Remove the add bias hack for the C version of DSPContext.float_to_int16_*().

oldabi
Justin Ruggles 14 years ago committed by Mans Rullgard
parent 97b04f5ed3
commit 9d06d7bce3
  1. 1
      libavcodec/aac.h
  2. 42
      libavcodec/aacdec.c
  3. 13
      libavcodec/aacsbr.c
  4. 13
      libavcodec/ac3dec.c
  5. 1
      libavcodec/ac3dec.h
  6. 5
      libavcodec/binkaudio.c
  7. 47
      libavcodec/dca.c
  8. 9
      libavcodec/dsputil.c
  9. 3
      libavcodec/dsputil.h
  10. 9
      libavcodec/nellymoserdec.c
  11. 38
      libavcodec/vorbis_dec.c
  12. 21
      libavcodec/wmadec.c

@ -276,7 +276,6 @@ typedef struct {
* @{ * @{
*/ */
float *output_data[MAX_CHANNELS]; ///< Points to each element's 'ret' buffer (PCM output). float *output_data[MAX_CHANNELS]; ///< Points to each element's 'ret' buffer (PCM output).
float add_bias; ///< offset for dsp.float_to_int16
float sf_scale; ///< Pre-scale for correct IMDCT and dsp.float_to_int16. float sf_scale; ///< Pre-scale for correct IMDCT and dsp.float_to_int16.
int sf_offset; ///< offset into pow2sf_tab as appropriate for dsp.float_to_int16 int sf_offset; ///< offset into pow2sf_tab as appropriate for dsp.float_to_int16
/** @} */ /** @} */

@ -566,18 +566,10 @@ static av_cold int aac_decode_init(AVCodecContext *avctx)
ac->random_state = 0x1f2e3d4c; ac->random_state = 0x1f2e3d4c;
// -1024 - Compensate wrong IMDCT method. // -1024 - Compensate wrong IMDCT method.
// 32768 - Required to scale values to the correct range for the bias method // 60 - Required to scale values to the correct range [-32768,32767]
// for float to int16 conversion. // for float to int16 conversion. (1 << (60 / 4)) == 32768
if (ac->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
ac->add_bias = 385.0f;
ac->sf_scale = 1. / (-1024. * 32768.);
ac->sf_offset = 0;
} else {
ac->add_bias = 0.0f;
ac->sf_scale = 1. / -1024.; ac->sf_scale = 1. / -1024.;
ac->sf_offset = 60; ac->sf_offset = 60;
}
ff_aac_tableinit(); ff_aac_tableinit();
@ -1701,7 +1693,7 @@ static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
/** /**
* Conduct IMDCT and windowing. * Conduct IMDCT and windowing.
*/ */
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce, float bias) static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
{ {
IndividualChannelStream *ics = &sce->ics; IndividualChannelStream *ics = &sce->ics;
float *in = sce->coeffs; float *in = sce->coeffs;
@ -1729,29 +1721,29 @@ static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce, float
*/ */
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, bias, 512); ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, 0, 512);
} else { } else {
for (i = 0; i < 448; i++) for (i = 0; i < 448; i++)
out[i] = saved[i] + bias; out[i] = saved[i];
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, bias, 64); ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 0, 64);
ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, bias, 64); ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 0, 64);
ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, bias, 64); ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 0, 64);
ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, bias, 64); ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 0, 64);
ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, bias, 64); ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 0, 64);
memcpy( out + 448 + 4*128, temp, 64 * sizeof(float)); memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
} else { } else {
ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, bias, 64); ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 0, 64);
for (i = 576; i < 1024; i++) for (i = 576; i < 1024; i++)
out[i] = buf[i-512] + bias; out[i] = buf[i-512];
} }
} }
// buffer update // buffer update
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
for (i = 0; i < 64; i++) for (i = 0; i < 64; i++)
saved[i] = temp[64 + i] - bias; saved[i] = temp[64 + i];
ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64); ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64); ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64); ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
@ -1811,13 +1803,12 @@ static void apply_independent_coupling(AACContext *ac,
{ {
int i; int i;
const float gain = cce->coup.gain[index][0]; const float gain = cce->coup.gain[index][0];
const float bias = ac->add_bias;
const float *src = cce->ch[0].ret; const float *src = cce->ch[0].ret;
float *dest = target->ret; float *dest = target->ret;
const int len = 1024 << (ac->m4ac.sbr == 1); const int len = 1024 << (ac->m4ac.sbr == 1);
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
dest[i] += gain * (src[i] - bias); dest[i] += gain * src[i];
} }
/** /**
@ -1861,7 +1852,6 @@ static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
static void spectral_to_sample(AACContext *ac) static void spectral_to_sample(AACContext *ac)
{ {
int i, type; int i, type;
float imdct_bias = (ac->m4ac.sbr <= 0) ? ac->add_bias : 0.0f;
for (type = 3; type >= 0; type--) { for (type = 3; type >= 0; type--) {
for (i = 0; i < MAX_ELEM_ID; i++) { for (i = 0; i < MAX_ELEM_ID; i++) {
ChannelElement *che = ac->che[type][i]; ChannelElement *che = ac->che[type][i];
@ -1875,9 +1865,9 @@ static void spectral_to_sample(AACContext *ac)
if (type <= TYPE_CPE) if (type <= TYPE_CPE)
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling); apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) { if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
imdct_and_windowing(ac, &che->ch[0], imdct_bias); imdct_and_windowing(ac, &che->ch[0]);
if (type == TYPE_CPE) { if (type == TYPE_CPE) {
imdct_and_windowing(ac, &che->ch[1], imdct_bias); imdct_and_windowing(ac, &che->ch[1]);
} }
if (ac->m4ac.sbr > 0) { if (ac->m4ac.sbr > 0) {
ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret); ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);

@ -1175,12 +1175,10 @@ static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in,
static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
float *out, float X[2][38][64], float *out, float X[2][38][64],
float mdct_buf[2][64], float mdct_buf[2][64],
float *v0, int *v_off, const unsigned int div, float *v0, int *v_off, const unsigned int div)
float bias, float scale)
{ {
int i, n; int i, n;
const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us; const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
int scale_and_bias = scale != 1.0f || bias != 0.0f;
float *v; float *v;
for (i = 0; i < 32; i++) { for (i = 0; i < 32; i++) {
if (*v_off == 0) { if (*v_off == 0) {
@ -1222,9 +1220,6 @@ static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div); dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div); dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div); dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
if (scale_and_bias)
for (n = 0; n < 64 >> div; n++)
out[n] = out[n] * scale + bias;
out += 64 >> div; out += 64 >> div;
} }
} }
@ -1760,12 +1755,10 @@ void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch, sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
sbr->data[0].synthesis_filterbank_samples, sbr->data[0].synthesis_filterbank_samples,
&sbr->data[0].synthesis_filterbank_samples_offset, &sbr->data[0].synthesis_filterbank_samples_offset,
downsampled, downsampled);
ac->add_bias, -1024 * ac->sf_scale);
if (nch == 2) if (nch == 2)
sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch, sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
sbr->data[1].synthesis_filterbank_samples, sbr->data[1].synthesis_filterbank_samples,
&sbr->data[1].synthesis_filterbank_samples_offset, &sbr->data[1].synthesis_filterbank_samples_offset,
downsampled, downsampled);
ac->add_bias, -1024 * ac->sf_scale);
} }

@ -196,13 +196,7 @@ static av_cold int ac3_decode_init(AVCodecContext *avctx)
av_lfg_init(&s->dith_state, 0); av_lfg_init(&s->dith_state, 0);
/* set bias values for float to int16 conversion */ /* set bias values for float to int16 conversion */
if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
s->add_bias = 385.0f;
s->mul_bias = 1.0f;
} else {
s->add_bias = 0.0f;
s->mul_bias = 32767.0f; s->mul_bias = 32767.0f;
}
/* allow downmixing to stereo or mono */ /* allow downmixing to stereo or mono */
if (avctx->channels > 0 && avctx->request_channels > 0 && if (avctx->channels > 0 && avctx->request_channels > 0 &&
@ -626,9 +620,6 @@ static void do_rematrixing(AC3DecodeContext *s)
static inline void do_imdct(AC3DecodeContext *s, int channels) static inline void do_imdct(AC3DecodeContext *s, int channels)
{ {
int ch; int ch;
float add_bias = s->add_bias;
if(s->out_channels==1 && channels>1)
add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
for (ch=1; ch<=channels; ch++) { for (ch=1; ch<=channels; ch++) {
if (s->block_switch[ch]) { if (s->block_switch[ch]) {
@ -637,13 +628,13 @@ static inline void do_imdct(AC3DecodeContext *s, int channels)
for(i=0; i<128; i++) for(i=0; i<128; i++)
x[i] = s->transform_coeffs[ch][2*i]; x[i] = s->transform_coeffs[ch][2*i];
ff_imdct_half(&s->imdct_256, s->tmp_output, x); ff_imdct_half(&s->imdct_256, s->tmp_output, x);
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128); s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, 0, 128);
for(i=0; i<128; i++) for(i=0; i<128; i++)
x[i] = s->transform_coeffs[ch][2*i+1]; x[i] = s->transform_coeffs[ch][2*i+1];
ff_imdct_half(&s->imdct_256, s->delay[ch-1], x); ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
} else { } else {
ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]); ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128); s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, 0, 128);
memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float)); memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
} }
} }

@ -190,7 +190,6 @@ typedef struct {
///@defgroup opt optimization ///@defgroup opt optimization
DSPContext dsp; ///< for optimization DSPContext dsp; ///< for optimization
float add_bias; ///< offset for float_to_int16 conversion
float mul_bias; ///< scaling for float_to_int16 conversion float mul_bias; ///< scaling for float_to_int16 conversion
///@} ///@}

@ -222,11 +222,6 @@ static void decode_block(BinkAudioContext *s, short *out, int use_dct)
ff_rdft_calc(&s->trans.rdft, coeffs); ff_rdft_calc(&s->trans.rdft, coeffs);
} }
if (s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
for (i = 0; i < s->channels; i++)
for (j = 0; j < s->frame_len; j++)
s->coeffs_ptr[i][j] = 385.0 + s->coeffs_ptr[i][j]*(1.0/32767.0);
}
s->dsp.float_to_int16_interleave(out, (const float **)s->coeffs_ptr, s->frame_len, s->channels); s->dsp.float_to_int16_interleave(out, (const float **)s->coeffs_ptr, s->frame_len, s->channels);
if (!s->first) { if (!s->first) {

@ -311,7 +311,6 @@ typedef struct {
DECLARE_ALIGNED(16, float, raXin)[32]; DECLARE_ALIGNED(16, float, raXin)[32];
int output; ///< type of output int output; ///< type of output
float add_bias; ///< output bias
float scale_bias; ///< output scale float scale_bias; ///< output scale
DECLARE_ALIGNED(16, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8]; DECLARE_ALIGNED(16, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
@ -868,7 +867,7 @@ static int dca_subframe_header(DCAContext * s, int base_channel, int block_index
static void qmf_32_subbands(DCAContext * s, int chans, static void qmf_32_subbands(DCAContext * s, int chans,
float samples_in[32][8], float *samples_out, float samples_in[32][8], float *samples_out,
float scale, float bias) float scale)
{ {
const float *prCoeff; const float *prCoeff;
int i; int i;
@ -897,7 +896,7 @@ static void qmf_32_subbands(DCAContext * s, int chans,
s->synth.synth_filter_float(&s->imdct, s->synth.synth_filter_float(&s->imdct,
s->subband_fir_hist[chans], &s->hist_index[chans], s->subband_fir_hist[chans], &s->hist_index[chans],
s->subband_fir_noidea[chans], prCoeff, s->subband_fir_noidea[chans], prCoeff,
samples_out, s->raXin, scale, bias); samples_out, s->raXin, scale, 0);
samples_out+= 32; samples_out+= 32;
} }
@ -905,8 +904,7 @@ static void qmf_32_subbands(DCAContext * s, int chans,
static void lfe_interpolation_fir(DCAContext *s, int decimation_select, static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
int num_deci_sample, float *samples_in, int num_deci_sample, float *samples_in,
float *samples_out, float scale, float *samples_out, float scale)
float bias)
{ {
/* samples_in: An array holding decimated samples. /* samples_in: An array holding decimated samples.
* Samples in current subframe starts from samples_in[0], * Samples in current subframe starts from samples_in[0],
@ -931,7 +929,7 @@ static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
/* Interpolation */ /* Interpolation */
for (deciindex = 0; deciindex < num_deci_sample; deciindex++) { for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor,
scale, bias); scale, 0);
samples_in++; samples_in++;
samples_out += 2 * decifactor; samples_out += 2 * decifactor;
} }
@ -939,19 +937,19 @@ static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
/* downmixing routines */ /* downmixing routines */
#define MIX_REAR1(samples, si1, rs, coef) \ #define MIX_REAR1(samples, si1, rs, coef) \
samples[i] += (samples[si1] - add_bias) * coef[rs][0]; \ samples[i] += samples[si1] * coef[rs][0]; \
samples[i+256] += (samples[si1] - add_bias) * coef[rs][1]; samples[i+256] += samples[si1] * coef[rs][1];
#define MIX_REAR2(samples, si1, si2, rs, coef) \ #define MIX_REAR2(samples, si1, si2, rs, coef) \
samples[i] += (samples[si1] - add_bias) * coef[rs][0] + (samples[si2] - add_bias) * coef[rs+1][0]; \ samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \
samples[i+256] += (samples[si1] - add_bias) * coef[rs][1] + (samples[si2] - add_bias) * coef[rs+1][1]; samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1];
#define MIX_FRONT3(samples, coef) \ #define MIX_FRONT3(samples, coef) \
t = samples[i+c] - add_bias; \ t = samples[i+c]; \
u = samples[i+l] - add_bias; \ u = samples[i+l]; \
v = samples[i+r] - add_bias; \ v = samples[i+r]; \
samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0] + add_bias; \ samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1] + add_bias; samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
#define DOWNMIX_TO_STEREO(op1, op2) \ #define DOWNMIX_TO_STEREO(op1, op2) \
for (i = 0; i < 256; i++){ \ for (i = 0; i < 256; i++){ \
@ -961,7 +959,7 @@ static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
static void dca_downmix(float *samples, int srcfmt, static void dca_downmix(float *samples, int srcfmt,
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2], int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
const int8_t *channel_mapping, float add_bias) const int8_t *channel_mapping)
{ {
int c,l,r,sl,sr,s; int c,l,r,sl,sr,s;
int i; int i;
@ -1193,13 +1191,12 @@ static int dca_filter_channels(DCAContext * s, int block_index)
/* static float pcm_to_double[8] = /* static float pcm_to_double[8] =
{32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/ {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]], qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]],
M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ , M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ );
s->add_bias );
} }
/* Down mixing */ /* Down mixing */
if (s->avctx->request_channels == 2 && s->prim_channels > 2) { if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab, s->add_bias); dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab);
} }
/* Generate LFE samples for this subsubframe FIXME!!! */ /* Generate LFE samples for this subsubframe FIXME!!! */
@ -1207,7 +1204,7 @@ static int dca_filter_channels(DCAContext * s, int block_index)
lfe_interpolation_fir(s, s->lfe, 2 * s->lfe, lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
s->lfe_data + 2 * s->lfe * (block_index + 4), s->lfe_data + 2 * s->lfe * (block_index + 4),
&s->samples[256 * dca_lfe_index[s->amode]], &s->samples[256 * dca_lfe_index[s->amode]],
(1.0/256.0)*s->scale_bias, s->add_bias); (1.0/256.0)*s->scale_bias);
/* Outputs 20bits pcm samples */ /* Outputs 20bits pcm samples */
} }
@ -1798,8 +1795,8 @@ static int dca_decode_frame(AVCodecContext * avctx,
float* rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256; float* rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
int j; int j;
for(j = 0; j < 256; ++j) { for(j = 0; j < 256; ++j) {
lt_chan[j] -= (back_chan[j] - s->add_bias) * M_SQRT1_2; lt_chan[j] -= back_chan[j] * M_SQRT1_2;
rt_chan[j] -= (back_chan[j] - s->add_bias) * M_SQRT1_2; rt_chan[j] -= back_chan[j] * M_SQRT1_2;
} }
} }
@ -1841,11 +1838,6 @@ static av_cold int dca_decode_init(AVCodecContext * avctx)
s->samples_chanptr[i] = s->samples + i * 256; s->samples_chanptr[i] = s->samples + i * 256;
avctx->sample_fmt = AV_SAMPLE_FMT_S16; avctx->sample_fmt = AV_SAMPLE_FMT_S16;
if (s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
s->add_bias = 385.0f;
s->scale_bias = 1.0 / 32768.0;
} else {
s->add_bias = 0.0f;
s->scale_bias = 1.0; s->scale_bias = 1.0;
/* allow downmixing to stereo */ /* allow downmixing to stereo */
@ -1853,7 +1845,6 @@ static av_cold int dca_decode_init(AVCodecContext * avctx)
avctx->request_channels == 2) { avctx->request_channels == 2) {
avctx->channels = avctx->request_channels; avctx->channels = avctx->request_channels;
} }
}
return 0; return 0;

@ -3910,14 +3910,7 @@ static void vector_clipf_c(float *dst, const float *src, float min, float max, i
} }
static av_always_inline int float_to_int16_one(const float *src){ static av_always_inline int float_to_int16_one(const float *src){
int_fast32_t tmp = *(const int32_t*)src; return av_clip_int16(lrintf(*src));
if(tmp & 0xf0000){
tmp = (0x43c0ffff - tmp)>>31;
// is this faster on some gcc/cpu combinations?
// if(tmp > 0x43c0ffff) tmp = 0xFFFF;
// else tmp = 0;
}
return tmp - 0x8000;
} }
void ff_float_to_int16_c(int16_t *dst, const float *src, long len){ void ff_float_to_int16_c(int16_t *dst, const float *src, long len){

@ -435,8 +435,7 @@ typedef struct DSPContext {
*/ */
void (*butterflies_float)(float *restrict v1, float *restrict v2, int len); void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
/* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767] /* convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
* simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
void (*float_to_int16)(int16_t *dst, const float *src, long len); void (*float_to_int16)(int16_t *dst, const float *src, long len);
void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels); void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);

@ -49,7 +49,6 @@ typedef struct NellyMoserDecodeContext {
float state[128]; float state[128];
AVLFG random_state; AVLFG random_state;
GetBitContext gb; GetBitContext gb;
int add_bias;
float scale_bias; float scale_bias;
DSPContext dsp; DSPContext dsp;
FFTContext imdct_ctx; FFTContext imdct_ctx;
@ -65,7 +64,7 @@ static void overlap_and_window(NellyMoserDecodeContext *s, float *state, float *
while (bot < NELLY_BUF_LEN) { while (bot < NELLY_BUF_LEN) {
audio[bot] = a_in [bot]*ff_sine_128[bot] audio[bot] = a_in [bot]*ff_sine_128[bot]
+state[bot]*ff_sine_128[top] + s->add_bias; +state[bot]*ff_sine_128[top];
bot++; bot++;
top--; top--;
@ -136,13 +135,7 @@ static av_cold int decode_init(AVCodecContext * avctx) {
dsputil_init(&s->dsp, avctx); dsputil_init(&s->dsp, avctx);
if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
s->add_bias = 385;
s->scale_bias = 1.0/(8*32768);
} else {
s->add_bias = 0;
s->scale_bias = 1.0/(1*8); s->scale_bias = 1.0/(1*8);
}
/* Generate overlap window */ /* Generate overlap window */
if (!ff_sine_128[127]) if (!ff_sine_128[127])

@ -153,8 +153,7 @@ typedef struct vorbis_context_s {
float *channel_residues; float *channel_residues;
float *channel_floors; float *channel_floors;
float *saved; float *saved;
uint_fast32_t add_bias; // for float->int conversion float scale_bias; // for float->int conversion
uint_fast32_t exp_bias;
} vorbis_context; } vorbis_context;
/* Helper functions */ /* Helper functions */
@ -932,8 +931,8 @@ static int vorbis_parse_id_hdr(vorbis_context *vc)
vc->saved = av_mallocz((vc->blocksize[1] / 4) * vc->audio_channels * sizeof(float)); vc->saved = av_mallocz((vc->blocksize[1] / 4) * vc->audio_channels * sizeof(float));
vc->previous_window = 0; vc->previous_window = 0;
ff_mdct_init(&vc->mdct[0], bl0, 1, vc->exp_bias ? -(1 << 15) : -1.0); ff_mdct_init(&vc->mdct[0], bl0, 1, -vc->scale_bias);
ff_mdct_init(&vc->mdct[1], bl1, 1, vc->exp_bias ? -(1 << 15) : -1.0); ff_mdct_init(&vc->mdct[1], bl1, 1, -vc->scale_bias);
AV_DEBUG(" vorbis version %d \n audio_channels %d \n audio_samplerate %d \n bitrate_max %d \n bitrate_nom %d \n bitrate_min %d \n blk_0 %d blk_1 %d \n ", AV_DEBUG(" vorbis version %d \n audio_channels %d \n audio_samplerate %d \n bitrate_max %d \n bitrate_nom %d \n bitrate_min %d \n blk_0 %d blk_1 %d \n ",
vc->version, vc->audio_channels, vc->audio_samplerate, vc->bitrate_maximum, vc->bitrate_nominal, vc->bitrate_minimum, vc->blocksize[0], vc->blocksize[1]); vc->version, vc->audio_channels, vc->audio_samplerate, vc->bitrate_maximum, vc->bitrate_nominal, vc->bitrate_minimum, vc->blocksize[0], vc->blocksize[1]);
@ -963,13 +962,7 @@ static av_cold int vorbis_decode_init(AVCodecContext *avccontext)
vc->avccontext = avccontext; vc->avccontext = avccontext;
dsputil_init(&vc->dsp, avccontext); dsputil_init(&vc->dsp, avccontext);
if (vc->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) { vc->scale_bias = 32768.0f;
vc->add_bias = 385;
vc->exp_bias = 0;
} else {
vc->add_bias = 0;
vc->exp_bias = 15 << 23;
}
if (!headers_len) { if (!headers_len) {
av_log(avccontext, AV_LOG_ERROR, "Extradata missing.\n"); av_log(avccontext, AV_LOG_ERROR, "Extradata missing.\n");
@ -1453,18 +1446,6 @@ void vorbis_inverse_coupling(float *mag, float *ang, int blocksize)
} }
} }
static void copy_normalize(float *dst, float *src, int len, int exp_bias,
float add_bias)
{
int i;
if (exp_bias) {
memcpy(dst, src, len * sizeof(float));
} else {
for (i = 0; i < len; i++)
dst[i] = src[i] + add_bias;
}
}
// Decode the audio packet using the functions above // Decode the audio packet using the functions above
static int vorbis_parse_audio_packet(vorbis_context *vc) static int vorbis_parse_audio_packet(vorbis_context *vc)
@ -1484,7 +1465,6 @@ static int vorbis_parse_audio_packet(vorbis_context *vc)
uint_fast8_t res_chan[255]; uint_fast8_t res_chan[255];
uint_fast8_t res_num = 0; uint_fast8_t res_num = 0;
int_fast16_t retlen = 0; int_fast16_t retlen = 0;
float fadd_bias = vc->add_bias;
if (get_bits1(gb)) { if (get_bits1(gb)) {
av_log(vc->avccontext, AV_LOG_ERROR, "Not a Vorbis I audio packet.\n"); av_log(vc->avccontext, AV_LOG_ERROR, "Not a Vorbis I audio packet.\n");
@ -1595,13 +1575,13 @@ static int vorbis_parse_audio_packet(vorbis_context *vc)
const float *win = vc->win[blockflag & previous_window]; const float *win = vc->win[blockflag & previous_window];
if (blockflag == previous_window) { if (blockflag == previous_window) {
vc->dsp.vector_fmul_window(ret, saved, buf, win, fadd_bias, blocksize / 4); vc->dsp.vector_fmul_window(ret, saved, buf, win, 0, blocksize / 4);
} else if (blockflag > previous_window) { } else if (blockflag > previous_window) {
vc->dsp.vector_fmul_window(ret, saved, buf, win, fadd_bias, bs0 / 4); vc->dsp.vector_fmul_window(ret, saved, buf, win, 0, bs0 / 4);
copy_normalize(ret+bs0/2, buf+bs0/4, (bs1-bs0)/4, vc->exp_bias, fadd_bias); memcpy(ret+bs0/2, buf+bs0/4, ((bs1-bs0)/4) * sizeof(float));
} else { } else {
copy_normalize(ret, saved, (bs1 - bs0) / 4, vc->exp_bias, fadd_bias); memcpy(ret, saved, ((bs1 - bs0) / 4) * sizeof(float));
vc->dsp.vector_fmul_window(ret + (bs1 - bs0) / 4, saved + (bs1 - bs0) / 4, buf, win, fadd_bias, bs0 / 4); vc->dsp.vector_fmul_window(ret + (bs1 - bs0) / 4, saved + (bs1 - bs0) / 4, buf, win, 0, bs0 / 4);
} }
memcpy(saved, buf + blocksize / 4, blocksize / 4 * sizeof(float)); memcpy(saved, buf + blocksize / 4, blocksize / 4 * sizeof(float));
} }

@ -768,9 +768,8 @@ next:
/* decode a frame of frame_len samples */ /* decode a frame of frame_len samples */
static int wma_decode_frame(WMACodecContext *s, int16_t *samples) static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
{ {
int ret, i, n, ch, incr; int ret, n, ch, incr;
int16_t *ptr; const float *output[MAX_CHANNELS];
float *iptr;
#ifdef TRACE #ifdef TRACE
tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len); tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
@ -790,21 +789,6 @@ static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
/* convert frame to integer */ /* convert frame to integer */
n = s->frame_len; n = s->frame_len;
incr = s->nb_channels; incr = s->nb_channels;
if (s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
for(ch = 0; ch < s->nb_channels; ch++) {
ptr = samples + ch;
iptr = s->frame_out[ch];
for(i=0;i<n;i++) {
*ptr = av_clip_int16(lrintf(*iptr++));
ptr += incr;
}
/* prepare for next block */
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
s->frame_len * sizeof(float));
}
} else {
const float *output[MAX_CHANNELS];
for (ch = 0; ch < MAX_CHANNELS; ch++) for (ch = 0; ch < MAX_CHANNELS; ch++)
output[ch] = s->frame_out[ch]; output[ch] = s->frame_out[ch];
s->dsp.float_to_int16_interleave(samples, output, n, incr); s->dsp.float_to_int16_interleave(samples, output, n, incr);
@ -812,7 +796,6 @@ static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
/* prepare for next block */ /* prepare for next block */
memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float)); memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
} }
}
#ifdef TRACE #ifdef TRACE
dump_shorts(s, "samples", samples, n * s->nb_channels); dump_shorts(s, "samples", samples, n * s->nb_channels);

Loading…
Cancel
Save