avfilter/vf_v360: split maps into slices

pull/353/head^2
Paul B Mahol 4 years ago
parent ad2546e3b3
commit 86b29c0cd0
  1. 11
      libavfilter/v360.h
  2. 97
      libavfilter/vf_v360.c

@ -109,6 +109,12 @@ typedef struct XYRemap {
float ker[4][4];
} XYRemap;
typedef struct SliceXYRemap {
int16_t *u[2], *v[2];
int16_t *ker[2];
uint8_t *mask;
} SliceXYRemap;
typedef struct V360Context {
const AVClass *class;
int in, out;
@ -164,10 +170,9 @@ typedef struct V360Context {
int elements;
int mask_size;
int max_value;
int nb_threads;
int16_t *u[2], *v[2];
int16_t *ker[2];
uint8_t *mask;
SliceXYRemap *slice_remap;
unsigned map[4];
int (*in_transform)(const struct V360Context *s,

@ -279,6 +279,7 @@ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jo
{ \
ThreadData *td = arg; \
const V360Context *s = ctx->priv; \
const SliceXYRemap *r = &s->slice_remap[jobnr]; \
const AVFrame *in = td->in; \
AVFrame *out = td->out; \
\
@ -295,7 +296,7 @@ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jo
const uint8_t *const src = in->data[plane] + \
in_offset_h * in_linesize + in_offset_w * (bits >> 3); \
uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \
const uint8_t *mask = plane == 3 ? s->mask : NULL; \
const uint8_t *mask = plane == 3 ? r->mask : NULL; \
const int width = s->pr_width[plane]; \
const int height = s->pr_height[plane]; \
\
@ -303,15 +304,16 @@ static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jo
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
\
for (int y = slice_start; y < slice_end && !mask; y++) { \
const int16_t *const u = s->u[map] + y * uv_linesize * ws * ws; \
const int16_t *const v = s->v[map] + y * uv_linesize * ws * ws; \
const int16_t *const ker = s->ker[map] + y * uv_linesize * ws * ws; \
const int16_t *const u = r->u[map] + (y - slice_start) * uv_linesize * ws * ws; \
const int16_t *const v = r->v[map] + (y - slice_start) * uv_linesize * ws * ws; \
const int16_t *const ker = r->ker[map] + (y - slice_start) * uv_linesize * ws * ws; \
\
s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \
} \
\
for (int y = slice_start; y < slice_end && mask; y++) { \
memcpy(dst + y * out_linesize, mask + y * width * (bits >> 3), width * (bits >> 3)); \
memcpy(dst + y * out_linesize, mask + \
(y - slice_start) * width * (bits >> 3), width * (bits >> 3)); \
} \
} \
} \
@ -346,8 +348,9 @@ static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_
int tmp = 0; \
\
for (int i = 0; i < ws; i++) { \
const int iws = i * ws; \
for (int j = 0; j < ws; j++) { \
tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]]; \
tmp += kker[iws + j] * s[vv[iws + j] * in_linesize + uu[iws + j]]; \
} \
} \
\
@ -3920,24 +3923,33 @@ static inline void mirror(const float *modifier, float *vec)
static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p)
{
if (!s->u[p])
s->u[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
if (!s->v[p])
s->v[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
if (!s->u[p] || !s->v[p])
return AVERROR(ENOMEM);
if (sizeof_ker) {
if (!s->ker[p])
s->ker[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_ker);
if (!s->ker[p])
const int pr_height = s->pr_height[p];
for (int n = 0; n < s->nb_threads; n++) {
SliceXYRemap *r = &s->slice_remap[n];
const int slice_start = (pr_height * n ) / s->nb_threads;
const int slice_end = (pr_height * (n + 1)) / s->nb_threads;
const int height = slice_end - slice_start;
if (!r->u[p])
r->u[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv);
if (!r->v[p])
r->v[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv);
if (!r->u[p] || !r->v[p])
return AVERROR(ENOMEM);
}
if (sizeof_ker) {
if (!r->ker[p])
r->ker[p] = av_calloc(s->uv_linesize[p] * height, sizeof_ker);
if (!r->ker[p])
return AVERROR(ENOMEM);
}
if (sizeof_mask && !p) {
if (!s->mask)
s->mask = av_calloc(s->pr_width[p] * s->pr_height[p], sizeof_mask);
if (!s->mask)
return AVERROR(ENOMEM);
if (sizeof_mask && !p) {
if (!r->mask)
r->mask = av_calloc(s->pr_width[p] * height, sizeof_mask);
if (!r->mask)
return AVERROR(ENOMEM);
}
}
return 0;
@ -4024,6 +4036,7 @@ static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDes
static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
V360Context *s = ctx->priv;
SliceXYRemap *r = &s->slice_remap[jobnr];
for (int p = 0; p < s->nb_allocated; p++) {
const int max_value = s->max_value;
@ -4034,17 +4047,18 @@ static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobn
const int in_height = s->inplaneheight[p];
const int slice_start = (height * jobnr ) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int elements = s->elements;
float du, dv;
float vec[3];
XYRemap rmap;
for (int j = slice_start; j < slice_end; j++) {
for (int i = 0; i < width; i++) {
int16_t *u = s->u[p] + (j * uv_linesize + i) * s->elements;
int16_t *v = s->v[p] + (j * uv_linesize + i) * s->elements;
int16_t *ker = s->ker[p] + (j * uv_linesize + i) * s->elements;
uint8_t *mask8 = p ? NULL : s->mask + (j * s->pr_width[0] + i);
uint16_t *mask16 = p ? NULL : (uint16_t *)s->mask + (j * s->pr_width[0] + i);
int16_t *u = r->u[p] + ((j - slice_start) * uv_linesize + i) * elements;
int16_t *v = r->v[p] + ((j - slice_start) * uv_linesize + i) * elements;
int16_t *ker = r->ker[p] + ((j - slice_start) * uv_linesize + i) * elements;
uint8_t *mask8 = p ? NULL : r->mask + ((j - slice_start) * s->pr_width[0] + i);
uint16_t *mask16 = p ? NULL : (uint16_t *)r->mask + ((j - slice_start) * s->pr_width[0] + i);
int in_mask, out_mask;
if (s->out_transpose)
@ -4063,7 +4077,7 @@ static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobn
av_assert1(!isnan(du) && !isnan(dv));
s->calculate_kernel(du, dv, &rmap, u, v, ker);
if (!p && s->mask) {
if (!p && r->mask) {
if (s->mask_size == 1) {
mask8[0] = 255 * (out_mask & in_mask);
} else {
@ -4580,6 +4594,7 @@ static int config_output(AVFilterLink *outlink)
outlink->h = h;
outlink->w = w;
s->nb_threads = FFMIN(outlink->h, ff_filter_get_nb_threads(ctx));
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
have_alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
@ -4592,6 +4607,11 @@ static int config_output(AVFilterLink *outlink)
s->map[1] = s->map[2] = 1;
}
if (!s->slice_remap)
s->slice_remap = av_calloc(s->nb_threads, sizeof(*s->slice_remap));
if (!s->slice_remap)
return AVERROR(ENOMEM);
for (int i = 0; i < s->nb_allocated; i++) {
err = allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i);
if (err < 0)
@ -4601,7 +4621,7 @@ static int config_output(AVFilterLink *outlink)
calculate_rotation_matrix(s->yaw, s->pitch, s->roll, s->rot_mat, s->rotation_order);
set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier);
ctx->internal->execute(ctx, v360_slice, NULL, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
ctx->internal->execute(ctx, v360_slice, NULL, NULL, s->nb_threads);
return 0;
}
@ -4624,7 +4644,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
td.in = in;
td.out = out;
ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
ctx->internal->execute(ctx, s->remap_slice, &td, NULL, s->nb_threads);
av_frame_free(&in);
return ff_filter_frame(outlink, out);
@ -4646,12 +4666,19 @@ static av_cold void uninit(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int p = 0; p < s->nb_allocated; p++) {
av_freep(&s->u[p]);
av_freep(&s->v[p]);
av_freep(&s->ker[p]);
for (int n = 0; n < s->nb_threads && s->slice_remap; n++) {
SliceXYRemap *r = &s->slice_remap[n];
for (int p = 0; p < s->nb_allocated; p++) {
av_freep(&r->u[p]);
av_freep(&r->v[p]);
av_freep(&r->ker[p]);
}
av_freep(&r->mask);
}
av_freep(&s->mask);
av_freep(&s->slice_remap);
}
static const AVFilterPad inputs[] = {

Loading…
Cancel
Save