avfilter/scale_cuda: add CUDA scale filter

Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
pull/130/merge
Yogender Gupta 8 years ago committed by Timo Rothenpieler
parent f1ab71b046
commit 921bd9a2be
  1. 1
      Changelog
  2. 1
      libavfilter/Makefile
  3. 1
      libavfilter/allfilters.c
  4. 2
      libavfilter/version.h
  5. 556
      libavfilter/vf_scale_cuda.c
  6. 212
      libavfilter/vf_scale_cuda.cu

@ -10,6 +10,7 @@ version <next>:
- config.log and other configuration files moved into ffbuild/ directory
- update cuvid/nvenc headers to Video Codec SDK 8.0.14
- afir audio filter
- scale_cuda CUDA based video scale filter
version 3.3:
- CrystalHD decoder moved to new decode API

@ -267,6 +267,7 @@ OBJS-$(CONFIG_REVERSE_FILTER) += f_reverse.o
OBJS-$(CONFIG_ROTATE_FILTER) += vf_rotate.o
OBJS-$(CONFIG_SAB_FILTER) += vf_sab.o
OBJS-$(CONFIG_SCALE_FILTER) += vf_scale.o scale.o
OBJS-$(CONFIG_SCALE_CUDA_FILTER) += vf_scale_cuda.o vf_scale_cuda.ptx.o
OBJS-$(CONFIG_SCALE_NPP_FILTER) += vf_scale_npp.o scale.o
OBJS-$(CONFIG_SCALE_QSV_FILTER) += vf_scale_qsv.o
OBJS-$(CONFIG_SCALE_VAAPI_FILTER) += vf_scale_vaapi.o scale.o

@ -278,6 +278,7 @@ static void register_all(void)
REGISTER_FILTER(ROTATE, rotate, vf);
REGISTER_FILTER(SAB, sab, vf);
REGISTER_FILTER(SCALE, scale, vf);
REGISTER_FILTER(SCALE_CUDA, scale_cuda, vf);
REGISTER_FILTER(SCALE_NPP, scale_npp, vf);
REGISTER_FILTER(SCALE_QSV, scale_qsv, vf);
REGISTER_FILTER(SCALE_VAAPI, scale_vaapi, vf);

@ -31,7 +31,7 @@
#define LIBAVFILTER_VERSION_MAJOR 6
#define LIBAVFILTER_VERSION_MINOR 89
#define LIBAVFILTER_VERSION_MICRO 100
#define LIBAVFILTER_VERSION_MICRO 101
#define LIBAVFILTER_VERSION_INT AV_VERSION_INT(LIBAVFILTER_VERSION_MAJOR, \
LIBAVFILTER_VERSION_MINOR, \

@ -0,0 +1,556 @@
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <cuda.h>
#include <stdio.h>
#include <string.h>
#include "libavutil/avstring.h"
#include "libavutil/common.h"
#include "libavutil/hwcontext.h"
#include "libavutil/hwcontext_cuda_internal.h"
#include "libavutil/internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "scale.h"
#include "video.h"
static const enum AVPixelFormat supported_formats[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_P010,
AV_PIX_FMT_P016
};
#define DIV_UP(a, b) ( ((a) + (b) - 1) / (b) )
#define ALIGN_UP(a, b) (((a) + (b) - 1) & ~((b) - 1))
#define NUM_BUFFERS 2
#define BLOCKX 32
#define BLOCKY 16
typedef struct CUDAScaleContext {
const AVClass *class;
enum AVPixelFormat in_fmt;
enum AVPixelFormat out_fmt;
struct {
int width;
int height;
} planes_in[3], planes_out[3];
AVBufferRef *frames_ctx;
AVFrame *frame;
AVFrame *tmp_frame;
int passthrough;
/**
* Output sw format. AV_PIX_FMT_NONE for no conversion.
*/
enum AVPixelFormat format;
char *w_expr; ///< width expression string
char *h_expr; ///< height expression string
CUcontext cu_ctx;
CUevent cu_event;
CUmodule cu_module;
CUfunction cu_func_uchar;
CUfunction cu_func_uchar2;
CUfunction cu_func_uchar4;
CUfunction cu_func_ushort;
CUfunction cu_func_ushort2;
CUfunction cu_func_ushort4;
CUtexref cu_tex_uchar;
CUtexref cu_tex_uchar2;
CUtexref cu_tex_uchar4;
CUtexref cu_tex_ushort;
CUtexref cu_tex_ushort2;
CUtexref cu_tex_ushort4;
CUdeviceptr srcBuffer;
CUdeviceptr dstBuffer;
int tex_alignment;
} CUDAScaleContext;
static av_cold int cudascale_init(AVFilterContext *ctx)
{
CUDAScaleContext *s = ctx->priv;
s->format = AV_PIX_FMT_NONE;
s->frame = av_frame_alloc();
if (!s->frame)
return AVERROR(ENOMEM);
s->tmp_frame = av_frame_alloc();
if (!s->tmp_frame)
return AVERROR(ENOMEM);
return 0;
}
static av_cold void cudascale_uninit(AVFilterContext *ctx)
{
CUDAScaleContext *s = ctx->priv;
av_frame_free(&s->frame);
av_buffer_unref(&s->frames_ctx);
av_frame_free(&s->tmp_frame);
}
static int cudascale_query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pixel_formats[] = {
AV_PIX_FMT_CUDA, AV_PIX_FMT_NONE,
};
AVFilterFormats *pix_fmts = ff_make_format_list(pixel_formats);
return ff_set_common_formats(ctx, pix_fmts);
}
static av_cold int init_stage(CUDAScaleContext *s, AVBufferRef *device_ctx)
{
AVBufferRef *out_ref = NULL;
AVHWFramesContext *out_ctx;
int in_sw, in_sh, out_sw, out_sh;
int ret, i;
av_pix_fmt_get_chroma_sub_sample(s->in_fmt, &in_sw, &in_sh);
av_pix_fmt_get_chroma_sub_sample(s->out_fmt, &out_sw, &out_sh);
if (!s->planes_out[0].width) {
s->planes_out[0].width = s->planes_in[0].width;
s->planes_out[0].height = s->planes_in[0].height;
}
for (i = 1; i < FF_ARRAY_ELEMS(s->planes_in); i++) {
s->planes_in[i].width = s->planes_in[0].width >> in_sw;
s->planes_in[i].height = s->planes_in[0].height >> in_sh;
s->planes_out[i].width = s->planes_out[0].width >> out_sw;
s->planes_out[i].height = s->planes_out[0].height >> out_sh;
}
out_ref = av_hwframe_ctx_alloc(device_ctx);
if (!out_ref)
return AVERROR(ENOMEM);
out_ctx = (AVHWFramesContext*)out_ref->data;
out_ctx->format = AV_PIX_FMT_CUDA;
out_ctx->sw_format = s->out_fmt;
out_ctx->width = FFALIGN(s->planes_out[0].width, 32);
out_ctx->height = FFALIGN(s->planes_out[0].height, 32);
ret = av_hwframe_ctx_init(out_ref);
if (ret < 0)
goto fail;
av_frame_unref(s->frame);
ret = av_hwframe_get_buffer(out_ref, s->frame, 0);
if (ret < 0)
goto fail;
s->frame->width = s->planes_out[0].width;
s->frame->height = s->planes_out[0].height;
av_buffer_unref(&s->frames_ctx);
s->frames_ctx = out_ref;
return 0;
fail:
av_buffer_unref(&out_ref);
return ret;
}
static int format_is_supported(enum AVPixelFormat fmt)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++)
if (supported_formats[i] == fmt)
return 1;
return 0;
}
static av_cold int init_processing_chain(AVFilterContext *ctx, int in_width, int in_height,
int out_width, int out_height)
{
CUDAScaleContext *s = ctx->priv;
AVHWFramesContext *in_frames_ctx;
enum AVPixelFormat in_format;
enum AVPixelFormat out_format;
int ret;
/* check that we have a hw context */
if (!ctx->inputs[0]->hw_frames_ctx) {
av_log(ctx, AV_LOG_ERROR, "No hw context provided on input\n");
return AVERROR(EINVAL);
}
in_frames_ctx = (AVHWFramesContext*)ctx->inputs[0]->hw_frames_ctx->data;
in_format = in_frames_ctx->sw_format;
out_format = (s->format == AV_PIX_FMT_NONE) ? in_format : s->format;
if (!format_is_supported(in_format)) {
av_log(ctx, AV_LOG_ERROR, "Unsupported input format: %s\n",
av_get_pix_fmt_name(in_format));
return AVERROR(ENOSYS);
}
if (!format_is_supported(out_format)) {
av_log(ctx, AV_LOG_ERROR, "Unsupported output format: %s\n",
av_get_pix_fmt_name(out_format));
return AVERROR(ENOSYS);
}
if (in_width == out_width && in_height == out_height)
s->passthrough = 1;
s->in_fmt = in_format;
s->out_fmt = out_format;
s->planes_in[0].width = in_width;
s->planes_in[0].height = in_height;
s->planes_out[0].width = out_width;
s->planes_out[0].height = out_height;
ret = init_stage(s, in_frames_ctx->device_ref);
if (ret < 0)
return ret;
ctx->outputs[0]->hw_frames_ctx = av_buffer_ref(s->frames_ctx);
if (!ctx->outputs[0]->hw_frames_ctx)
return AVERROR(ENOMEM);
return 0;
}
static av_cold int cudascale_config_props(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = outlink->src->inputs[0];
CUDAScaleContext *s = ctx->priv;
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)inlink->hw_frames_ctx->data;
AVCUDADeviceContext *device_hwctx = frames_ctx->device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUresult err;
int w, h;
int ret;
extern char vf_scale_cuda_ptx[];
err = cuCtxPushCurrent(cuda_ctx);
if (err != CUDA_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Error pushing cuda context\n");
ret = AVERROR_UNKNOWN;
goto fail;
}
err = cuModuleLoadData(&s->cu_module, vf_scale_cuda_ptx);
if (err != CUDA_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Error loading module data\n");
ret = AVERROR_UNKNOWN;
goto fail;
}
cuModuleGetFunction(&s->cu_func_uchar, s->cu_module, "Subsample_Bilinear_uchar");
cuModuleGetFunction(&s->cu_func_uchar2, s->cu_module, "Subsample_Bilinear_uchar2");
cuModuleGetFunction(&s->cu_func_uchar4, s->cu_module, "Subsample_Bilinear_uchar4");
cuModuleGetFunction(&s->cu_func_ushort, s->cu_module, "Subsample_Bilinear_ushort");
cuModuleGetFunction(&s->cu_func_ushort2, s->cu_module, "Subsample_Bilinear_ushort2");
cuModuleGetFunction(&s->cu_func_ushort4, s->cu_module, "Subsample_Bilinear_ushort4");
cuModuleGetTexRef(&s->cu_tex_uchar, s->cu_module, "uchar_tex");
cuModuleGetTexRef(&s->cu_tex_uchar2, s->cu_module, "uchar2_tex");
cuModuleGetTexRef(&s->cu_tex_uchar4, s->cu_module, "uchar4_tex");
cuModuleGetTexRef(&s->cu_tex_ushort, s->cu_module, "ushort_tex");
cuModuleGetTexRef(&s->cu_tex_ushort2, s->cu_module, "ushort2_tex");
cuModuleGetTexRef(&s->cu_tex_ushort4, s->cu_module, "ushort4_tex");
cuTexRefSetFlags(s->cu_tex_uchar, CU_TRSF_READ_AS_INTEGER);
cuTexRefSetFlags(s->cu_tex_uchar2, CU_TRSF_READ_AS_INTEGER);
cuTexRefSetFlags(s->cu_tex_uchar4, CU_TRSF_READ_AS_INTEGER);
cuTexRefSetFlags(s->cu_tex_ushort, CU_TRSF_READ_AS_INTEGER);
cuTexRefSetFlags(s->cu_tex_ushort2, CU_TRSF_READ_AS_INTEGER);
cuTexRefSetFlags(s->cu_tex_ushort4, CU_TRSF_READ_AS_INTEGER);
cuTexRefSetFilterMode(s->cu_tex_uchar, CU_TR_FILTER_MODE_LINEAR);
cuTexRefSetFilterMode(s->cu_tex_uchar2, CU_TR_FILTER_MODE_LINEAR);
cuTexRefSetFilterMode(s->cu_tex_uchar4, CU_TR_FILTER_MODE_LINEAR);
cuTexRefSetFilterMode(s->cu_tex_ushort, CU_TR_FILTER_MODE_LINEAR);
cuTexRefSetFilterMode(s->cu_tex_ushort2, CU_TR_FILTER_MODE_LINEAR);
cuTexRefSetFilterMode(s->cu_tex_ushort4, CU_TR_FILTER_MODE_LINEAR);
cuCtxPopCurrent(&dummy);
if ((ret = ff_scale_eval_dimensions(s,
s->w_expr, s->h_expr,
inlink, outlink,
&w, &h)) < 0)
goto fail;
if (((int64_t)h * inlink->w) > INT_MAX ||
((int64_t)w * inlink->h) > INT_MAX)
av_log(ctx, AV_LOG_ERROR, "Rescaled value for width or height is too big.\n");
outlink->w = w;
outlink->h = h;
ret = init_processing_chain(ctx, inlink->w, inlink->h, w, h);
if (ret < 0)
return ret;
av_log(ctx, AV_LOG_VERBOSE, "w:%d h:%d -> w:%d h:%d\n",
inlink->w, inlink->h, outlink->w, outlink->h);
if (inlink->sample_aspect_ratio.num) {
outlink->sample_aspect_ratio = av_mul_q((AVRational){outlink->h*inlink->w,
outlink->w*inlink->h},
inlink->sample_aspect_ratio);
} else {
outlink->sample_aspect_ratio = inlink->sample_aspect_ratio;
}
return 0;
fail:
return ret;
}
static int call_resize_kernel(CUDAScaleContext *s, CUfunction func, CUtexref tex, int channels,
uint8_t *src_dptr, int src_width, int src_height, int src_pitch,
uint8_t *dst_dptr, int dst_width, int dst_height, int dst_pitch,
int pixel_size)
{
CUdeviceptr src_devptr = (CUdeviceptr)src_dptr;
CUdeviceptr dst_devptr = (CUdeviceptr)dst_dptr;
void *args_uchar[] = { &dst_devptr, &dst_width, &dst_height, &dst_pitch, &src_width, &src_height };
CUDA_ARRAY_DESCRIPTOR desc;
desc.Width = src_width;
desc.Height = src_height;
desc.NumChannels = channels;
if (pixel_size == 1) {
desc.Format = CU_AD_FORMAT_UNSIGNED_INT8;
} else {
desc.Format = CU_AD_FORMAT_UNSIGNED_INT16;
}
cuTexRefSetAddress2D_v3(tex, &desc, src_devptr, src_pitch * pixel_size);
cuLaunchKernel(func, DIV_UP(dst_width, BLOCKX), DIV_UP(dst_height, BLOCKY), 1, BLOCKX, BLOCKY, 1, 0, 0, args_uchar, NULL);
return 0;
}
static int scalecuda_resize(AVFilterContext *ctx,
AVFrame *out, AVFrame *in)
{
AVHWFramesContext *in_frames_ctx = (AVHWFramesContext*)in->hw_frames_ctx->data;
CUDAScaleContext *s = ctx->priv;
switch (in_frames_ctx->sw_format) {
case AV_PIX_FMT_YUV420P:
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0], in->width, in->height, in->linesize[0],
out->data[0], out->width, out->height, out->linesize[0],
1);
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0]+in->linesize[0]*in->height, in->width/2, in->height/2, in->linesize[0]/2,
out->data[0]+out->linesize[0]*out->height, out->width/2, out->height/2, out->linesize[0]/2,
1);
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0]+ ALIGN_UP((in->linesize[0]*in->height*5)/4, s->tex_alignment), in->width/2, in->height/2, in->linesize[0]/2,
out->data[0]+(out->linesize[0]*out->height*5)/4, out->width/2, out->height/2, out->linesize[0]/2,
1);
break;
case AV_PIX_FMT_YUV444P:
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0], in->width, in->height, in->linesize[0],
out->data[0], out->width, out->height, out->linesize[0],
1);
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0]+in->linesize[0]*in->height, in->width, in->height, in->linesize[0],
out->data[0]+out->linesize[0]*out->height, out->width, out->height, out->linesize[0],
1);
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0]+in->linesize[0]*in->height*2, in->width, in->height, in->linesize[0],
out->data[0]+out->linesize[0]*out->height*2, out->width, out->height, out->linesize[0],
1);
break;
case AV_PIX_FMT_NV12:
call_resize_kernel(s, s->cu_func_uchar, s->cu_tex_uchar, 1,
in->data[0], in->width, in->height, in->linesize[0],
out->data[0], out->width, out->height, out->linesize[0],
1);
call_resize_kernel(s, s->cu_func_uchar2, s->cu_tex_uchar2, 2,
in->data[1], in->width/2, in->height/2, in->linesize[1],
out->data[0] + out->linesize[0] * ((out->height + 31) & ~0x1f), out->width/2, out->height/2, out->linesize[1]/2,
1);
break;
case AV_PIX_FMT_P010LE:
call_resize_kernel(s, s->cu_func_ushort, s->cu_tex_ushort, 1,
in->data[0], in->width, in->height, in->linesize[0]/2,
out->data[0], out->width, out->height, out->linesize[0]/2,
2);
call_resize_kernel(s, s->cu_func_ushort2, s->cu_tex_ushort2, 2,
in->data[1], in->width / 2, in->height / 2, in->linesize[1]/2,
out->data[0] + out->linesize[0] * ((out->height + 31) & ~0x1f), out->width / 2, out->height / 2, out->linesize[1] / 4,
2);
break;
case AV_PIX_FMT_P016LE:
call_resize_kernel(s, s->cu_func_ushort, s->cu_tex_ushort, 1,
in->data[0], in->width, in->height, in->linesize[0] / 2,
out->data[0], out->width, out->height, out->linesize[0] / 2,
2);
call_resize_kernel(s, s->cu_func_ushort2, s->cu_tex_ushort2, 2,
in->data[1], in->width / 2, in->height / 2, in->linesize[1] / 2,
out->data[0] + out->linesize[0] * ((out->height + 31) & ~0x1f), out->width / 2, out->height / 2, out->linesize[1] / 4,
2);
break;
default:
return AVERROR_BUG;
}
return 0;
}
static int cudascale_scale(AVFilterContext *ctx, AVFrame *out, AVFrame *in)
{
CUDAScaleContext *s = ctx->priv;
AVFrame *src = in;
int ret;
ret = scalecuda_resize(ctx, s->frame, src);
if (ret < 0)
return ret;
src = s->frame;
ret = av_hwframe_get_buffer(src->hw_frames_ctx, s->tmp_frame, 0);
if (ret < 0)
return ret;
av_frame_move_ref(out, s->frame);
av_frame_move_ref(s->frame, s->tmp_frame);
ret = av_frame_copy_props(out, in);
if (ret < 0)
return ret;
return 0;
}
static int cudascale_filter_frame(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
CUDAScaleContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)s->frames_ctx->data;
AVCUDADeviceContext *device_hwctx = frames_ctx->device_ctx->hwctx;
AVFrame *out = NULL;
CUresult err;
CUcontext dummy;
int ret = 0;
out = av_frame_alloc();
if (!out) {
ret = AVERROR(ENOMEM);
goto fail;
}
err = cuCtxPushCurrent(device_hwctx->cuda_ctx);
if (err != CUDA_SUCCESS) {
ret = AVERROR_UNKNOWN;
goto fail;
}
ret = cudascale_scale(ctx, out, in);
cuCtxPopCurrent(&dummy);
if (ret < 0)
goto fail;
av_reduce(&out->sample_aspect_ratio.num, &out->sample_aspect_ratio.den,
(int64_t)in->sample_aspect_ratio.num * outlink->h * link->w,
(int64_t)in->sample_aspect_ratio.den * outlink->w * link->h,
INT_MAX);
av_frame_free(&in);
return ff_filter_frame(outlink, out);
fail:
av_frame_free(&in);
av_frame_free(&out);
return ret;
}
#define OFFSET(x) offsetof(CUDAScaleContext, x)
#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption options[] = {
{ "w", "Output video width", OFFSET(w_expr), AV_OPT_TYPE_STRING, { .str = "iw" }, .flags = FLAGS },
{ "h", "Output video height", OFFSET(h_expr), AV_OPT_TYPE_STRING, { .str = "ih" }, .flags = FLAGS },
{ NULL },
};
static const AVClass cudascale_class = {
.class_name = "cudascale",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVFilterPad cudascale_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = cudascale_filter_frame,
},
{ NULL }
};
static const AVFilterPad cudascale_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = cudascale_config_props,
},
{ NULL }
};
AVFilter ff_vf_scale_cuda = {
.name = "scale_cuda",
.description = NULL_IF_CONFIG_SMALL("GPU accelerated video resizer"),
.init = cudascale_init,
.uninit = cudascale_uninit,
.query_formats = cudascale_query_formats,
.priv_size = sizeof(CUDAScaleContext),
.priv_class = &cudascale_class,
.inputs = cudascale_inputs,
.outputs = cudascale_outputs,
.flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
};

@ -0,0 +1,212 @@
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
extern "C" {
texture<unsigned char, 2> uchar_tex;
texture<uchar2, 2> uchar2_tex;
texture<uchar4, 2> uchar4_tex;
texture<unsigned short, 2> ushort_tex;
texture<ushort2, 2> ushort2_tex;
texture<ushort4, 2> ushort4_tex;
__global__ void Subsample_Bilinear_uchar(unsigned char *dst,
int dst_width, int dst_height, int dst_pitch,
int src_width, int src_height)
{
int xo = blockIdx.x * blockDim.x + threadIdx.x;
int yo = blockIdx.y * blockDim.y + threadIdx.y;
if (yo < dst_height && xo < dst_width)
{
float hscale = (float)src_width / (float)dst_width;
float vscale = (float)src_height / (float)dst_height;
float xi = (xo + 0.5f) * hscale;
float yi = (yo + 0.5f) * vscale;
// 3-tap filter weights are {wh,1.0,wh} and {wv,1.0,wv}
float wh = min(max(0.5f * (hscale - 1.0f), 0.0f), 1.0f);
float wv = min(max(0.5f * (vscale - 1.0f), 0.0f), 1.0f);
// Convert weights to two bilinear weights -> {wh,1.0,wh} -> {wh,0.5,0} + {0,0.5,wh}
float dx = wh / (0.5f + wh);
float dy = wv / (0.5f + wv);
int y0 = tex2D(uchar_tex, xi-dx, yi-dy);
int y1 = tex2D(uchar_tex, xi+dx, yi-dy);
int y2 = tex2D(uchar_tex, xi-dx, yi+dy);
int y3 = tex2D(uchar_tex, xi+dx, yi+dy);
dst[yo*dst_pitch+xo] = (unsigned char)((y0+y1+y2+y3+2) >> 2);
}
}
__global__ void Subsample_Bilinear_uchar2(uchar2 *dst,
int dst_width, int dst_height, int dst_pitch2,
int src_width, int src_height)
{
int xo = blockIdx.x * blockDim.x + threadIdx.x;
int yo = blockIdx.y * blockDim.y + threadIdx.y;
if (yo < dst_height && xo < dst_width)
{
float hscale = (float)src_width / (float)dst_width;
float vscale = (float)src_height / (float)dst_height;
float xi = (xo + 0.5f) * hscale;
float yi = (yo + 0.5f) * vscale;
// 3-tap filter weights are {wh,1.0,wh} and {wv,1.0,wv}
float wh = min(max(0.5f * (hscale - 1.0f), 0.0f), 1.0f);
float wv = min(max(0.5f * (vscale - 1.0f), 0.0f), 1.0f);
// Convert weights to two bilinear weights -> {wh,1.0,wh} -> {wh,0.5,0} + {0,0.5,wh}
float dx = wh / (0.5f + wh);
float dy = wv / (0.5f + wv);
uchar2 c0 = tex2D(uchar2_tex, xi-dx, yi-dy);
uchar2 c1 = tex2D(uchar2_tex, xi+dx, yi-dy);
uchar2 c2 = tex2D(uchar2_tex, xi-dx, yi+dy);
uchar2 c3 = tex2D(uchar2_tex, xi+dx, yi+dy);
int2 uv;
uv.x = ((int)c0.x+(int)c1.x+(int)c2.x+(int)c3.x+2) >> 2;
uv.y = ((int)c0.y+(int)c1.y+(int)c2.y+(int)c3.y+2) >> 2;
dst[yo*dst_pitch2+xo] = make_uchar2((unsigned char)uv.x, (unsigned char)uv.y);
}
}
__global__ void Subsample_Bilinear_uchar4(uchar4 *dst,
int dst_width, int dst_height, int dst_pitch,
int src_width, int src_height)
{
int xo = blockIdx.x * blockDim.x + threadIdx.x;
int yo = blockIdx.y * blockDim.y + threadIdx.y;
if (yo < dst_height && xo < dst_width)
{
float hscale = (float)src_width / (float)dst_width;
float vscale = (float)src_height / (float)dst_height;
float xi = (xo + 0.5f) * hscale;
float yi = (yo + 0.5f) * vscale;
// 3-tap filter weights are {wh,1.0,wh} and {wv,1.0,wv}
float wh = min(max(0.5f * (hscale - 1.0f), 0.0f), 1.0f);
float wv = min(max(0.5f * (vscale - 1.0f), 0.0f), 1.0f);
// Convert weights to two bilinear weights -> {wh,1.0,wh} -> {wh,0.5,0} + {0,0.5,wh}
float dx = wh / (0.5f + wh);
float dy = wv / (0.5f + wv);
uchar4 c0 = tex2D(uchar4_tex, xi-dx, yi-dy);
uchar4 c1 = tex2D(uchar4_tex, xi+dx, yi-dy);
uchar4 c2 = tex2D(uchar4_tex, xi-dx, yi+dy);
uchar4 c3 = tex2D(uchar4_tex, xi+dx, yi+dy);
int4 res;
res.x = ((int)c0.x+(int)c1.x+(int)c2.x+(int)c3.x+2) >> 2;
res.y = ((int)c0.y+(int)c1.y+(int)c2.y+(int)c3.y+2) >> 2;
res.z = ((int)c0.z+(int)c1.z+(int)c2.z+(int)c3.z+2) >> 2;
res.w = ((int)c0.w+(int)c1.w+(int)c2.w+(int)c3.w+2) >> 2;
dst[yo*dst_pitch+xo] = make_uchar4(
(unsigned char)res.x, (unsigned char)res.y, (unsigned char)res.z, (unsigned char)res.w);
}
}
__global__ void Subsample_Bilinear_ushort(unsigned short *dst,
int dst_width, int dst_height, int dst_pitch,
int src_width, int src_height)
{
int xo = blockIdx.x * blockDim.x + threadIdx.x;
int yo = blockIdx.y * blockDim.y + threadIdx.y;
if (yo < dst_height && xo < dst_width)
{
float hscale = (float)src_width / (float)dst_width;
float vscale = (float)src_height / (float)dst_height;
float xi = (xo + 0.5f) * hscale;
float yi = (yo + 0.5f) * vscale;
// 3-tap filter weights are {wh,1.0,wh} and {wv,1.0,wv}
float wh = min(max(0.5f * (hscale - 1.0f), 0.0f), 1.0f);
float wv = min(max(0.5f * (vscale - 1.0f), 0.0f), 1.0f);
// Convert weights to two bilinear weights -> {wh,1.0,wh} -> {wh,0.5,0} + {0,0.5,wh}
float dx = wh / (0.5f + wh);
float dy = wv / (0.5f + wv);
int y0 = tex2D(ushort_tex, xi-dx, yi-dy);
int y1 = tex2D(ushort_tex, xi+dx, yi-dy);
int y2 = tex2D(ushort_tex, xi-dx, yi+dy);
int y3 = tex2D(ushort_tex, xi+dx, yi+dy);
dst[yo*dst_pitch+xo] = (unsigned short)((y0+y1+y2+y3+2) >> 2);
}
}
__global__ void Subsample_Bilinear_ushort2(ushort2 *dst,
int dst_width, int dst_height, int dst_pitch2,
int src_width, int src_height)
{
int xo = blockIdx.x * blockDim.x + threadIdx.x;
int yo = blockIdx.y * blockDim.y + threadIdx.y;
if (yo < dst_height && xo < dst_width)
{
float hscale = (float)src_width / (float)dst_width;
float vscale = (float)src_height / (float)dst_height;
float xi = (xo + 0.5f) * hscale;
float yi = (yo + 0.5f) * vscale;
// 3-tap filter weights are {wh,1.0,wh} and {wv,1.0,wv}
float wh = min(max(0.5f * (hscale - 1.0f), 0.0f), 1.0f);
float wv = min(max(0.5f * (vscale - 1.0f), 0.0f), 1.0f);
// Convert weights to two bilinear weights -> {wh,1.0,wh} -> {wh,0.5,0} + {0,0.5,wh}
float dx = wh / (0.5f + wh);
float dy = wv / (0.5f + wv);
ushort2 c0 = tex2D(ushort2_tex, xi-dx, yi-dy);
ushort2 c1 = tex2D(ushort2_tex, xi+dx, yi-dy);
ushort2 c2 = tex2D(ushort2_tex, xi-dx, yi+dy);
ushort2 c3 = tex2D(ushort2_tex, xi+dx, yi+dy);
int2 uv;
uv.x = ((int)c0.x+(int)c1.x+(int)c2.x+(int)c3.x+2) >> 2;
uv.y = ((int)c0.y+(int)c1.y+(int)c2.y+(int)c3.y+2) >> 2;
dst[yo*dst_pitch2+xo] = make_ushort2((unsigned short)uv.x, (unsigned short)uv.y);
}
}
__global__ void Subsample_Bilinear_ushort4(ushort4 *dst,
int dst_width, int dst_height, int dst_pitch,
int src_width, int src_height)
{
int xo = blockIdx.x * blockDim.x + threadIdx.x;
int yo = blockIdx.y * blockDim.y + threadIdx.y;
if (yo < dst_height && xo < dst_width)
{
float hscale = (float)src_width / (float)dst_width;
float vscale = (float)src_height / (float)dst_height;
float xi = (xo + 0.5f) * hscale;
float yi = (yo + 0.5f) * vscale;
// 3-tap filter weights are {wh,1.0,wh} and {wv,1.0,wv}
float wh = min(max(0.5f * (hscale - 1.0f), 0.0f), 1.0f);
float wv = min(max(0.5f * (vscale - 1.0f), 0.0f), 1.0f);
// Convert weights to two bilinear weights -> {wh,1.0,wh} -> {wh,0.5,0} + {0,0.5,wh}
float dx = wh / (0.5f + wh);
float dy = wv / (0.5f + wv);
ushort4 c0 = tex2D(ushort4_tex, xi-dx, yi-dy);
ushort4 c1 = tex2D(ushort4_tex, xi+dx, yi-dy);
ushort4 c2 = tex2D(ushort4_tex, xi-dx, yi+dy);
ushort4 c3 = tex2D(ushort4_tex, xi+dx, yi+dy);
int4 res;
res.x = ((int)c0.x+(int)c1.x+(int)c2.x+(int)c3.x+2) >> 2;
res.y = ((int)c0.y+(int)c1.y+(int)c2.y+(int)c3.y+2) >> 2;
res.z = ((int)c0.z+(int)c1.z+(int)c2.z+(int)c3.z+2) >> 2;
res.w = ((int)c0.w+(int)c1.w+(int)c2.w+(int)c3.w+2) >> 2;
dst[yo*dst_pitch+xo] = make_ushort4(
(unsigned short)res.x, (unsigned short)res.y, (unsigned short)res.z, (unsigned short)res.w);
}
}
}
Loading…
Cancel
Save