|
|
|
@ -88,7 +88,8 @@ typedef struct SOFAlizerContext { |
|
|
|
|
float *data_ir[2]; /* IRs for all channels to be convolved */ |
|
|
|
|
/* (this excludes the LFE) */ |
|
|
|
|
float *temp_src[2]; |
|
|
|
|
FFTComplex *temp_fft[2]; |
|
|
|
|
FFTComplex *temp_fft[2]; /* Array to hold FFT values */ |
|
|
|
|
FFTComplex *temp_afft[2]; /* Array to accumulate FFT values prior to IFFT */ |
|
|
|
|
|
|
|
|
|
/* control variables */ |
|
|
|
|
float gain; /* filter gain (in dB) */ |
|
|
|
@ -322,6 +323,7 @@ typedef struct ThreadData { |
|
|
|
|
float **ringbuffer; |
|
|
|
|
float **temp_src; |
|
|
|
|
FFTComplex **temp_fft; |
|
|
|
|
FFTComplex **temp_afft; |
|
|
|
|
} ThreadData; |
|
|
|
|
|
|
|
|
|
static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
|
|
@ -430,6 +432,7 @@ static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, |
|
|
|
|
/* -1 for AND instead of MODULO (applied to powers of 2): */ |
|
|
|
|
const uint32_t modulo = (uint32_t)buffer_length - 1; |
|
|
|
|
FFTComplex *fft_in = s->temp_fft[jobnr]; /* temporary array for FFT input/output data */ |
|
|
|
|
FFTComplex *fft_acc = s->temp_afft[jobnr]; |
|
|
|
|
FFTContext *ifft = s->ifft[jobnr]; |
|
|
|
|
FFTContext *fft = s->fft[jobnr]; |
|
|
|
|
const int n_conv = s->n_conv; |
|
|
|
@ -458,6 +461,9 @@ static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, |
|
|
|
|
dst[2 * j] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* fill FFT accumulation with 0 */ |
|
|
|
|
memset(fft_acc, 0, sizeof(FFTComplex) * n_fft); |
|
|
|
|
|
|
|
|
|
for (i = 0; i < n_conv; i++) { |
|
|
|
|
if (i == s->lfe_channel) { /* LFE */ |
|
|
|
|
for (j = 0; j < in->nb_samples; j++) { |
|
|
|
@ -490,26 +496,26 @@ static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, |
|
|
|
|
|
|
|
|
|
/* complex multiplication of input signal and HRTFs */ |
|
|
|
|
/* output channel (real): */ |
|
|
|
|
fft_in[j].re = re * hcomplex->re - im * hcomplex->im; |
|
|
|
|
fft_acc[j].re += re * hcomplex->re - im * hcomplex->im; |
|
|
|
|
/* output channel (imag): */ |
|
|
|
|
fft_in[j].im = re * hcomplex->im + im * hcomplex->re; |
|
|
|
|
fft_acc[j].im += re * hcomplex->im + im * hcomplex->re; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* transform output signal of current channel back to time domain */ |
|
|
|
|
av_fft_permute(ifft, fft_in); |
|
|
|
|
av_fft_calc(ifft, fft_in); |
|
|
|
|
/* transform output signal of current channel back to time domain */ |
|
|
|
|
av_fft_permute(ifft, fft_acc); |
|
|
|
|
av_fft_calc(ifft, fft_acc); |
|
|
|
|
|
|
|
|
|
for (j = 0; j < in->nb_samples; j++) { |
|
|
|
|
/* write output signal of current channel to output buffer */ |
|
|
|
|
dst[2 * j] += fft_in[j].re * fft_scale; |
|
|
|
|
} |
|
|
|
|
for (j = 0; j < in->nb_samples; j++) { |
|
|
|
|
/* write output signal of current channel to output buffer */ |
|
|
|
|
dst[2 * j] += fft_acc[j].re * fft_scale; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (j = 0; j < n_samples - 1; j++) { /* overflow length is IR length - 1 */ |
|
|
|
|
/* write the rest of output signal to overflow buffer */ |
|
|
|
|
int write_pos = (wr + j) & modulo; |
|
|
|
|
for (j = 0; j < n_samples - 1; j++) { /* overflow length is IR length - 1 */ |
|
|
|
|
/* write the rest of output signal to overflow buffer */ |
|
|
|
|
int write_pos = (wr + j) & modulo; |
|
|
|
|
|
|
|
|
|
*(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re * fft_scale; |
|
|
|
|
} |
|
|
|
|
*(ringbuffer + write_pos) += fft_acc[in->nb_samples + j].re * fft_scale; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* go through all samples of current output buffer: count clippings */ |
|
|
|
@ -549,6 +555,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
|
|
|
|
td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings; |
|
|
|
|
td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src; |
|
|
|
|
td.temp_fft = s->temp_fft; |
|
|
|
|
td.temp_afft = s->temp_afft; |
|
|
|
|
|
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2); |
|
|
|
@ -790,7 +797,10 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float)); |
|
|
|
|
s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
|
|
|
|
s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
|
|
|
|
if (!s->temp_fft[0] || !s->temp_fft[1]) { |
|
|
|
|
s->temp_afft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
|
|
|
|
s->temp_afft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
|
|
|
|
if (!s->temp_fft[0] || !s->temp_fft[1] || |
|
|
|
|
!s->temp_afft[0] || !s->temp_afft[1]) { |
|
|
|
|
ret = AVERROR(ENOMEM); |
|
|
|
|
goto fail; |
|
|
|
|
} |
|
|
|
@ -957,6 +967,8 @@ static av_cold void uninit(AVFilterContext *ctx) |
|
|
|
|
av_freep(&s->speaker_elev); |
|
|
|
|
av_freep(&s->temp_src[0]); |
|
|
|
|
av_freep(&s->temp_src[1]); |
|
|
|
|
av_freep(&s->temp_afft[0]); |
|
|
|
|
av_freep(&s->temp_afft[1]); |
|
|
|
|
av_freep(&s->temp_fft[0]); |
|
|
|
|
av_freep(&s->temp_fft[1]); |
|
|
|
|
av_freep(&s->data_hrtf[0]); |
|
|
|
|