DNxHD: K&R formatting cosmetics

pull/64/head
Vittorio Giovara 11 years ago
parent a7448064c5
commit 89ef08c992
  1. 10
      libavcodec/dnxhd_parser.c
  2. 2
      libavcodec/dnxhddata.c
  3. 53
      libavcodec/dnxhddec.c
  4. 464
      libavcodec/dnxhdenc.c

@ -37,7 +37,7 @@ static int dnxhd_find_frame_end(ParseContext *pc,
if (!pic_found) { if (!pic_found) {
for (i = 0; i < buf_size; i++) { for (i = 0; i < buf_size; i++) {
state = (state<<8) | buf[i]; state = (state << 8) | buf[i];
if ((state & 0xffffffffffLL) == DNXHD_HEADER_PREFIX) { if ((state & 0xffffffffffLL) == DNXHD_HEADER_PREFIX) {
i++; i++;
pic_found = 1; pic_found = 1;
@ -50,11 +50,11 @@ static int dnxhd_find_frame_end(ParseContext *pc,
if (!buf_size) /* EOF considered as end of frame */ if (!buf_size) /* EOF considered as end of frame */
return 0; return 0;
for (; i < buf_size; i++) { for (; i < buf_size; i++) {
state = (state<<8) | buf[i]; state = (state << 8) | buf[i];
if ((state & 0xffffffffffLL) == DNXHD_HEADER_PREFIX) { if ((state & 0xffffffffffLL) == DNXHD_HEADER_PREFIX) {
pc->frame_start_found = 0; pc->frame_start_found = 0;
pc->state64 = -1; pc->state64 = -1;
return i-4; return i - 4;
} }
} }
} }
@ -76,12 +76,12 @@ static int dnxhd_parse(AVCodecParserContext *s,
} else { } else {
next = dnxhd_find_frame_end(pc, buf, buf_size); next = dnxhd_find_frame_end(pc, buf, buf_size);
if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) { if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) {
*poutbuf = NULL; *poutbuf = NULL;
*poutbuf_size = 0; *poutbuf_size = 0;
return buf_size; return buf_size;
} }
} }
*poutbuf = buf; *poutbuf = buf;
*poutbuf_size = buf_size; *poutbuf_size = buf_size;
return next; return next;
} }

@ -1165,7 +1165,7 @@ int ff_dnxhd_get_cid_table(int cid)
int ff_dnxhd_find_cid(AVCodecContext *avctx, int bit_depth) int ff_dnxhd_find_cid(AVCodecContext *avctx, int bit_depth)
{ {
int i, j; int i, j;
int mbs = avctx->bit_rate/1000000; int mbs = avctx->bit_rate / 1000000;
if (!mbs) if (!mbs)
return 0; return 0;
for (i = 0; i < FF_ARRAY_ELEMS(ff_dnxhd_cid_table); i++) { for (i = 0; i < FF_ARRAY_ELEMS(ff_dnxhd_cid_table); i++) {

@ -53,9 +53,12 @@ typedef struct DNXHDContext {
#define DNXHD_VLC_BITS 9 #define DNXHD_VLC_BITS 9
#define DNXHD_DC_VLC_BITS 7 #define DNXHD_DC_VLC_BITS 7
static void dnxhd_decode_dct_block_8(DNXHDContext *ctx, int16_t *block, int n, int qscale); static void dnxhd_decode_dct_block_8(DNXHDContext *ctx, int16_t *block,
static void dnxhd_decode_dct_block_10(DNXHDContext *ctx, int16_t *block, int n, int qscale); int n, int qscale);
static void dnxhd_decode_dct_block_10_444(DNXHDContext *ctx, int16_t *block, int n, int qscale); static void dnxhd_decode_dct_block_10(DNXHDContext *ctx, int16_t *block,
int n, int qscale);
static void dnxhd_decode_dct_block_10_444(DNXHDContext *ctx, int16_t *block,
int n, int qscale);
static av_cold int dnxhd_decode_init(AVCodecContext *avctx) static av_cold int dnxhd_decode_init(AVCodecContext *avctx)
{ {
@ -90,14 +93,16 @@ static int dnxhd_init_vlc(DNXHDContext *ctx, int cid)
ctx->cid_table->run_bits, 1, 1, ctx->cid_table->run_bits, 1, 1,
ctx->cid_table->run_codes, 2, 2, 0); ctx->cid_table->run_codes, 2, 2, 0);
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, ff_zigzag_direct); ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
ff_zigzag_direct);
ctx->cid = cid; ctx->cid = cid;
} }
return 0; return 0;
} }
static int dnxhd_decode_header(DNXHDContext *ctx, AVFrame *frame, static int dnxhd_decode_header(DNXHDContext *ctx, AVFrame *frame,
const uint8_t *buf, int buf_size, int first_field) const uint8_t *buf, int buf_size,
int first_field)
{ {
static const uint8_t header_prefix[] = { 0x00, 0x00, 0x02, 0x80, 0x01 }; static const uint8_t header_prefix[] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
static const uint8_t header_prefix444[] = { 0x00, 0x00, 0x02, 0x80, 0x02 }; static const uint8_t header_prefix444[] = { 0x00, 0x00, 0x02, 0x80, 0x02 };
@ -114,7 +119,8 @@ static int dnxhd_decode_header(DNXHDContext *ctx, AVFrame *frame,
ctx->cur_field = buf[5] & 1; ctx->cur_field = buf[5] & 1;
frame->interlaced_frame = 1; frame->interlaced_frame = 1;
frame->top_field_first = first_field ^ ctx->cur_field; frame->top_field_first = first_field ^ ctx->cur_field;
av_log(ctx->avctx, AV_LOG_DEBUG, "interlaced %d, cur field %d\n", buf[5] & 3, ctx->cur_field); av_log(ctx->avctx, AV_LOG_DEBUG,
"interlaced %d, cur field %d\n", buf[5] & 3, ctx->cur_field);
} }
ctx->height = AV_RB16(buf + 0x18); ctx->height = AV_RB16(buf + 0x18);
@ -161,22 +167,24 @@ static int dnxhd_decode_header(DNXHDContext *ctx, AVFrame *frame,
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
ctx->mb_width = ctx->width>>4; ctx->mb_width = ctx->width >> 4;
ctx->mb_height = buf[0x16d]; ctx->mb_height = buf[0x16d];
av_dlog(ctx->avctx, "mb width %d, mb height %d\n", ctx->mb_width, ctx->mb_height); av_dlog(ctx->avctx,
"mb width %d, mb height %d\n", ctx->mb_width, ctx->mb_height);
if ((ctx->height+15)>>4 == ctx->mb_height && frame->interlaced_frame) if ((ctx->height + 15) >> 4 == ctx->mb_height && frame->interlaced_frame)
ctx->height <<= 1; ctx->height <<= 1;
if (ctx->mb_height > 68 || if (ctx->mb_height > 68 ||
(ctx->mb_height << frame->interlaced_frame) > (ctx->height+15)>>4) { (ctx->mb_height << frame->interlaced_frame) > (ctx->height + 15) >> 4) {
av_log(ctx->avctx, AV_LOG_ERROR, "mb height too big: %d\n", ctx->mb_height); av_log(ctx->avctx, AV_LOG_ERROR,
"mb height too big: %d\n", ctx->mb_height);
return AVERROR_INVALIDDATA; return AVERROR_INVALIDDATA;
} }
for (i = 0; i < ctx->mb_height; i++) { for (i = 0; i < ctx->mb_height; i++) {
ctx->mb_scan_index[i] = AV_RB32(buf + 0x170 + (i<<2)); ctx->mb_scan_index[i] = AV_RB32(buf + 0x170 + (i << 2));
av_dlog(ctx->avctx, "mb scan index %d\n", ctx->mb_scan_index[i]); av_dlog(ctx->avctx, "mb scan index %d\n", ctx->mb_scan_index[i]);
if (buf_size < ctx->mb_scan_index[i] + 0x280) { if (buf_size < ctx->mb_scan_index[i] + 0x280) {
av_log(ctx->avctx, AV_LOG_ERROR, "invalid mb scan index\n"); av_log(ctx->avctx, AV_LOG_ERROR, "invalid mb scan index\n");
@ -200,11 +208,11 @@ static av_always_inline void dnxhd_decode_dct_block(DNXHDContext *ctx,
OPEN_READER(bs, &ctx->gb); OPEN_READER(bs, &ctx->gb);
if (!ctx->is_444) { if (!ctx->is_444) {
if (n&2) { if (n & 2) {
component = 1 + (n&1); component = 1 + (n & 1);
weight_matrix = ctx->cid_table->chroma_weight; weight_matrix = ctx->cid_table->chroma_weight;
} else { } else {
component = 0; component = 0;
weight_matrix = ctx->cid_table->luma_weight; weight_matrix = ctx->cid_table->luma_weight;
} }
} else { } else {
@ -255,13 +263,13 @@ static av_always_inline void dnxhd_decode_dct_block(DNXHDContext *ctx,
break; break;
} }
j = ctx->scantable.permutated[i]; j = ctx->scantable.permutated[i];
level = (2*level+1) * qscale * weight_matrix[i]; level = (2 * level + 1) * qscale * weight_matrix[i];
if (level_bias < 32 || weight_matrix[i] != level_bias) if (level_bias < 32 || weight_matrix[i] != level_bias)
level += level_bias; level += level_bias;
level >>= level_shift; level >>= level_shift;
block[j] = (level^sign) - sign; block[j] = (level ^ sign) - sign;
} }
CLOSE_READER(bs, &ctx->gb); CLOSE_READER(bs, &ctx->gb);
@ -285,7 +293,8 @@ static void dnxhd_decode_dct_block_10_444(DNXHDContext *ctx, int16_t *block,
dnxhd_decode_dct_block(ctx, block, n, qscale, 6, 32, 6); dnxhd_decode_dct_block(ctx, block, n, qscale, 6, 32, 6);
} }
static int dnxhd_decode_macroblock(DNXHDContext *ctx, AVFrame *frame, int x, int y) static int dnxhd_decode_macroblock(DNXHDContext *ctx, AVFrame *frame,
int x, int y)
{ {
int shift1 = ctx->bit_depth == 10; int shift1 = ctx->bit_depth == 10;
int dct_linesize_luma = frame->linesize[0]; int dct_linesize_luma = frame->linesize[0];
@ -378,8 +387,8 @@ static int dnxhd_decode_macroblocks(DNXHDContext *ctx, AVFrame *frame,
return 0; return 0;
} }
static int dnxhd_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, static int dnxhd_decode_frame(AVCodecContext *avctx, void *data,
AVPacket *avpkt) int *got_frame, AVPacket *avpkt)
{ {
const uint8_t *buf = avpkt->data; const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size; int buf_size = avpkt->size;
@ -390,7 +399,7 @@ static int dnxhd_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
av_dlog(avctx, "frame size %d\n", buf_size); av_dlog(avctx, "frame size %d\n", buf_size);
decode_coding_unit: decode_coding_unit:
if ((ret = dnxhd_decode_header(ctx, picture, buf, buf_size, first_field)) < 0) if ((ret = dnxhd_decode_header(ctx, picture, buf, buf_size, first_field)) < 0)
return ret; return ret;

@ -23,39 +23,52 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#define RC_VARIANCE 1 // use variance or ssd for fast rc
#include "libavutil/attributes.h" #include "libavutil/attributes.h"
#include "libavutil/internal.h" #include "libavutil/internal.h"
#include "libavutil/opt.h" #include "libavutil/opt.h"
#include "libavutil/timer.h" #include "libavutil/timer.h"
#include "avcodec.h" #include "avcodec.h"
#include "dsputil.h" #include "dsputil.h"
#include "internal.h" #include "internal.h"
#include "mpegvideo.h" #include "mpegvideo.h"
#include "dnxhdenc.h" #include "dnxhdenc.h"
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM // The largest value that will not lead to overflow for 10bit samples.
#define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples. #define DNX10BIT_QMAT_SHIFT 18
#define RC_VARIANCE 1 // use variance or ssd for fast rc
#define LAMBDA_FRAC_BITS 10
static const AVOption options[]={ #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
{"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE}, static const AVOption options[] = {
{NULL} { "nitris_compat", "encode with Avid Nitris compatibility",
offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
{ NULL }
}; };
static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
#define LAMBDA_FRAC_BITS 10 static const AVClass class = {
"dnxhd",
av_default_item_name,
options,
LIBAVUTIL_VERSION_INT
};
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size) static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
const uint8_t *pixels,
int line_size)
{ {
int i; int i;
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
block[0] = pixels[0]; block[1] = pixels[1]; block[0] = pixels[0];
block[2] = pixels[2]; block[3] = pixels[3]; block[1] = pixels[1];
block[4] = pixels[4]; block[5] = pixels[5]; block[2] = pixels[2];
block[6] = pixels[6]; block[7] = pixels[7]; block[3] = pixels[3];
pixels += line_size; block[4] = pixels[4];
block += 8; block[5] = pixels[5];
block[6] = pixels[6];
block[7] = pixels[7];
pixels += line_size;
block += 8;
} }
memcpy(block, block - 8, sizeof(*block) * 8); memcpy(block, block - 8, sizeof(*block) * 8);
memcpy(block + 8, block - 16, sizeof(*block) * 8); memcpy(block + 8, block - 16, sizeof(*block) * 8);
@ -63,15 +76,18 @@ static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t
memcpy(block + 24, block - 32, sizeof(*block) * 8); memcpy(block + 24, block - 32, sizeof(*block) * 8);
} }
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size) static av_always_inline
void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
const uint8_t *pixels,
int line_size)
{ {
int i; int i;
block += 32; block += 32;
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block)); memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block)); memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
} }
} }
@ -104,24 +120,28 @@ static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx) static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
{ {
int i, j, level, run; int i, j, level, run;
int max_level = 1<<(ctx->cid_table->bit_depth+2); int max_level = 1 << (ctx->cid_table->bit_depth + 2);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail); max_level * 4 * sizeof(*ctx->vlc_codes), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail); max_level * 4 * sizeof(*ctx->vlc_bits), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
ctx->vlc_codes += max_level*2; 63 * 2, fail);
ctx->vlc_bits += max_level*2; FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
63, fail);
ctx->vlc_codes += max_level * 2;
ctx->vlc_bits += max_level * 2;
for (level = -max_level; level < max_level; level++) { for (level = -max_level; level < max_level; level++) {
for (run = 0; run < 2; run++) { for (run = 0; run < 2; run++) {
int index = (level<<1)|run; int index = (level << 1) | run;
int sign, offset = 0, alevel = level; int sign, offset = 0, alevel = level;
MASK_ABS(sign, alevel); MASK_ABS(sign, alevel);
if (alevel > 64) { if (alevel > 64) {
offset = (alevel-1)>>6; offset = (alevel - 1) >> 6;
alevel -= offset<<6; alevel -= offset << 6;
} }
for (j = 0; j < 257; j++) { for (j = 0; j < 257; j++) {
if (ctx->cid_table->ac_level[j] == alevel && if (ctx->cid_table->ac_level[j] == alevel &&
@ -129,19 +149,21 @@ static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
(!run || (ctx->cid_table->ac_run_flag [j] && run))) { (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
assert(!ctx->vlc_codes[index]); assert(!ctx->vlc_codes[index]);
if (alevel) { if (alevel) {
ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1); ctx->vlc_codes[index] =
ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1; (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
} else { } else {
ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j]; ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
} }
break; break;
} }
} }
assert(!alevel || j < 257); assert(!alevel || j < 257);
if (offset) { if (offset) {
ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset; ctx->vlc_codes[index] =
ctx->vlc_bits [index]+= ctx->cid_table->index_bits; (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
ctx->vlc_bits[index] += ctx->cid_table->index_bits;
} }
} }
} }
@ -149,45 +171,56 @@ static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
int run = ctx->cid_table->run[i]; int run = ctx->cid_table->run[i];
assert(run < 63); assert(run < 63);
ctx->run_codes[run] = ctx->cid_table->run_codes[i]; ctx->run_codes[run] = ctx->cid_table->run_codes[i];
ctx->run_bits [run] = ctx->cid_table->run_bits[i]; ctx->run_bits[run] = ctx->cid_table->run_bits[i];
} }
return 0; return 0;
fail: fail:
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
} }
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
{ {
// init first elem to 1 to avoid div by 0 in convert_matrix // init first elem to 1 to avoid div by 0 in convert_matrix
uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t* uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
int qscale, i; int qscale, i;
const uint8_t *luma_weight_table = ctx->cid_table->luma_weight; const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight; const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail); (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
(ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
(ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
fail);
if (ctx->cid_table->bit_depth == 8) { if (ctx->cid_table->bit_depth == 8) {
for (i = 1; i < 64; i++) { for (i = 1; i < 64; i++) {
int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
weight_matrix[j] = ctx->cid_table->luma_weight[i]; weight_matrix[j] = ctx->cid_table->luma_weight[i];
} }
ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix, ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16,
ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); weight_matrix, ctx->m.intra_quant_bias, 1,
ctx->m.avctx->qmax, 1);
for (i = 1; i < 64; i++) { for (i = 1; i < 64; i++) {
int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
weight_matrix[j] = ctx->cid_table->chroma_weight[i]; weight_matrix[j] = ctx->cid_table->chroma_weight[i];
} }
ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix, ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16,
ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); weight_matrix, ctx->m.intra_quant_bias, 1,
ctx->m.avctx->qmax, 1);
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2; ctx->qmatrix_l[qscale][i] <<= 2;
ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2; ctx->qmatrix_c[qscale][i] <<= 2;
ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2; ctx->qmatrix_l16[qscale][0][i] <<= 2;
ctx->qmatrix_l16[qscale][1][i] <<= 2;
ctx->qmatrix_c16[qscale][0][i] <<= 2;
ctx->qmatrix_c16[qscale][1][i] <<= 2;
} }
} }
} else { } else {
@ -196,36 +229,44 @@ static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
for (i = 1; i < 64; i++) { for (i = 1; i < 64; i++) {
int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
// The quantization formula from the VC-3 standard is: /* The quantization formula from the VC-3 standard is:
// quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i])) * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
// Where p is 32 for 8-bit samples and 8 for 10-bit ones. * (qscale * weight_table[i]))
// The s factor compensates scaling of DCT coefficients done by the DCT routines, * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
// and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones. * The s factor compensates scaling of DCT coefficients done by
// We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be: * the DCT routines, and therefore is not present in standard.
// ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i]) * It's 8 for 8-bit samples and 4 for 10-bit ones.
// For 10-bit samples, p / s == 2 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]); * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]); * (qscale * weight_table[i])
* For 10-bit samples, p / s == 2 */
ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
(qscale * luma_weight_table[i]);
ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
(qscale * chroma_weight_table[i]);
} }
} }
} }
return 0; return 0;
fail: fail:
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
} }
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx) static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
{ {
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
ctx->m.mb_num * sizeof(RCCMPEntry), fail);
ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8; ctx->frame_bits = (ctx->cid_table->coding_unit_size -
640 - 4 - ctx->min_padding) * 8;
ctx->qscale = 1; ctx->qscale = 1;
ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2 ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
return 0; return 0;
fail: fail:
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
} }
@ -242,13 +283,15 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
bit_depth = 10; bit_depth = 10;
break; break;
default: default:
av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n"); av_log(avctx, AV_LOG_ERROR,
"pixel format is incompatible with DNxHD\n");
return AVERROR(EINVAL); return AVERROR(EINVAL);
} }
ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth); ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
if (!ctx->cid) { if (!ctx->cid) {
av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n"); av_log(avctx, AV_LOG_ERROR,
"video parameters incompatible with DNxHD\n");
return AVERROR(EINVAL); return AVERROR(EINVAL);
} }
av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
@ -256,7 +299,7 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
index = ff_dnxhd_get_cid_table(ctx->cid); index = ff_dnxhd_get_cid_table(ctx->cid);
ctx->cid_table = &ff_dnxhd_cid_table[index]; ctx->cid_table = &ff_dnxhd_cid_table[index];
ctx->m.avctx = avctx; ctx->m.avctx = avctx;
ctx->m.mb_intra = 1; ctx->m.mb_intra = 1;
ctx->m.h263_aic = 1; ctx->m.h263_aic = 1;
@ -268,12 +311,12 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
ctx->m.dct_quantize = ff_dct_quantize_c; ctx->m.dct_quantize = ff_dct_quantize_c;
if (ctx->cid_table->bit_depth == 10) { if (ctx->cid_table->bit_depth == 10) {
ctx->m.dct_quantize = dnxhd_10bit_dct_quantize; ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 4; ctx->block_width_l2 = 4;
} else { } else {
ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym; ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 3; ctx->block_width_l2 = 3;
} }
if (ARCH_X86) if (ARCH_X86)
@ -283,7 +326,7 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
ctx->m.mb_width = (avctx->width + 15) / 16; ctx->m.mb_width = (avctx->width + 15) / 16;
if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) { if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
ctx->interlaced = 1; ctx->interlaced = 1;
ctx->m.mb_height /= 2; ctx->m.mb_height /= 2;
} }
@ -291,10 +334,12 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS) if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
ctx->m.intra_quant_bias = avctx->intra_quant_bias; ctx->m.intra_quant_bias = avctx->intra_quant_bias;
if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0) // XXX tune lbias/cbias // XXX tune lbias/cbias
if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
return ret; return ret;
// Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload /* Avid Nitris hardware decoder requires a minimum amount of padding
* in the coding unit payload */
if (ctx->nitris_compat) if (ctx->nitris_compat)
ctx->min_padding = 1600; ctx->min_padding = 1600;
@ -303,10 +348,14 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
if ((ret = dnxhd_init_rc(ctx)) < 0) if ((ret = dnxhd_init_rc(ctx)) < 0)
return ret; return ret;
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail); ctx->m.mb_height * sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail); FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail); ctx->m.mb_height * sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
ctx->m.mb_num * sizeof(uint16_t), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
ctx->m.mb_num * sizeof(uint8_t), fail);
avctx->coded_frame = av_frame_alloc(); avctx->coded_frame = av_frame_alloc();
if (!avctx->coded_frame) if (!avctx->coded_frame)
@ -322,32 +371,32 @@ static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
ctx->thread[0] = ctx; ctx->thread[0] = ctx;
for (i = 1; i < avctx->thread_count; i++) { for (i = 1; i < avctx->thread_count; i++) {
ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext)); ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext)); memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
} }
return 0; return 0;
fail: //for FF_ALLOCZ_OR_GOTO fail: // for FF_ALLOCZ_OR_GOTO
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
} }
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
{ {
DNXHDEncContext *ctx = avctx->priv_data; DNXHDEncContext *ctx = avctx->priv_data;
const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 }; const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
memset(buf, 0, 640); memset(buf, 0, 640);
memcpy(buf, header_prefix, 5); memcpy(buf, header_prefix, 5);
buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01; buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
buf[6] = 0x80; // crc flag off buf[6] = 0x80; // crc flag off
buf[7] = 0xa0; // reserved buf[7] = 0xa0; // reserved
AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
AV_WB16(buf + 0x1a, avctx->width); // SPL AV_WB16(buf + 0x1a, avctx->width); // SPL
AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38; buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
buf[0x22] = 0x88 + (ctx->interlaced<<2); buf[0x22] = 0x88 + (ctx->interlaced << 2);
AV_WB32(buf + 0x28, ctx->cid); // CID AV_WB32(buf + 0x28, ctx->cid); // CID
buf[0x2c] = ctx->interlaced ? 0 : 0x80; buf[0x2c] = ctx->interlaced ? 0 : 0x80;
@ -366,16 +415,19 @@ static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
{ {
int nbits; int nbits;
if (diff < 0) { if (diff < 0) {
nbits = av_log2_16bit(-2*diff); nbits = av_log2_16bit(-2 * diff);
diff--; diff--;
} else { } else {
nbits = av_log2_16bit(2*diff); nbits = av_log2_16bit(2 * diff);
} }
put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
(ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1))); (ctx->cid_table->dc_codes[nbits] << nbits) +
(diff & ((1 << nbits) - 1)));
} }
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n) static av_always_inline
void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
int last_index, int n)
{ {
int last_non_zero = 0; int last_non_zero = 0;
int slevel, i, j; int slevel, i, j;
@ -388,30 +440,34 @@ static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *b
slevel = block[j]; slevel = block[j];
if (slevel) { if (slevel) {
int run_level = i - last_non_zero - 1; int run_level = i - last_non_zero - 1;
int rlevel = (slevel<<1)|!!run_level; int rlevel = (slevel << 1) | !!run_level;
put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
if (run_level) if (run_level)
put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]); put_bits(&ctx->m.pb, ctx->run_bits[run_level],
ctx->run_codes[run_level]);
last_non_zero = i; last_non_zero = i;
} }
} }
put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
} }
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index) static av_always_inline
void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
int qscale, int last_index)
{ {
const uint8_t *weight_matrix; const uint8_t *weight_matrix;
int level; int level;
int i; int i;
weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight; weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
: ctx->cid_table->luma_weight;
for (i = 1; i <= last_index; i++) { for (i = 1; i <= last_index; i++) {
int j = ctx->m.intra_scantable.permutated[i]; int j = ctx->m.intra_scantable.permutated[i];
level = block[j]; level = block[j];
if (level) { if (level) {
if (level < 0) { if (level < 0) {
level = (1-2*level) * qscale * weight_matrix[i]; level = (1 - 2 * level) * qscale * weight_matrix[i];
if (ctx->cid_table->bit_depth == 10) { if (ctx->cid_table->bit_depth == 10) {
if (weight_matrix[i] != 8) if (weight_matrix[i] != 8)
level += 8; level += 8;
@ -423,7 +479,7 @@ static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *b
} }
level = -level; level = -level;
} else { } else {
level = (2*level+1) * qscale * weight_matrix[i]; level = (2 * level + 1) * qscale * weight_matrix[i];
if (ctx->cid_table->bit_depth == 10) { if (ctx->cid_table->bit_depth == 10) {
if (weight_matrix[i] != 8) if (weight_matrix[i] != 8)
level += 8; level += 8;
@ -448,7 +504,8 @@ static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
return score; return score;
} }
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index) static av_always_inline
int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
{ {
int last_non_zero = 0; int last_non_zero = 0;
int bits = 0; int bits = 0;
@ -458,20 +515,25 @@ static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *bl
level = block[j]; level = block[j];
if (level) { if (level) {
int run_level = i - last_non_zero - 1; int run_level = i - last_non_zero - 1;
bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level]; bits += ctx->vlc_bits[(level << 1) |
!!run_level] + ctx->run_bits[run_level];
last_non_zero = i; last_non_zero = i;
} }
} }
return bits; return bits;
} }
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) static av_always_inline
void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
{ {
const int bs = ctx->block_width_l2; const int bs = ctx->block_width_l2;
const int bw = 1 << bs; const int bw = 1 << bs;
const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1); const uint8_t *ptr_y = ctx->thread[0]->src[0] +
const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs); ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs); const uint8_t *ptr_u = ctx->thread[0]->src[1] +
((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
const uint8_t *ptr_v = ctx->thread[0]->src[2] +
((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
DSPContext *dsp = &ctx->m.dsp; DSPContext *dsp = &ctx->m.dsp;
dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize); dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
@ -479,12 +541,20 @@ static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, in
dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize); dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize); dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
if (ctx->interlaced) { if (ctx->interlaced) {
ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize); ctx->get_pixels_8x4_sym(ctx->blocks[4],
ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize); ptr_y + ctx->dct_y_offset,
ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize); ctx->m.linesize);
ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize); ctx->get_pixels_8x4_sym(ctx->blocks[5],
ptr_y + ctx->dct_y_offset + bw,
ctx->m.linesize);
ctx->get_pixels_8x4_sym(ctx->blocks[6],
ptr_u + ctx->dct_uv_offset,
ctx->m.uvlinesize);
ctx->get_pixels_8x4_sym(ctx->blocks[7],
ptr_v + ctx->dct_uv_offset,
ctx->m.uvlinesize);
} else { } else {
dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[4]);
dsp->clear_block(ctx->blocks[5]); dsp->clear_block(ctx->blocks[5]);
@ -492,19 +562,24 @@ static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, in
dsp->clear_block(ctx->blocks[7]); dsp->clear_block(ctx->blocks[7]);
} }
} else { } else {
dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize); dsp->get_pixels(ctx->blocks[4],
dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize); ptr_y + ctx->dct_y_offset, ctx->m.linesize);
dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize); dsp->get_pixels(ctx->blocks[5],
dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize); ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
dsp->get_pixels(ctx->blocks[6],
ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
dsp->get_pixels(ctx->blocks[7],
ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
} }
} }
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) static av_always_inline
int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
{ {
if (i&2) { if (i & 2) {
ctx->m.q_intra_matrix16 = ctx->qmatrix_c16; ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
ctx->m.q_intra_matrix = ctx->qmatrix_c; ctx->m.q_intra_matrix = ctx->qmatrix_c;
return 1 + (i&1); return 1 + (i & 1);
} else { } else {
ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
ctx->m.q_intra_matrix = ctx->qmatrix_l; ctx->m.q_intra_matrix = ctx->qmatrix_l;
@ -512,7 +587,8 @@ static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
} }
} }
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
int jobnr, int threadnr)
{ {
DNXHDEncContext *ctx = avctx->priv_data; DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x; int mb_y = jobnr, mb_x;
@ -538,13 +614,16 @@ static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, i
int overflow, nbits, diff, last_index; int overflow, nbits, diff, last_index;
int n = dnxhd_switch_matrix(ctx, i); int n = dnxhd_switch_matrix(ctx, i);
memcpy(block, src_block, 64*sizeof(*block)); memcpy(block, src_block, 64 * sizeof(*block));
last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow); last_index = ctx->m.dct_quantize(&ctx->m, block, i,
ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); qscale, &overflow);
ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
diff = block[0] - ctx->m.last_dc[n]; diff = block[0] - ctx->m.last_dc[n];
if (diff < 0) nbits = av_log2_16bit(-2*diff); if (diff < 0)
else nbits = av_log2_16bit( 2*diff); nbits = av_log2_16bit(-2 * diff);
else
nbits = av_log2_16bit(2 * diff);
assert(nbits < ctx->cid_table->bit_depth + 4); assert(nbits < ctx->cid_table->bit_depth + 4);
dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
@ -557,18 +636,21 @@ static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, i
ssd += dnxhd_ssd_block(block, src_block); ssd += dnxhd_ssd_block(block, src_block);
} }
} }
ctx->mb_rc[qscale][mb].ssd = ssd; ctx->mb_rc[qscale][mb].ssd = ssd;
ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0]; ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
8 * ctx->vlc_bits[0];
} }
return 0; return 0;
} }
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
int jobnr, int threadnr)
{ {
DNXHDEncContext *ctx = avctx->priv_data; DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x; int mb_y = jobnr, mb_x;
ctx = ctx->thread[threadnr]; ctx = ctx->thread[threadnr];
init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]); init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
ctx->slice_size[jobnr]);
ctx->m.last_dc[0] = ctx->m.last_dc[0] =
ctx->m.last_dc[1] = ctx->m.last_dc[1] =
@ -578,7 +660,7 @@ static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int
int qscale = ctx->mb_qscale[mb]; int qscale = ctx->mb_qscale[mb];
int i; int i;
put_bits(&ctx->m.pb, 12, qscale<<1); put_bits(&ctx->m.pb, 12, qscale << 1);
dnxhd_get_blocks(ctx, mb_x, mb_y); dnxhd_get_blocks(ctx, mb_x, mb_y);
@ -587,13 +669,13 @@ static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int
int overflow, n = dnxhd_switch_matrix(ctx, i); int overflow, n = dnxhd_switch_matrix(ctx, i);
int last_index = ctx->m.dct_quantize(&ctx->m, block, i, int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
qscale, &overflow); qscale, &overflow);
//START_TIMER; // START_TIMER;
dnxhd_encode_block(ctx, block, last_index, n); dnxhd_encode_block(ctx, block, last_index, n);
//STOP_TIMER("encode_block"); // STOP_TIMER("encode_block");
} }
} }
if (put_bits_count(&ctx->m.pb)&31) if (put_bits_count(&ctx->m.pb) & 31)
put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0); put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
flush_put_bits(&ctx->m.pb); flush_put_bits(&ctx->m.pb);
return 0; return 0;
} }
@ -610,14 +692,15 @@ static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
unsigned mb = mb_y * ctx->m.mb_width + mb_x; unsigned mb = mb_y * ctx->m.mb_width + mb_x;
ctx->slice_size[mb_y] += ctx->mb_bits[mb]; ctx->slice_size[mb_y] += ctx->mb_bits[mb];
} }
ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31; ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
ctx->slice_size[mb_y] >>= 3; ctx->slice_size[mb_y] >>= 3;
thread_size = ctx->slice_size[mb_y]; thread_size = ctx->slice_size[mb_y];
offset += thread_size; offset += thread_size;
} }
} }
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
int jobnr, int threadnr)
{ {
DNXHDEncContext *ctx = avctx->priv_data; DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x, x, y; int mb_y = jobnr, mb_x, x, y;
@ -626,9 +709,9 @@ static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int
ctx = ctx->thread[threadnr]; ctx = ctx->thread[threadnr];
if (ctx->cid_table->bit_depth == 8) { if (ctx->cid_table->bit_depth == 8) {
uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize); uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) { for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x; unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int sum; int sum;
int varc; int varc;
@ -647,15 +730,16 @@ static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int
} }
} }
} }
varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8; varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
ctx->mb_cmp[mb].value = varc; ctx->mb_cmp[mb].value = varc;
ctx->mb_cmp[mb].mb = mb; ctx->mb_cmp[mb].mb = mb;
} }
} else { // 10-bit } else { // 10-bit
int const linesize = ctx->m.linesize >> 1; int const linesize = ctx->m.linesize >> 1;
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) { for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4); uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
((mb_y << 4) * linesize) + (mb_x << 4);
unsigned mb = mb_y * ctx->m.mb_width + mb_x; unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int sum = 0; int sum = 0;
int sqsum = 0; int sqsum = 0;
@ -665,8 +749,8 @@ static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int
for (i = 0; i < 16; ++i) { for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) { for (j = 0; j < 16; ++j) {
// Turn 16-bit pixels into 10-bit ones. // Turn 16-bit pixels into 10-bit ones.
int const sample = (unsigned)pix[j] >> 6; int const sample = (unsigned) pix[j] >> 6;
sum += sample; sum += sample;
sqsum += sample * sample; sqsum += sample * sample;
// 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
} }
@ -675,7 +759,7 @@ static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int
mean = sum >> 8; // 16*16 == 2^8 mean = sum >> 8; // 16*16 == 2^8
sqmean = sqsum >> 8; sqmean = sqsum >> 8;
ctx->mb_cmp[mb].value = sqmean - mean * mean; ctx->mb_cmp[mb].value = sqmean - mean * mean;
ctx->mb_cmp[mb].mb = mb; ctx->mb_cmp[mb].mb = mb;
} }
} }
return 0; return 0;
@ -689,14 +773,15 @@ static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
for (q = 1; q < avctx->qmax; q++) { for (q = 1; q < avctx->qmax; q++) {
ctx->qscale = q; ctx->qscale = q;
avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); avctx->execute2(avctx, dnxhd_calc_bits_thread,
NULL, NULL, ctx->m.mb_height);
} }
up_step = down_step = 2<<LAMBDA_FRAC_BITS; up_step = down_step = 2 << LAMBDA_FRAC_BITS;
lambda = ctx->lambda; lambda = ctx->lambda;
for (;;) { for (;;) {
int bits = 0; int bits = 0;
int end = 0; int end = 0;
if (lambda == last_higher) { if (lambda == last_higher) {
lambda++; lambda++;
end = 1; // need to set final qscales/bits end = 1; // need to set final qscales/bits
@ -705,25 +790,26 @@ static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
for (x = 0; x < ctx->m.mb_width; x++) { for (x = 0; x < ctx->m.mb_width; x++) {
unsigned min = UINT_MAX; unsigned min = UINT_MAX;
int qscale = 1; int qscale = 1;
int mb = y*ctx->m.mb_width+x; int mb = y * ctx->m.mb_width + x;
for (q = 1; q < avctx->qmax; q++) { for (q = 1; q < avctx->qmax; q++) {
unsigned score = ctx->mb_rc[q][mb].bits*lambda+ unsigned score = ctx->mb_rc[q][mb].bits * lambda +
((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS); ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
if (score < min) { if (score < min) {
min = score; min = score;
qscale = q; qscale = q;
} }
} }
bits += ctx->mb_rc[qscale][mb].bits; bits += ctx->mb_rc[qscale][mb].bits;
ctx->mb_qscale[mb] = qscale; ctx->mb_qscale[mb] = qscale;
ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits; ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
} }
bits = (bits+31)&~31; // padding bits = (bits + 31) & ~31; // padding
if (bits > ctx->frame_bits) if (bits > ctx->frame_bits)
break; break;
} }
//av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n", // av_dlog(ctx->m.avctx,
// lambda, last_higher, last_lower, bits, ctx->frame_bits); // "lambda %d, up %u, down %u, bits %d, frame %d\n",
// lambda, last_higher, last_lower, bits, ctx->frame_bits);
if (end) { if (end) {
if (bits > ctx->frame_bits) if (bits > ctx->frame_bits)
return AVERROR(EINVAL); return AVERROR(EINVAL);
@ -772,7 +858,8 @@ static int dnxhd_find_qscale(DNXHDEncContext *ctx)
bits = 0; bits = 0;
ctx->qscale = qscale; ctx->qscale = qscale;
// XXX avoid recalculating bits // XXX avoid recalculating bits
ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
NULL, NULL, ctx->m.mb_height);
for (y = 0; y < ctx->m.mb_height; y++) { for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++) for (x = 0; x < ctx->m.mb_width; x++)
bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits; bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
@ -780,8 +867,10 @@ static int dnxhd_find_qscale(DNXHDEncContext *ctx)
if (bits > ctx->frame_bits) if (bits > ctx->frame_bits)
break; break;
} }
//av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n", // av_dlog(ctx->m.avctx,
// ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower); // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
// ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
// last_higher, last_lower);
if (bits < ctx->frame_bits) { if (bits < ctx->frame_bits) {
if (qscale == 1) if (qscale == 1)
return 1; return 1;
@ -791,7 +880,7 @@ static int dnxhd_find_qscale(DNXHDEncContext *ctx)
} }
last_lower = FFMIN(qscale, last_lower); last_lower = FFMIN(qscale, last_lower);
if (last_higher != 0) if (last_higher != 0)
qscale = (qscale+last_higher)>>1; qscale = (qscale + last_higher) >> 1;
else else
qscale -= down_step++; qscale -= down_step++;
if (qscale < 1) if (qscale < 1)
@ -802,7 +891,7 @@ static int dnxhd_find_qscale(DNXHDEncContext *ctx)
break; break;
last_higher = FFMAX(qscale, last_higher); last_higher = FFMAX(qscale, last_higher);
if (last_lower != INT_MAX) if (last_lower != INT_MAX)
qscale = (qscale+last_lower)>>1; qscale = (qscale + last_lower) >> 1;
else else
qscale += up_step++; qscale += up_step++;
down_step = 1; down_step = 1;
@ -822,11 +911,12 @@ static int dnxhd_find_qscale(DNXHDEncContext *ctx)
static inline int get_bucket(int value, int shift) static inline int get_bucket(int value, int shift)
{ {
value >>= shift; value >>= shift;
value &= NBUCKETS - 1; value &= NBUCKETS - 1;
return NBUCKETS - 1 - value; return NBUCKETS - 1 - value;
} }
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS]) static void radix_count(const RCCMPEntry *data, int size,
int buckets[RADIX_PASSES][NBUCKETS])
{ {
int i, j; int i, j;
memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
@ -846,12 +936,13 @@ static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASS
} }
} }
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass) static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
int size, int buckets[NBUCKETS], int pass)
{ {
int shift = pass * BUCKET_BITS; int shift = pass * BUCKET_BITS;
int i; int i;
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
int v = get_bucket(data[i].value, shift); int v = get_bucket(data[i].value, shift);
int pos = buckets[v]++; int pos = buckets[v]++;
dst[pos] = data[i]; dst[pos] = data[i];
} }
@ -879,30 +970,35 @@ static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
return ret; return ret;
for (y = 0; y < ctx->m.mb_height; y++) { for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++) { for (x = 0; x < ctx->m.mb_width; x++) {
int mb = y*ctx->m.mb_width+x; int mb = y * ctx->m.mb_width + x;
int delta_bits; int delta_bits;
ctx->mb_qscale[mb] = ctx->qscale; ctx->mb_qscale[mb] = ctx->qscale;
ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits; ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
max_bits += ctx->mb_rc[ctx->qscale][mb].bits; max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
if (!RC_VARIANCE) { if (!RC_VARIANCE) {
delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits; delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
ctx->mb_rc[ctx->qscale + 1][mb].bits;
ctx->mb_cmp[mb].mb = mb; ctx->mb_cmp[mb].mb = mb;
ctx->mb_cmp[mb].value = delta_bits ? ctx->mb_cmp[mb].value =
((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
: INT_MIN; //avoid increasing qscale ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
delta_bits
: INT_MIN; // avoid increasing qscale
} }
} }
max_bits += 31; //worst padding max_bits += 31; // worst padding
} }
if (!ret) { if (!ret) {
if (RC_VARIANCE) if (RC_VARIANCE)
avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height); avctx->execute2(avctx, dnxhd_mb_var_thread,
NULL, NULL, ctx->m.mb_height);
radix_sort(ctx->mb_cmp, ctx->m.mb_num); radix_sort(ctx->mb_cmp, ctx->m.mb_num);
for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
int mb = ctx->mb_cmp[x].mb; int mb = ctx->mb_cmp[x].mb;
max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits; max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
ctx->mb_qscale[mb] = ctx->qscale+1; ctx->mb_rc[ctx->qscale + 1][mb].bits;
ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits; ctx->mb_qscale[mb] = ctx->qscale + 1;
ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
} }
} }
return 0; return 0;
@ -932,14 +1028,15 @@ static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
uint8_t *buf; uint8_t *buf;
if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) { if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n"); av_log(avctx, AV_LOG_ERROR,
"output buffer is too small to compress picture\n");
return ret; return ret;
} }
buf = pkt->data; buf = pkt->data;
dnxhd_load_picture(ctx, frame); dnxhd_load_picture(ctx, frame);
encode_coding_unit: encode_coding_unit:
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
ctx->src[i] = frame->data[i]; ctx->src[i] = frame->data[i];
if (ctx->interlaced && ctx->cur_field) if (ctx->interlaced && ctx->cur_field)
@ -970,14 +1067,15 @@ static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size); assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640); memset(buf + 640 + offset, 0,
ctx->cid_table->coding_unit_size - 4 - offset - 640);
AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
if (ctx->interlaced && first_field) { if (ctx->interlaced && first_field) {
first_field = 0; first_field = 0;
ctx->cur_field ^= 1; ctx->cur_field ^= 1;
buf += ctx->cid_table->coding_unit_size; buf += ctx->cid_table->coding_unit_size;
goto encode_coding_unit; goto encode_coding_unit;
} }
@ -991,11 +1089,11 @@ static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
static av_cold int dnxhd_encode_end(AVCodecContext *avctx) static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
{ {
DNXHDEncContext *ctx = avctx->priv_data; DNXHDEncContext *ctx = avctx->priv_data;
int max_level = 1<<(ctx->cid_table->bit_depth+2); int max_level = 1 << (ctx->cid_table->bit_depth + 2);
int i; int i;
av_free(ctx->vlc_codes-max_level*2); av_free(ctx->vlc_codes - max_level * 2);
av_free(ctx->vlc_bits -max_level*2); av_free(ctx->vlc_bits - max_level * 2);
av_freep(&ctx->run_codes); av_freep(&ctx->run_codes);
av_freep(&ctx->run_bits); av_freep(&ctx->run_bits);
@ -1029,8 +1127,10 @@ AVCodec ff_dnxhd_encoder = {
.encode2 = dnxhd_encode_picture, .encode2 = dnxhd_encode_picture,
.close = dnxhd_encode_end, .close = dnxhd_encode_end,
.capabilities = CODEC_CAP_SLICE_THREADS, .capabilities = CODEC_CAP_SLICE_THREADS,
.pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P, .pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_NONE }, AV_PIX_FMT_YUV422P10,
AV_PIX_FMT_NONE
},
.priv_class = &class, .priv_class = &class,
}; };

Loading…
Cancel
Save