swscale: for >8bit scaling, read in native bit-depth.

For 9/10bit, it means we don't have to upscale to 16bit before
actual scaling or pixel format conversion, and thus a performance
gain.
pull/2/head
Ronald S. Bultje 14 years ago committed by Michael Niedermayer
parent f2db5602ba
commit 948ccdadf4
  1. 2
      libswscale/ppc/swscale_altivec.c
  2. 67
      libswscale/swscale.c
  3. 2
      libswscale/swscale_internal.h
  4. 1
      libswscale/utils.c
  5. 2
      libswscale/x86/swscale_template.c

@ -220,7 +220,7 @@ yuv2yuvX_altivec_real(SwsContext *c,
}
}
static void hScale_altivec_real(int16_t *dst, int dstW,
static void hScale_altivec_real(SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int16_t *filterPos, int filterSize)
{

@ -1882,59 +1882,6 @@ static void nv21ToUV_c(uint8_t *dstU, uint8_t *dstV,
#define input_pixel(pos) (isBE(origin) ? AV_RB16(pos) : AV_RL16(pos))
// FIXME Maybe dither instead.
static av_always_inline void
yuv9_OR_10ToUV_c_template(uint16_t *dstU, uint16_t *dstV,
const uint16_t *srcU, const uint16_t *srcV,
int width, enum PixelFormat origin, int depth)
{
int i;
for (i = 0; i < width; i++) {
int upx = input_pixel(&srcU[i]);
int vpx = input_pixel(&srcV[i]);
dstU[i] = (upx << (16 - depth)) | (upx >> (2 * depth - 16));
dstV[i] = (vpx << (16 - depth)) | (vpx >> (2 * depth - 16));
}
}
static av_always_inline void
yuv9_or_10ToY_c_template(uint16_t *dstY, const uint16_t *srcY,
int width, enum PixelFormat origin, int depth)
{
int i;
for (i = 0; i < width; i++) {
int px = input_pixel(&srcY[i]);
dstY[i] = (px << (16 - depth)) | (px >> (2 * depth - 16));
}
}
#undef input_pixel
#define YUV_NBPS(depth, BE_LE, origin) \
static void BE_LE ## depth ## ToUV_c(uint8_t *_dstU, uint8_t *_dstV, \
const uint8_t *_srcU, const uint8_t *_srcV, \
int width, uint32_t *unused) \
{ \
uint16_t *dstU = (uint16_t *) _dstU, *dstV = (uint16_t *) _dstV; \
const uint16_t *srcU = (const uint16_t *) _srcU, \
*srcV = (const uint16_t *) _srcV; \
yuv9_OR_10ToUV_c_template(dstU, dstV, srcU, srcV, width, origin, depth); \
} \
static void BE_LE ## depth ## ToY_c(uint8_t *_dstY, const uint8_t *_srcY, \
int width, uint32_t *unused) \
{ \
uint16_t *dstY = (uint16_t *) _dstY; \
const uint16_t *srcY = (const uint16_t *) _srcY; \
yuv9_or_10ToY_c_template(dstY, srcY, width, origin, depth); \
}
YUV_NBPS( 9, LE, PIX_FMT_YUV420P9LE);
YUV_NBPS( 9, BE, PIX_FMT_YUV420P9BE);
YUV_NBPS(10, LE, PIX_FMT_YUV420P10LE);
YUV_NBPS(10, BE, PIX_FMT_YUV420P10BE);
static void bgr24ToY_c(int16_t *dst, const uint8_t *src,
int width, uint32_t *unused)
{
@ -2021,13 +1968,15 @@ static void rgb24ToUV_half_c(int16_t *dstU, int16_t *dstV, const uint8_t *src1,
}
}
static void hScale16_c(int16_t *_dst, int dstW, const uint8_t *_src,
static void hScale16_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src,
const int16_t *filter,
const int16_t *filterPos, int filterSize)
{
int i;
int32_t *dst = (int32_t *) _dst;
const uint16_t *src = (const uint16_t *) _src;
int bits = av_pix_fmt_descriptors[c->srcFormat].comp[0].depth_minus1;
int sh = (bits <= 7) ? 11 : (bits - 4);
for (i = 0; i < dstW; i++) {
int j;
@ -2038,12 +1987,12 @@ static void hScale16_c(int16_t *_dst, int dstW, const uint8_t *_src,
val += src[srcPos + j] * filter[filterSize * i + j];
}
// filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
dst[i] = FFMIN(val >> 11, (1 << 19) - 1);
dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
}
}
// bilinear / bicubic scaling
static void hScale_c(int16_t *dst, int dstW, const uint8_t *src,
static void hScale_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src,
const int16_t *filter, const int16_t *filterPos,
int filterSize)
{
@ -2213,7 +2162,7 @@ static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,
int shift= isAnyRGB(c->srcFormat) || c->srcFormat==PIX_FMT_PAL8 ? 13 : av_pix_fmt_descriptors[c->srcFormat].comp[0].depth_minus1;
c->hScale16(dst, dstWidth, (const uint16_t*)src, srcW, xInc, hLumFilter, hLumFilterPos, hLumFilterSize, shift);
} else if (!c->hyscale_fast) {
c->hScale(dst, dstWidth, src, hLumFilter, hLumFilterPos, hLumFilterSize);
c->hScale(c, dst, dstWidth, src, hLumFilter, hLumFilterPos, hLumFilterSize);
} else { // fast bilinear upscale / crap downscale
c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);
}
@ -2271,8 +2220,8 @@ static av_always_inline void hcscale(SwsContext *c, int16_t *dst1, int16_t *dst2
c->hScale16(dst1, dstWidth, (const uint16_t*)src1, srcW, xInc, hChrFilter, hChrFilterPos, hChrFilterSize, shift);
c->hScale16(dst2, dstWidth, (const uint16_t*)src2, srcW, xInc, hChrFilter, hChrFilterPos, hChrFilterSize, shift);
} else if (!c->hcscale_fast) {
c->hScale(dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
c->hScale(dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
c->hScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
c->hScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
} else { // fast bilinear upscale / crap downscale
c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);
}

@ -447,7 +447,7 @@ typedef struct SwsContext {
* (and input coefficients thus padded with zeroes)
* to simplify creating SIMD code.
*/
void (*hScale)(int16_t *dst, int dstW, const uint8_t *src,
void (*hScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src,
const int16_t *filter, const int16_t *filterPos,
int filterSize);

@ -883,7 +883,6 @@ int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
}
}
// FIXME it's even nicer if bpp isn't 16, but max({src,dst}formatbpp)
c->scalingBpp = FFMAX(av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1,
av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1) >= 15 ? 16 : 8;

@ -1868,7 +1868,7 @@ static void RENAME(rgb24ToUV)(int16_t *dstU, int16_t *dstV,
#if !COMPILE_TEMPLATE_MMX2
// bilinear / bicubic scaling
static void RENAME(hScale)(int16_t *dst, int dstW,
static void RENAME(hScale)(SwsContext *c, int16_t *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int16_t *filterPos, int filterSize)
{

Loading…
Cancel
Save