|
|
|
@ -497,196 +497,196 @@ static void guess_mv(ERContext *s) |
|
|
|
|
av_assert2(fixed[mb_xy] != MV_FROZEN); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
av_assert1(!IS_INTRA(s->cur_pic.mb_type[mb_xy])); |
|
|
|
|
av_assert1(s->last_pic.f && s->last_pic.f->data[0]); |
|
|
|
|
|
|
|
|
|
j = 0; |
|
|
|
|
if (mb_x > 0) |
|
|
|
|
j |= fixed[mb_xy - 1]; |
|
|
|
|
if (mb_x + 1 < mb_width) |
|
|
|
|
j |= fixed[mb_xy + 1]; |
|
|
|
|
if (mb_y > 0) |
|
|
|
|
j |= fixed[mb_xy - mb_stride]; |
|
|
|
|
if (mb_y + 1 < mb_height) |
|
|
|
|
j |= fixed[mb_xy + mb_stride]; |
|
|
|
|
|
|
|
|
|
av_assert2(j & MV_FROZEN); |
|
|
|
|
|
|
|
|
|
if (!(j & MV_CHANGED) && pass > 1) |
|
|
|
|
continue; |
|
|
|
|
av_assert1(!IS_INTRA(s->cur_pic.mb_type[mb_xy])); |
|
|
|
|
av_assert1(s->last_pic.f && s->last_pic.f->data[0]); |
|
|
|
|
|
|
|
|
|
none_left = 0; |
|
|
|
|
pred_count = 0; |
|
|
|
|
mot_index = (mb_x + mb_y * mot_stride) * mot_step; |
|
|
|
|
j = 0; |
|
|
|
|
if (mb_x > 0) |
|
|
|
|
j |= fixed[mb_xy - 1]; |
|
|
|
|
if (mb_x + 1 < mb_width) |
|
|
|
|
j |= fixed[mb_xy + 1]; |
|
|
|
|
if (mb_y > 0) |
|
|
|
|
j |= fixed[mb_xy - mb_stride]; |
|
|
|
|
if (mb_y + 1 < mb_height) |
|
|
|
|
j |= fixed[mb_xy + mb_stride]; |
|
|
|
|
|
|
|
|
|
if (mb_x > 0 && fixed[mb_xy - 1] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy - 1)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (mb_x + 1 < mb_width && fixed[mb_xy + 1] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy + 1)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (mb_y > 0 && fixed[mb_xy - mb_stride] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy - s->mb_stride)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy + s->mb_stride)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (pred_count == 0) |
|
|
|
|
continue; |
|
|
|
|
av_assert2(j & MV_FROZEN); |
|
|
|
|
|
|
|
|
|
if (pred_count > 1) { |
|
|
|
|
int sum_x = 0, sum_y = 0, sum_r = 0; |
|
|
|
|
int max_x, max_y, min_x, min_y, max_r, min_r; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < pred_count; j++) { |
|
|
|
|
sum_x += mv_predictor[j][0]; |
|
|
|
|
sum_y += mv_predictor[j][1]; |
|
|
|
|
sum_r += ref[j]; |
|
|
|
|
if (j && ref[j] != ref[j - 1]) |
|
|
|
|
goto skip_mean_and_median; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* mean */ |
|
|
|
|
mv_predictor[pred_count][0] = sum_x / j; |
|
|
|
|
mv_predictor[pred_count][1] = sum_y / j; |
|
|
|
|
ref[pred_count] = sum_r / j; |
|
|
|
|
|
|
|
|
|
/* median */ |
|
|
|
|
if (pred_count >= 3) { |
|
|
|
|
min_y = min_x = min_r = 99999; |
|
|
|
|
max_y = max_x = max_r = -99999; |
|
|
|
|
} else { |
|
|
|
|
min_x = min_y = max_x = max_y = min_r = max_r = 0; |
|
|
|
|
} |
|
|
|
|
for (j = 0; j < pred_count; j++) { |
|
|
|
|
max_x = FFMAX(max_x, mv_predictor[j][0]); |
|
|
|
|
max_y = FFMAX(max_y, mv_predictor[j][1]); |
|
|
|
|
max_r = FFMAX(max_r, ref[j]); |
|
|
|
|
min_x = FFMIN(min_x, mv_predictor[j][0]); |
|
|
|
|
min_y = FFMIN(min_y, mv_predictor[j][1]); |
|
|
|
|
min_r = FFMIN(min_r, ref[j]); |
|
|
|
|
} |
|
|
|
|
mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x; |
|
|
|
|
mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y; |
|
|
|
|
ref[pred_count + 1] = sum_r - max_r - min_r; |
|
|
|
|
|
|
|
|
|
if (pred_count == 4) { |
|
|
|
|
mv_predictor[pred_count + 1][0] /= 2; |
|
|
|
|
mv_predictor[pred_count + 1][1] /= 2; |
|
|
|
|
ref[pred_count + 1] /= 2; |
|
|
|
|
} |
|
|
|
|
pred_count += 2; |
|
|
|
|
} |
|
|
|
|
if (!(j & MV_CHANGED) && pass > 1) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
skip_mean_and_median: |
|
|
|
|
/* zero MV */ |
|
|
|
|
none_left = 0; |
|
|
|
|
pred_count = 0; |
|
|
|
|
mot_index = (mb_x + mb_y * mot_stride) * mot_step; |
|
|
|
|
|
|
|
|
|
if (mb_x > 0 && fixed[mb_xy - 1] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
ref[pred_count] = 0; |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy - 1)]; |
|
|
|
|
pred_count++; |
|
|
|
|
|
|
|
|
|
prev_x = s->cur_pic.motion_val[0][mot_index][0]; |
|
|
|
|
prev_y = s->cur_pic.motion_val[0][mot_index][1]; |
|
|
|
|
prev_ref = s->cur_pic.ref_index[0][4 * mb_xy]; |
|
|
|
|
|
|
|
|
|
/* last MV */ |
|
|
|
|
mv_predictor[pred_count][0] = prev_x; |
|
|
|
|
mv_predictor[pred_count][1] = prev_y; |
|
|
|
|
ref[pred_count] = prev_ref; |
|
|
|
|
} |
|
|
|
|
if (mb_x + 1 < mb_width && fixed[mb_xy + 1] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy + 1)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (mb_y > 0 && fixed[mb_xy - mb_stride] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy - s->mb_stride)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride] > 1) { |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][0]; |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][1]; |
|
|
|
|
ref[pred_count] = |
|
|
|
|
s->cur_pic.ref_index[0][4 * (mb_xy + s->mb_stride)]; |
|
|
|
|
pred_count++; |
|
|
|
|
} |
|
|
|
|
if (pred_count == 0) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
if (pred_count > 1) { |
|
|
|
|
int sum_x = 0, sum_y = 0, sum_r = 0; |
|
|
|
|
int max_x, max_y, min_x, min_y, max_r, min_r; |
|
|
|
|
|
|
|
|
|
best_pred = 0; |
|
|
|
|
best_score = 256 * 256 * 256 * 64; |
|
|
|
|
for (j = 0; j < pred_count; j++) { |
|
|
|
|
int *linesize = s->cur_pic.f->linesize; |
|
|
|
|
int score = 0; |
|
|
|
|
uint8_t *src = s->cur_pic.f->data[0] + |
|
|
|
|
mb_x * 16 + mb_y * 16 * linesize[0]; |
|
|
|
|
sum_x += mv_predictor[j][0]; |
|
|
|
|
sum_y += mv_predictor[j][1]; |
|
|
|
|
sum_r += ref[j]; |
|
|
|
|
if (j && ref[j] != ref[j - 1]) |
|
|
|
|
goto skip_mean_and_median; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
s->cur_pic.motion_val[0][mot_index][0] = |
|
|
|
|
s->mv[0][0][0] = mv_predictor[j][0]; |
|
|
|
|
s->cur_pic.motion_val[0][mot_index][1] = |
|
|
|
|
s->mv[0][0][1] = mv_predictor[j][1]; |
|
|
|
|
|
|
|
|
|
// predictor intra or otherwise not available
|
|
|
|
|
if (ref[j] < 0) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
s->decode_mb(s->opaque, ref[j], MV_DIR_FORWARD, |
|
|
|
|
MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0); |
|
|
|
|
|
|
|
|
|
if (mb_x > 0 && fixed[mb_xy - 1] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k * linesize[0] - 1] - |
|
|
|
|
src[k * linesize[0]]); |
|
|
|
|
} |
|
|
|
|
if (mb_x + 1 < mb_width && fixed[mb_xy + 1] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k * linesize[0] + 15] - |
|
|
|
|
src[k * linesize[0] + 16]); |
|
|
|
|
} |
|
|
|
|
if (mb_y > 0 && fixed[mb_xy - mb_stride] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k - linesize[0]] - src[k]); |
|
|
|
|
} |
|
|
|
|
if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k + linesize[0] * 15] - |
|
|
|
|
src[k + linesize[0] * 16]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (score <= best_score) { // <= will favor the last MV
|
|
|
|
|
best_score = score; |
|
|
|
|
best_pred = j; |
|
|
|
|
} |
|
|
|
|
/* mean */ |
|
|
|
|
mv_predictor[pred_count][0] = sum_x / j; |
|
|
|
|
mv_predictor[pred_count][1] = sum_y / j; |
|
|
|
|
ref[pred_count] = sum_r / j; |
|
|
|
|
|
|
|
|
|
/* median */ |
|
|
|
|
if (pred_count >= 3) { |
|
|
|
|
min_y = min_x = min_r = 99999; |
|
|
|
|
max_y = max_x = max_r = -99999; |
|
|
|
|
} else { |
|
|
|
|
min_x = min_y = max_x = max_y = min_r = max_r = 0; |
|
|
|
|
} |
|
|
|
|
for (j = 0; j < pred_count; j++) { |
|
|
|
|
max_x = FFMAX(max_x, mv_predictor[j][0]); |
|
|
|
|
max_y = FFMAX(max_y, mv_predictor[j][1]); |
|
|
|
|
max_r = FFMAX(max_r, ref[j]); |
|
|
|
|
min_x = FFMIN(min_x, mv_predictor[j][0]); |
|
|
|
|
min_y = FFMIN(min_y, mv_predictor[j][1]); |
|
|
|
|
min_r = FFMIN(min_r, ref[j]); |
|
|
|
|
} |
|
|
|
|
mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x; |
|
|
|
|
mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y; |
|
|
|
|
ref[pred_count + 1] = sum_r - max_r - min_r; |
|
|
|
|
|
|
|
|
|
if (pred_count == 4) { |
|
|
|
|
mv_predictor[pred_count + 1][0] /= 2; |
|
|
|
|
mv_predictor[pred_count + 1][1] /= 2; |
|
|
|
|
ref[pred_count + 1] /= 2; |
|
|
|
|
} |
|
|
|
|
score_sum += best_score; |
|
|
|
|
s->mv[0][0][0] = mv_predictor[best_pred][0]; |
|
|
|
|
s->mv[0][0][1] = mv_predictor[best_pred][1]; |
|
|
|
|
pred_count += 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i = 0; i < mot_step; i++) |
|
|
|
|
for (j = 0; j < mot_step; j++) { |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0]; |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1]; |
|
|
|
|
} |
|
|
|
|
skip_mean_and_median: |
|
|
|
|
/* zero MV */ |
|
|
|
|
mv_predictor[pred_count][0] = |
|
|
|
|
mv_predictor[pred_count][1] = |
|
|
|
|
ref[pred_count] = 0; |
|
|
|
|
pred_count++; |
|
|
|
|
|
|
|
|
|
prev_x = s->cur_pic.motion_val[0][mot_index][0]; |
|
|
|
|
prev_y = s->cur_pic.motion_val[0][mot_index][1]; |
|
|
|
|
prev_ref = s->cur_pic.ref_index[0][4 * mb_xy]; |
|
|
|
|
|
|
|
|
|
/* last MV */ |
|
|
|
|
mv_predictor[pred_count][0] = prev_x; |
|
|
|
|
mv_predictor[pred_count][1] = prev_y; |
|
|
|
|
ref[pred_count] = prev_ref; |
|
|
|
|
pred_count++; |
|
|
|
|
|
|
|
|
|
best_pred = 0; |
|
|
|
|
best_score = 256 * 256 * 256 * 64; |
|
|
|
|
for (j = 0; j < pred_count; j++) { |
|
|
|
|
int *linesize = s->cur_pic.f->linesize; |
|
|
|
|
int score = 0; |
|
|
|
|
uint8_t *src = s->cur_pic.f->data[0] + |
|
|
|
|
mb_x * 16 + mb_y * 16 * linesize[0]; |
|
|
|
|
|
|
|
|
|
s->cur_pic.motion_val[0][mot_index][0] = |
|
|
|
|
s->mv[0][0][0] = mv_predictor[j][0]; |
|
|
|
|
s->cur_pic.motion_val[0][mot_index][1] = |
|
|
|
|
s->mv[0][0][1] = mv_predictor[j][1]; |
|
|
|
|
|
|
|
|
|
// predictor intra or otherwise not available
|
|
|
|
|
if (ref[j] < 0) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
s->decode_mb(s->opaque, ref[best_pred], MV_DIR_FORWARD, |
|
|
|
|
s->decode_mb(s->opaque, ref[j], MV_DIR_FORWARD, |
|
|
|
|
MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0); |
|
|
|
|
|
|
|
|
|
if (mb_x > 0 && fixed[mb_xy - 1] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k * linesize[0] - 1] - |
|
|
|
|
src[k * linesize[0]]); |
|
|
|
|
} |
|
|
|
|
if (mb_x + 1 < mb_width && fixed[mb_xy + 1] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k * linesize[0] + 15] - |
|
|
|
|
src[k * linesize[0] + 16]); |
|
|
|
|
} |
|
|
|
|
if (mb_y > 0 && fixed[mb_xy - mb_stride] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k - linesize[0]] - src[k]); |
|
|
|
|
} |
|
|
|
|
if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] > 1) { |
|
|
|
|
int k; |
|
|
|
|
for (k = 0; k < 16; k++) |
|
|
|
|
score += FFABS(src[k + linesize[0] * 15] - |
|
|
|
|
src[k + linesize[0] * 16]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (score <= best_score) { // <= will favor the last MV
|
|
|
|
|
best_score = score; |
|
|
|
|
best_pred = j; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
score_sum += best_score; |
|
|
|
|
s->mv[0][0][0] = mv_predictor[best_pred][0]; |
|
|
|
|
s->mv[0][0][1] = mv_predictor[best_pred][1]; |
|
|
|
|
|
|
|
|
|
for (i = 0; i < mot_step; i++) |
|
|
|
|
for (j = 0; j < mot_step; j++) { |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0]; |
|
|
|
|
s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
s->decode_mb(s->opaque, ref[best_pred], MV_DIR_FORWARD, |
|
|
|
|
MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) { |
|
|
|
|
fixed[mb_xy] = MV_CHANGED; |
|
|
|
|
changed++; |
|
|
|
|
} else |
|
|
|
|
fixed[mb_xy] = MV_UNCHANGED; |
|
|
|
|
if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) { |
|
|
|
|
fixed[mb_xy] = MV_CHANGED; |
|
|
|
|
changed++; |
|
|
|
|
} else |
|
|
|
|
fixed[mb_xy] = MV_UNCHANGED; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|