mirror of https://github.com/FFmpeg/FFmpeg.git
Not support pooling strides in channel dimension yet. Signed-off-by: Ting Fu <ting.fu@intel.com> Reviewed-by: Guo, Yejun <yejun.guo@intel.com>pull/345/head^2
parent
40597add98
commit
91efc41a69
7 changed files with 223 additions and 3 deletions
@ -0,0 +1,141 @@ |
|||||||
|
/*
|
||||||
|
* Copyright (c) 2020 |
||||||
|
* |
||||||
|
* This file is part of FFmpeg. |
||||||
|
* |
||||||
|
* FFmpeg is free software; you can redistribute it and/or |
||||||
|
* modify it under the terms of the GNU Lesser General Public |
||||||
|
* License as published by the Free Software Foundation; either |
||||||
|
* version 2.1 of the License, or (at your option) any later version. |
||||||
|
* |
||||||
|
* FFmpeg is distributed in the hope that it will be useful, |
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||||
|
* Lesser General Public License for more details. |
||||||
|
* |
||||||
|
* You should have received a copy of the GNU Lesser General Public |
||||||
|
* License along with FFmpeg; if not, write to the Free Software |
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||||
|
*/ |
||||||
|
|
||||||
|
/**
|
||||||
|
* @file |
||||||
|
* DNN native backend implementation. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include "libavutil/avassert.h" |
||||||
|
#include "dnn_backend_native_layer_avgpool.h" |
||||||
|
|
||||||
|
int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||||
|
{ |
||||||
|
AvgPoolParams *avgpool_params; |
||||||
|
int dnn_size = 0; |
||||||
|
avgpool_params = av_malloc(sizeof(*avgpool_params)); |
||||||
|
if(!avgpool_params) |
||||||
|
return 0; |
||||||
|
|
||||||
|
avgpool_params->strides = (int32_t)avio_rl32(model_file_context); |
||||||
|
avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); |
||||||
|
avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
||||||
|
dnn_size += 12; |
||||||
|
|
||||||
|
if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ |
||||||
|
av_freep(&avgpool_params); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
layer->params = avgpool_params; |
||||||
|
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||||
|
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||||
|
dnn_size += 8; |
||||||
|
|
||||||
|
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||||
|
return 0; |
||||||
|
} |
||||||
|
return dnn_size; |
||||||
|
} |
||||||
|
|
||||||
|
int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||||
|
int32_t output_operand_index, const void *parameters) |
||||||
|
{ |
||||||
|
float *output; |
||||||
|
int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; |
||||||
|
int32_t input_operand_index = input_operand_indexes[0]; |
||||||
|
int number = operands[input_operand_index].dims[0]; |
||||||
|
int height = operands[input_operand_index].dims[1]; |
||||||
|
int width = operands[input_operand_index].dims[2]; |
||||||
|
int channel = operands[input_operand_index].dims[3]; |
||||||
|
const float *input = operands[input_operand_index].data; |
||||||
|
const AvgPoolParams *avgpool_params = (const AvgPoolParams *)parameters; |
||||||
|
|
||||||
|
int kernel_strides = avgpool_params->strides; |
||||||
|
int src_linesize = width * channel; |
||||||
|
DnnOperand *output_operand = &operands[output_operand_index]; |
||||||
|
|
||||||
|
/**
|
||||||
|
* When padding_method = SAME, the tensorflow will only padding the hald number of 0 pxiels |
||||||
|
* except the remainders. |
||||||
|
* Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 |
||||||
|
* and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, |
||||||
|
* and 5 - 2 - 1 = 2 lines after the last line of input image. |
||||||
|
* and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, |
||||||
|
* and 7 - 2 - 2 = 3 lines after the last line of input image. |
||||||
|
*/ |
||||||
|
if (avgpool_params->padding_method == SAME) { |
||||||
|
height_end = height; |
||||||
|
width_end = width; |
||||||
|
height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); |
||||||
|
width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); |
||||||
|
height_radius = height_radius < 0 ? 0 : height_radius >> 1; |
||||||
|
width_radius = width_radius < 0 ? 0 : width_radius >> 1; |
||||||
|
output_height = ceil(height / (kernel_strides * 1.0)); |
||||||
|
output_width = ceil(width / (kernel_strides * 1.0)); |
||||||
|
} else { |
||||||
|
assert(avgpool_params->padding_method = VALID); |
||||||
|
height_end = height - avgpool_params->kernel_size + 1; |
||||||
|
width_end = width - avgpool_params->kernel_size + 1; |
||||||
|
height_radius = 0; |
||||||
|
width_radius = 0; |
||||||
|
output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); |
||||||
|
output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); |
||||||
|
} |
||||||
|
|
||||||
|
output_operand->dims[0] = number; |
||||||
|
output_operand->dims[1] = output_height; |
||||||
|
output_operand->dims[2] = output_width; |
||||||
|
// not support pooling in channel dimension now
|
||||||
|
output_operand->dims[3] = channel; |
||||||
|
output_operand->data_type = operands[input_operand_index].data_type; |
||||||
|
output_operand->length = calculate_operand_data_length(output_operand); |
||||||
|
output_operand->data = av_realloc(output_operand->data, output_operand->length); |
||||||
|
if (!output_operand->data) |
||||||
|
return -1; |
||||||
|
output = output_operand->data; |
||||||
|
|
||||||
|
for (int y = 0; y < height_end; y += kernel_strides) { |
||||||
|
for (int x = 0; x < width_end; x += kernel_strides) { |
||||||
|
for (int n_channel = 0; n_channel < channel; ++n_channel) { |
||||||
|
output[n_channel] = 0.0; |
||||||
|
kernel_area = 0; |
||||||
|
for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { |
||||||
|
for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { |
||||||
|
float input_pel; |
||||||
|
int y_pos = y + (kernel_y - height_radius); |
||||||
|
int x_pos = x + (kernel_x - width_radius); |
||||||
|
if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { |
||||||
|
input_pel = 0.0; |
||||||
|
} else { |
||||||
|
kernel_area++; |
||||||
|
input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; |
||||||
|
} |
||||||
|
output[n_channel] += input_pel; |
||||||
|
} |
||||||
|
} |
||||||
|
output[n_channel] /= kernel_area; |
||||||
|
} |
||||||
|
output += channel; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
return 0; |
||||||
|
} |
@ -0,0 +1,40 @@ |
|||||||
|
/*
|
||||||
|
* Copyright (c) 2020 |
||||||
|
* |
||||||
|
* This file is part of FFmpeg. |
||||||
|
* |
||||||
|
* FFmpeg is free software; you can redistribute it and/or |
||||||
|
* modify it under the terms of the GNU Lesser General Public |
||||||
|
* License as published by the Free Software Foundation; either |
||||||
|
* version 2.1 of the License, or (at your option) any later version. |
||||||
|
* |
||||||
|
* FFmpeg is distributed in the hope that it will be useful, |
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||||
|
* Lesser General Public License for more details. |
||||||
|
* |
||||||
|
* You should have received a copy of the GNU Lesser General Public |
||||||
|
* License along with FFmpeg; if not, write to the Free Software |
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||||
|
*/ |
||||||
|
|
||||||
|
/**
|
||||||
|
* @file |
||||||
|
* DNN inference functions interface for native backend. |
||||||
|
*/ |
||||||
|
|
||||||
|
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H |
||||||
|
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H |
||||||
|
|
||||||
|
#include "dnn_backend_native.h" |
||||||
|
|
||||||
|
typedef struct AvgPoolParams{ |
||||||
|
int32_t strides, kernel_size; |
||||||
|
DNNPaddingParam padding_method; |
||||||
|
} AvgPoolParams; |
||||||
|
|
||||||
|
int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||||
|
int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||||
|
int32_t output_operand_index, const void *parameters); |
||||||
|
|
||||||
|
#endif |
Loading…
Reference in new issue