x86: dsputil: port to cpuflags

pull/8/head
Diego Biurrun 13 years ago
parent 8ff0f7763d
commit 8c3849bc76
  1. 220
      libavcodec/x86/dsputil.asm
  2. 26
      libavcodec/x86/dsputil_mmx.c

@ -33,9 +33,9 @@ pb_bswap32: db 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
SECTION_TEXT SECTION_TEXT
%macro SCALARPRODUCT 1 %macro SCALARPRODUCT 0
; int scalarproduct_int16(int16_t *v1, int16_t *v2, int order) ; int scalarproduct_int16(int16_t *v1, int16_t *v2, int order)
cglobal scalarproduct_int16_%1, 3,3,3, v1, v2, order cglobal scalarproduct_int16, 3,3,3, v1, v2, order
shl orderq, 1 shl orderq, 1
add v1q, orderq add v1q, orderq
add v2q, orderq add v2q, orderq
@ -62,7 +62,7 @@ cglobal scalarproduct_int16_%1, 3,3,3, v1, v2, order
RET RET
; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul) ; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul)
cglobal scalarproduct_and_madd_int16_%1, 4,4,8, v1, v2, v3, order, mul cglobal scalarproduct_and_madd_int16, 4,4,8, v1, v2, v3, order, mul
shl orderq, 1 shl orderq, 1
movd m7, mulm movd m7, mulm
%if mmsize == 16 %if mmsize == 16
@ -107,10 +107,10 @@ cglobal scalarproduct_and_madd_int16_%1, 4,4,8, v1, v2, v3, order, mul
RET RET
%endmacro %endmacro
INIT_MMX INIT_MMX mmxext
SCALARPRODUCT mmxext SCALARPRODUCT
INIT_XMM INIT_XMM sse2
SCALARPRODUCT sse2 SCALARPRODUCT
%macro SCALARPRODUCT_LOOP 1 %macro SCALARPRODUCT_LOOP 1
align 16 align 16
@ -158,7 +158,8 @@ align 16
%endmacro %endmacro
; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul) ; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul)
cglobal scalarproduct_and_madd_int16_ssse3, 4,5,10, v1, v2, v3, order, mul INIT_XMM ssse3
cglobal scalarproduct_and_madd_int16, 4,5,10, v1, v2, v3, order, mul
shl orderq, 1 shl orderq, 1
movd m7, mulm movd m7, mulm
pshuflw m7, m7, 0 pshuflw m7, m7, 0
@ -207,48 +208,60 @@ SCALARPRODUCT_LOOP 0
; const int16_t *window, unsigned int len) ; const int16_t *window, unsigned int len)
;----------------------------------------------------------------------------- ;-----------------------------------------------------------------------------
%macro REVERSE_WORDS_MMXEXT 1-2 %macro REVERSE_WORDS 1-2
pshufw %1, %1, 0x1B %if cpuflag(ssse3) && notcpuflag(atom)
%endmacro pshufb %1, %2
%elif cpuflag(sse2)
%macro REVERSE_WORDS_SSE2 1-2
pshuflw %1, %1, 0x1B pshuflw %1, %1, 0x1B
pshufhw %1, %1, 0x1B pshufhw %1, %1, 0x1B
pshufd %1, %1, 0x4E pshufd %1, %1, 0x4E
%elif cpuflag(mmxext)
pshufw %1, %1, 0x1B
%endif
%endmacro %endmacro
%macro REVERSE_WORDS_SSSE3 2 %macro MUL16FIXED 3
pshufb %1, %2 %if cpuflag(ssse3) ; dst, src, unused
%endmacro ; dst = ((dst * src) + (1<<14)) >> 15
pmulhrsw %1, %2
%elif cpuflag(mmxext) ; dst, src, temp
; dst = (dst * src) >> 15 ; dst = (dst * src) >> 15
; pmulhw cuts off the bottom bit, so we have to lshift by 1 and add it back ; pmulhw cuts off the bottom bit, so we have to lshift by 1 and add it back
; in from the pmullw result. ; in from the pmullw result.
%macro MUL16FIXED_MMXEXT 3 ; dst, src, temp
mova %3, %1 mova %3, %1
pmulhw %1, %2 pmulhw %1, %2
pmullw %3, %2 pmullw %3, %2
psrlw %3, 15 psrlw %3, 15
psllw %1, 1 psllw %1, 1
por %1, %3 por %1, %3
%endif
%endmacro %endmacro
; dst = ((dst * src) + (1<<14)) >> 15 %macro APPLY_WINDOW_INT16 1 ; %1 bitexact version
%macro MUL16FIXED_SSSE3 3 ; dst, src, unused %if %1
pmulhrsw %1, %2 cglobal apply_window_int16, 4,5,6, output, input, window, offset, offset2
%endmacro %else
cglobal apply_window_int16_round, 4,5,6, output, input, window, offset, offset2
%macro APPLY_WINDOW_INT16 3 ; %1=instruction set, %2=mmxext/sse2 bit exact version, %3=has_ssse3 %endif
cglobal apply_window_int16_%1, 4,5,6, output, input, window, offset, offset2
lea offset2q, [offsetq-mmsize] lea offset2q, [offsetq-mmsize]
%if %2 %if cpuflag(ssse3) && notcpuflag(atom)
mova m5, [pd_16384]
%elifidn %1, ssse3
mova m5, [pb_revwords] mova m5, [pb_revwords]
ALIGN 16 ALIGN 16
%elif %1
mova m5, [pd_16384]
%endif %endif
.loop: .loop:
%if %2 %if cpuflag(ssse3)
; This version does the 16x16->16 multiplication in-place without expanding
; to 32-bit. The ssse3 version is bit-identical.
mova m0, [windowq+offset2q]
mova m1, [ inputq+offset2q]
pmulhrsw m1, m0
REVERSE_WORDS m0, m5
pmulhrsw m0, [ inputq+offsetq ]
mova [outputq+offset2q], m1
mova [outputq+offsetq ], m0
%elif %1
; This version expands 16-bit to 32-bit, multiplies by the window, ; This version expands 16-bit to 32-bit, multiplies by the window,
; adds 16384 for rounding, right shifts 15, then repacks back to words to ; adds 16384 for rounding, right shifts 15, then repacks back to words to
; save to the output. The window is reversed for the second half. ; save to the output. The window is reversed for the second half.
@ -284,16 +297,6 @@ cglobal apply_window_int16_%1, 4,5,6, output, input, window, offset, offset2
psrad m2, 15 psrad m2, 15
packssdw m0, m2 packssdw m0, m2
mova [outputq+offsetq], m0 mova [outputq+offsetq], m0
%elif %3
; This version does the 16x16->16 multiplication in-place without expanding
; to 32-bit. The ssse3 version is bit-identical.
mova m0, [windowq+offset2q]
mova m1, [ inputq+offset2q]
pmulhrsw m1, m0
REVERSE_WORDS m0, m5
pmulhrsw m0, [ inputq+offsetq ]
mova [outputq+offset2q], m1
mova [outputq+offsetq ], m0
%else %else
; This version does the 16x16->16 multiplication in-place without expanding ; This version does the 16x16->16 multiplication in-place without expanding
; to 32-bit. The mmxext and sse2 versions do not use rounding, and ; to 32-bit. The mmxext and sse2 versions do not use rounding, and
@ -313,22 +316,24 @@ cglobal apply_window_int16_%1, 4,5,6, output, input, window, offset, offset2
REP_RET REP_RET
%endmacro %endmacro
INIT_MMX INIT_MMX mmxext
%define REVERSE_WORDS REVERSE_WORDS_MMXEXT APPLY_WINDOW_INT16 0
%define MUL16FIXED MUL16FIXED_MMXEXT INIT_XMM sse2
APPLY_WINDOW_INT16 mmxext, 0, 0 APPLY_WINDOW_INT16 0
APPLY_WINDOW_INT16 mmxext_ba, 1, 0
INIT_XMM INIT_MMX mmxext
%define REVERSE_WORDS REVERSE_WORDS_SSE2 APPLY_WINDOW_INT16 1
APPLY_WINDOW_INT16 sse2, 0, 0 INIT_XMM sse2
APPLY_WINDOW_INT16 sse2_ba, 1, 0 APPLY_WINDOW_INT16 1
APPLY_WINDOW_INT16 ssse3_atom, 0, 1 INIT_XMM ssse3
%define REVERSE_WORDS REVERSE_WORDS_SSSE3 APPLY_WINDOW_INT16 1
APPLY_WINDOW_INT16 ssse3, 0, 1 INIT_XMM ssse3, atom
APPLY_WINDOW_INT16 1
; void add_hfyu_median_prediction_mmxext(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top) ; void add_hfyu_median_prediction_mmxext(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top)
cglobal add_hfyu_median_prediction_mmxext, 6,6,0, dst, top, diff, w, left, left_top INIT_MMX mmxext
cglobal add_hfyu_median_prediction, 6,6,0, dst, top, diff, w, left, left_top
movq mm0, [topq] movq mm0, [topq]
movq mm2, mm0 movq mm2, mm0
movd mm4, [left_topq] movd mm4, [left_topq]
@ -430,8 +435,8 @@ cglobal add_hfyu_median_prediction_mmxext, 6,6,0, dst, top, diff, w, left, left_
%endmacro %endmacro
; int add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src, int w, int left) ; int add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src, int w, int left)
INIT_MMX INIT_MMX ssse3
cglobal add_hfyu_left_prediction_ssse3, 3,3,7, dst, src, w, left cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left
.skip_prologue: .skip_prologue:
mova m5, [pb_7] mova m5, [pb_7]
mova m4, [pb_zzzz3333zzzzbbbb] mova m4, [pb_zzzz3333zzzzbbbb]
@ -440,8 +445,8 @@ cglobal add_hfyu_left_prediction_ssse3, 3,3,7, dst, src, w, left
psllq m0, 56 psllq m0, 56
ADD_HFYU_LEFT_LOOP 1, 1 ADD_HFYU_LEFT_LOOP 1, 1
INIT_XMM INIT_XMM sse4
cglobal add_hfyu_left_prediction_sse4, 3,3,7, dst, src, w, left cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left
mova m5, [pb_f] mova m5, [pb_f]
mova m6, [pb_zzzzzzzz77777777] mova m6, [pb_zzzzzzzz77777777]
mova m4, [pb_zzzz3333zzzzbbbb] mova m4, [pb_zzzz3333zzzzbbbb]
@ -460,7 +465,8 @@ cglobal add_hfyu_left_prediction_sse4, 3,3,7, dst, src, w, left
; float scalarproduct_float_sse(const float *v1, const float *v2, int len) ; float scalarproduct_float_sse(const float *v1, const float *v2, int len)
cglobal scalarproduct_float_sse, 3,3,2, v1, v2, offset INIT_XMM sse
cglobal scalarproduct_float, 3,3,2, v1, v2, offset
neg offsetq neg offsetq
shl offsetq, 2 shl offsetq, 2
sub v1q, offsetq sub v1q, offsetq
@ -1243,15 +1249,20 @@ BUTTERFLIES_FLOAT_INTERLEAVE
INIT_YMM avx INIT_YMM avx
BUTTERFLIES_FLOAT_INTERLEAVE BUTTERFLIES_FLOAT_INTERLEAVE
INIT_XMM sse2
; %1 = aligned/unaligned ; %1 = aligned/unaligned
%macro BSWAP_LOOPS_SSE2 1 %macro BSWAP_LOOPS 1
mov r3, r2 mov r3, r2
sar r2, 3 sar r2, 3
jz .left4_%1 jz .left4_%1
.loop8_%1: .loop8_%1:
mov%1 m0, [r1 + 0] mov%1 m0, [r1 + 0]
mov%1 m1, [r1 + 16] mov%1 m1, [r1 + 16]
%if cpuflag(ssse3)
pshufb m0, m2
pshufb m1, m2
mova [r0 + 0], m0
mova [r0 + 16], m1
%else
pshuflw m0, m0, 10110001b pshuflw m0, m0, 10110001b
pshuflw m1, m1, 10110001b pshuflw m1, m1, 10110001b
pshufhw m0, m0, 10110001b pshufhw m0, m0, 10110001b
@ -1266,8 +1277,9 @@ INIT_XMM sse2
por m3, m1 por m3, m1
mova [r0 + 0], m2 mova [r0 + 0], m2
mova [r0 + 16], m3 mova [r0 + 16], m3
add r1, 32 %endif
add r0, 32 add r0, 32
add r1, 32
dec r2 dec r2
jnz .loop8_%1 jnz .loop8_%1
.left4_%1: .left4_%1:
@ -1275,6 +1287,10 @@ INIT_XMM sse2
and r3, 4 and r3, 4
jz .left jz .left
mov%1 m0, [r1] mov%1 m0, [r1]
%if cpuflag(ssse3)
pshufb m0, m2
mova [r0], m0
%else
pshuflw m0, m0, 10110001b pshuflw m0, m0, 10110001b
pshufhw m0, m0, 10110001b pshufhw m0, m0, 10110001b
mova m2, m0 mova m2, m0
@ -1282,72 +1298,29 @@ INIT_XMM sse2
psrlw m2, 8 psrlw m2, 8
por m2, m0 por m2, m0
mova [r0], m2 mova [r0], m2
%endif
add r1, 16 add r1, 16
add r0, 16 add r0, 16
%endmacro %endmacro
; void bswap_buf(uint32_t *dst, const uint32_t *src, int w); ; void bswap_buf(uint32_t *dst, const uint32_t *src, int w);
%macro BSWAP32_BUF 0
%if cpuflag(ssse3)
cglobal bswap32_buf, 3,4,3
mov r3, r1
mova m2, [pb_bswap32]
%else
cglobal bswap32_buf, 3,4,5 cglobal bswap32_buf, 3,4,5
mov r3, r1 mov r3, r1
%endif
and r3, 15 and r3, 15
jz .start_align jz .start_align
BSWAP_LOOPS_SSE2 u BSWAP_LOOPS u
jmp .left jmp .left
.start_align: .start_align:
BSWAP_LOOPS_SSE2 a BSWAP_LOOPS a
.left: .left:
and r2, 3 %if cpuflag(ssse3)
jz .end
.loop2:
mov r3d, [r1]
bswap r3d
mov [r0], r3d
add r1, 4
add r0, 4
dec r2
jnz .loop2
.end:
RET
; %1 = aligned/unaligned
%macro BSWAP_LOOPS_SSSE3 1
mov r3, r2
sar r2, 3
jz .left4_%1
.loop8_%1:
mov%1 m0, [r1 + 0]
mov%1 m1, [r1 + 16]
pshufb m0, m2
pshufb m1, m2
mova [r0 + 0], m0
mova [r0 + 16], m1
add r0, 32
add r1, 32
dec r2
jnz .loop8_%1
.left4_%1:
mov r2, r3
and r3, 4
jz .left2
mov%1 m0, [r1]
pshufb m0, m2
mova [r0], m0
add r1, 16
add r0, 16
%endmacro
INIT_XMM ssse3
; void bswap_buf(uint32_t *dst, const uint32_t *src, int w);
cglobal bswap32_buf, 3,4,3
mov r3, r1
mova m2, [pb_bswap32]
and r3, 15
jz .start_align
BSWAP_LOOPS_SSSE3 u
jmp .left2
.start_align:
BSWAP_LOOPS_SSSE3 a
.left2:
mov r3, r2 mov r3, r2
and r2, 2 and r2, 2
jz .left1 jz .left1
@ -1362,5 +1335,24 @@ cglobal bswap32_buf, 3,4,3
mov r2d, [r1] mov r2d, [r1]
bswap r2d bswap r2d
mov [r0], r2d mov [r0], r2d
%else
and r2, 3
jz .end
.loop2:
mov r3d, [r1]
bswap r3d
mov [r0], r3d
add r1, 4
add r0, 4
dec r2
jnz .loop2
%endif
.end: .end:
RET RET
%endmacro
INIT_XMM sse2
BSWAP32_BUF
INIT_XMM ssse3
BSWAP32_BUF

@ -2297,16 +2297,16 @@ int32_t ff_scalarproduct_and_madd_int16_ssse3(int16_t *v1, const int16_t *v2,
const int16_t *v3, const int16_t *v3,
int order, int mul); int order, int mul);
void ff_apply_window_int16_mmxext (int16_t *output, const int16_t *input, void ff_apply_window_int16_round_mmxext(int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len); const int16_t *window, unsigned int len);
void ff_apply_window_int16_mmxext_ba (int16_t *output, const int16_t *input, void ff_apply_window_int16_round_sse2(int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len);
void ff_apply_window_int16_sse2 (int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len);
void ff_apply_window_int16_sse2_ba (int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len);
void ff_apply_window_int16_ssse3 (int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len); const int16_t *window, unsigned int len);
void ff_apply_window_int16_mmxext(int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len);
void ff_apply_window_int16_sse2(int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len);
void ff_apply_window_int16_ssse3(int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len);
void ff_apply_window_int16_ssse3_atom(int16_t *output, const int16_t *input, void ff_apply_window_int16_ssse3_atom(int16_t *output, const int16_t *input,
const int16_t *window, unsigned int len); const int16_t *window, unsigned int len);
@ -2568,9 +2568,9 @@ static void dsputil_init_mmxext(DSPContext *c, AVCodecContext *avctx,
c->scalarproduct_and_madd_int16 = ff_scalarproduct_and_madd_int16_mmxext; c->scalarproduct_and_madd_int16 = ff_scalarproduct_and_madd_int16_mmxext;
if (avctx->flags & CODEC_FLAG_BITEXACT) { if (avctx->flags & CODEC_FLAG_BITEXACT) {
c->apply_window_int16 = ff_apply_window_int16_mmxext_ba;
} else {
c->apply_window_int16 = ff_apply_window_int16_mmxext; c->apply_window_int16 = ff_apply_window_int16_mmxext;
} else {
c->apply_window_int16 = ff_apply_window_int16_round_mmxext;
} }
#endif /* HAVE_YASM */ #endif /* HAVE_YASM */
} }
@ -2758,9 +2758,9 @@ static void dsputil_init_sse2(DSPContext *c, AVCodecContext *avctx,
c->vector_clip_int32 = ff_vector_clip_int32_sse2; c->vector_clip_int32 = ff_vector_clip_int32_sse2;
} }
if (avctx->flags & CODEC_FLAG_BITEXACT) { if (avctx->flags & CODEC_FLAG_BITEXACT) {
c->apply_window_int16 = ff_apply_window_int16_sse2_ba;
} else if (!(mm_flags & AV_CPU_FLAG_SSE2SLOW)) {
c->apply_window_int16 = ff_apply_window_int16_sse2; c->apply_window_int16 = ff_apply_window_int16_sse2;
} else if (!(mm_flags & AV_CPU_FLAG_SSE2SLOW)) {
c->apply_window_int16 = ff_apply_window_int16_round_sse2;
} }
c->bswap_buf = ff_bswap32_buf_sse2; c->bswap_buf = ff_bswap32_buf_sse2;
#endif /* HAVE_YASM */ #endif /* HAVE_YASM */

Loading…
Cancel
Save