURE_TYPE_P) |
|
|
|
|
q *= s->rc_qmod_amp; |
|
|
|
|
av_expr_free(rcc->rc_eq_eval); |
|
|
|
|
av_freep(&rcc->entry); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* buffer overflow/underflow protection */ |
|
|
|
|
if (buffer_size) { |
|
|
|
|
double expected_size = rcc->buffer_index; |
|
|
|
|
double q_limit; |
|
|
|
|
int ff_vbv_update(MpegEncContext *s, int frame_size) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
const double fps = 1 / av_q2d(s->avctx->time_base); |
|
|
|
|
const int buffer_size = s->avctx->rc_buffer_size; |
|
|
|
|
const double min_rate = s->avctx->rc_min_rate / fps; |
|
|
|
|
const double max_rate = s->avctx->rc_max_rate / fps; |
|
|
|
|
|
|
|
|
|
if (min_rate) { |
|
|
|
|
double d = 2 * (buffer_size - expected_size) / buffer_size; |
|
|
|
|
if (d > 1.0) |
|
|
|
|
d = 1.0; |
|
|
|
|
else if (d < 0.0001) |
|
|
|
|
d = 0.0001; |
|
|
|
|
q *= pow(d, 1.0 / s->rc_buffer_aggressivity); |
|
|
|
|
ff_dlog(s, "%d %f %d %f %f\n", |
|
|
|
|
buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); |
|
|
|
|
|
|
|
|
|
q_limit = bits2qp(rce, |
|
|
|
|
FFMAX((min_rate - buffer_size + rcc->buffer_index) * |
|
|
|
|
s->avctx->rc_min_vbv_overflow_use, 1)); |
|
|
|
|
if (buffer_size) { |
|
|
|
|
int left; |
|
|
|
|
|
|
|
|
|
if (q > q_limit) { |
|
|
|
|
if (s->avctx->debug & FF_DEBUG_RC) |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"limiting QP %f -> %f\n", q, q_limit); |
|
|
|
|
q = q_limit; |
|
|
|
|
} |
|
|
|
|
rcc->buffer_index -= frame_size; |
|
|
|
|
if (rcc->buffer_index < 0) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); |
|
|
|
|
rcc->buffer_index = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (max_rate) { |
|
|
|
|
double d = 2 * expected_size / buffer_size; |
|
|
|
|
if (d > 1.0) |
|
|
|
|
d = 1.0; |
|
|
|
|
else if (d < 0.0001) |
|
|
|
|
d = 0.0001; |
|
|
|
|
q /= pow(d, 1.0 / s->rc_buffer_aggressivity); |
|
|
|
|
left = buffer_size - rcc->buffer_index - 1; |
|
|
|
|
rcc->buffer_index += av_clip(left, min_rate, max_rate); |
|
|
|
|
|
|
|
|
|
q_limit = bits2qp(rce, |
|
|
|
|
FFMAX(rcc->buffer_index * |
|
|
|
|
s->avctx->rc_max_available_vbv_use, |
|
|
|
|
1)); |
|
|
|
|
if (q < q_limit) { |
|
|
|
|
if (s->avctx->debug & FF_DEBUG_RC) |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"limiting QP %f -> %f\n", q, q_limit); |
|
|
|
|
q = q_limit; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n", |
|
|
|
|
q, max_rate, min_rate, buffer_size, rcc->buffer_index, |
|
|
|
|
s->rc_buffer_aggressivity); |
|
|
|
|
if (s->rc_qsquish == 0.0 || qmin == qmax) { |
|
|
|
|
if (q < qmin) |
|
|
|
|
q = qmin; |
|
|
|
|
else if (q > qmax) |
|
|
|
|
q = qmax; |
|
|
|
|
} else { |
|
|
|
|
double min2 = log(qmin); |
|
|
|
|
double max2 = log(qmax); |
|
|
|
|
if (rcc->buffer_index > buffer_size) { |
|
|
|
|
int stuffing = ceil((rcc->buffer_index - buffer_size) / 8); |
|
|
|
|
|
|
|
|
|
q = log(q); |
|
|
|
|
q = (q - min2) / (max2 - min2) - 0.5; |
|
|
|
|
q *= -4.0; |
|
|
|
|
q = 1.0 / (1.0 + exp(q)); |
|
|
|
|
q = q * (max2 - min2) + min2; |
|
|
|
|
if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4) |
|
|
|
|
stuffing = 4; |
|
|
|
|
rcc->buffer_index -= 8 * stuffing; |
|
|
|
|
|
|
|
|
|
q = exp(q); |
|
|
|
|
} |
|
|
|
|
if (s->avctx->debug & FF_DEBUG_RC) |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); |
|
|
|
|
|
|
|
|
|
return q; |
|
|
|
|
return stuffing; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// ----------------------------------
|
|
|
|
|
// 1 Pass Code
|
|
|
|
|
|
|
|
|
|
static double predict_size(Predictor *p, double q, double var) |
|
|
|
|
{ |
|
|
|
|
return p->coeff * var / (q * p->count); |
|
|
|
@ -836,161 +984,3 @@ float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) |
|
|
|
|
} |
|
|
|
|
return q; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// ----------------------------------------------
|
|
|
|
|
// 2-Pass code
|
|
|
|
|
|
|
|
|
|
static int init_pass2(MpegEncContext *s) |
|
|
|
|
{ |
|
|
|
|
RateControlContext *rcc = &s->rc_context; |
|
|
|
|
AVCodecContext *a = s->avctx; |
|
|
|
|
int i, toobig; |
|
|
|
|
double fps = 1 / av_q2d(s->avctx->time_base); |
|
|
|
|
double complexity[5] = { 0 }; // approximate bits at quant=1
|
|
|
|
|
uint64_t const_bits[5] = { 0 }; // quantizer independent bits
|
|
|
|
|
uint64_t all_const_bits; |
|
|
|
|
uint64_t all_available_bits = (uint64_t)(s->bit_rate * |
|
|
|
|
(double)rcc->num_entries / fps); |
|
|
|
|
double rate_factor = 0; |
|
|
|
|
double step; |
|
|
|
|
const int filter_size = (int)(a->qblur * 4) | 1; |
|
|
|
|
double expected_bits; |
|
|
|
|
double *qscale, *blurred_qscale, qscale_sum; |
|
|
|
|
|
|
|
|
|
/* find complexity & const_bits & decide the pict_types */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
|
|
|
|
|
rce->new_pict_type = rce->pict_type; |
|
|
|
|
rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale; |
|
|
|
|
rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale; |
|
|
|
|
rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; |
|
|
|
|
rcc->frame_count[rce->pict_type]++; |
|
|
|
|
|
|
|
|
|
complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) * |
|
|
|
|
(double)rce->qscale; |
|
|
|
|
const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
all_const_bits = const_bits[AV_PICTURE_TYPE_I] + |
|
|
|
|
const_bits[AV_PICTURE_TYPE_P] + |
|
|
|
|
const_bits[AV_PICTURE_TYPE_B]; |
|
|
|
|
|
|
|
|
|
if (all_available_bits < all_const_bits) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
qscale = av_malloc(sizeof(double) * rcc->num_entries); |
|
|
|
|
blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries); |
|
|
|
|
if (!qscale || !blurred_qscale) { |
|
|
|
|
av_free(qscale); |
|
|
|
|
av_free(blurred_qscale); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
} |
|
|
|
|
toobig = 0; |
|
|
|
|
|
|
|
|
|
for (step = 256 * 256; step > 0.0000001; step *= 0.5) { |
|
|
|
|
expected_bits = 0; |
|
|
|
|
rate_factor += step; |
|
|
|
|
|
|
|
|
|
rcc->buffer_index = s->avctx->rc_buffer_size / 2; |
|
|
|
|
|
|
|
|
|
/* find qscale */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
|
|
|
|
|
qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i); |
|
|
|
|
rcc->last_qscale_for[rce->pict_type] = qscale[i]; |
|
|
|
|
} |
|
|
|
|
assert(filter_size % 2 == 1); |
|
|
|
|
|
|
|
|
|
/* fixed I/B QP relative to P mode */ |
|
|
|
|
for (i = rcc->num_entries - 1; i >= 0; i--) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
|
|
|
|
|
qscale[i] = get_diff_limited_q(s, rce, qscale[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* smooth curve */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
const int pict_type = rce->new_pict_type; |
|
|
|
|
int j; |
|
|
|
|
double q = 0.0, sum = 0.0; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < filter_size; j++) { |
|
|
|
|
int index = i + j - filter_size / 2; |
|
|
|
|
double d = index - i; |
|
|
|
|
double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur)); |
|
|
|
|
|
|
|
|
|
if (index < 0 || index >= rcc->num_entries) |
|
|
|
|
continue; |
|
|
|
|
if (pict_type != rcc->entry[index].new_pict_type) |
|
|
|
|
continue; |
|
|
|
|
q += qscale[index] * coeff; |
|
|
|
|
sum += coeff; |
|
|
|
|
} |
|
|
|
|
blurred_qscale[i] = q / sum; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* find expected bits */ |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
RateControlEntry *rce = &rcc->entry[i]; |
|
|
|
|
double bits; |
|
|
|
|
|
|
|
|
|
rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i); |
|
|
|
|
|
|
|
|
|
bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; |
|
|
|
|
bits += 8 * ff_vbv_update(s, bits); |
|
|
|
|
|
|
|
|
|
rce->expected_bits = expected_bits; |
|
|
|
|
expected_bits += bits; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ff_dlog(s->avctx, |
|
|
|
|
"expected_bits: %f all_available_bits: %d rate_factor: %f\n", |
|
|
|
|
expected_bits, (int)all_available_bits, rate_factor); |
|
|
|
|
if (expected_bits > all_available_bits) { |
|
|
|
|
rate_factor -= step; |
|
|
|
|
++toobig; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
av_free(qscale); |
|
|
|
|
av_free(blurred_qscale); |
|
|
|
|
|
|
|
|
|
/* check bitrate calculations and print info */ |
|
|
|
|
qscale_sum = 0.0; |
|
|
|
|
for (i = 0; i < rcc->num_entries; i++) { |
|
|
|
|
ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", |
|
|
|
|
i, |
|
|
|
|
rcc->entry[i].new_qscale, |
|
|
|
|
rcc->entry[i].new_qscale / FF_QP2LAMBDA); |
|
|
|
|
qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, |
|
|
|
|
s->avctx->qmin, s->avctx->qmax); |
|
|
|
|
} |
|
|
|
|
assert(toobig <= 40); |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", |
|
|
|
|
s->bit_rate, |
|
|
|
|
(int)(expected_bits / ((double)all_available_bits / s->bit_rate))); |
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
|
|
|
"[lavc rc] estimated target average qp: %.3f\n", |
|
|
|
|
(float)qscale_sum / rcc->num_entries); |
|
|
|
|
if (toobig == 0) { |
|
|
|
|
av_log(s->avctx, AV_LOG_INFO, |
|
|
|
|
"[lavc rc] Using all of requested bitrate is not " |
|
|
|
|
"necessary for this video with these parameters.\n"); |
|
|
|
|
} else if (toobig == 40) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, |
|
|
|
|
"[lavc rc] Error: bitrate too low for this video " |
|
|
|
|
"with these parameters.\n"); |
|
|
|
|
return -1; |
|
|
|
|
} else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) { |
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, |
|
|
|
|
"[lavc rc] Error: 2pass curve failed to converge\n"); |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|