dnn/native: add native support for divide

it can be tested with model file generated with below python script:
import tensorflow as tf
import numpy as np
import imageio

in_img = imageio.imread('input.jpg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]

x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
z1 = 2 / x
z2 = 1 / z1
z3 = z2 / 0.25 + 0.3
z4 = z3 - x * 1.5 - 0.3
y = tf.identity(z4, name='dnn_out')

sess=tf.Session()
sess.run(tf.global_variables_initializer())

graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

output = sess.run(y, feed_dict={x: in_data})
imageio.imsave("out.jpg", np.squeeze(output))

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
pull/336/head
Guo, Yejun 5 years ago
parent 265b5bd324
commit 8ce9d88f93
  1. 17
      libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
  2. 1
      libavfilter/dnn/dnn_backend_native_layer_mathbinary.h
  3. 5
      tools/python/convert_from_tensorflow.py
  4. 2
      tools/python/convert_header.py

@ -133,6 +133,23 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope
}
}
return 0;
case DMBO_REALDIV:
if (params->input0_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = params->v / src[i];
}
} else if (params->input1_broadcast) {
for (int i = 0; i < dims_count; ++i) {
dst[i] = src[i] / params->v;
}
} else {
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
const float *src1 = input1->data;
for (int i = 0; i < dims_count; ++i) {
dst[i] = src[i] / src1[i];
}
}
return 0;
default:
return -1;
}

@ -34,6 +34,7 @@ typedef enum {
DMBO_SUB = 0,
DMBO_ADD = 1,
DMBO_MUL = 2,
DMBO_REALDIV = 3,
DMBO_COUNT
} DNNMathBinaryOperation;

@ -71,7 +71,7 @@ class TFConverter:
self.conv2d_scope_names = set()
self.conv2d_scopename_inputname_dict = {}
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2}
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3}
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
self.name_operand_dict = {}
@ -311,7 +311,8 @@ class TFConverter:
self.dump_mathbinary_to_file(node, f)
elif node.op == 'Mul':
self.dump_mathbinary_to_file(node, f)
elif node.op == 'RealDiv':
self.dump_mathbinary_to_file(node, f)
def dump_operands_to_file(self, f):
operands = sorted(self.name_operand_dict.values())

@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
major = 1
# increase minor when we don't have to re-convert the model file
minor = 3
minor = 4

Loading…
Cancel
Save