From 84e4e60fdcbb2fd9193f6a0704caefbfb64092cb Mon Sep 17 00:00:00 2001 From: Shubhanshu Saxena Date: Mon, 5 Jul 2021 16:00:57 +0530 Subject: [PATCH] lavfi/dnn_backend_tf: Separate function for Completion Callback This commit rearranges the existing code to create a separate function for the completion callback in execute_model_tf. Signed-off-by: Shubhanshu Saxena --- libavfilter/dnn/dnn_backend_tf.c | 109 +++++++++++++++++-------------- 1 file changed, 61 insertions(+), 48 deletions(-) diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c index 7f014d55fa..6664d7194b 100644 --- a/libavfilter/dnn/dnn_backend_tf.c +++ b/libavfilter/dnn/dnn_backend_tf.c @@ -915,6 +915,65 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque return DNN_SUCCESS; } +static void infer_completion_callback(void *args) { + TFRequestItem *request = args; + InferenceItem *inference = request->inference; + TaskItem *task = inference->task; + DNNData *outputs; + TFInferRequest *infer_request = request->infer_request; + TFModel *tf_model = task->model; + TFContext *ctx = &tf_model->ctx; + + outputs = av_malloc_array(task->nb_output, sizeof(*outputs)); + if (!outputs) { + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); + goto err; + } + + for (uint32_t i = 0; i < task->nb_output; ++i) { + outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1); + outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2); + outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3); + outputs[i].data = TF_TensorData(infer_request->output_tensors[i]); + outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]); + } + switch (tf_model->model->func_type) { + case DFT_PROCESS_FRAME: + //it only support 1 output if it's frame in & frame out + if (task->do_ioproc) { + if (tf_model->model->frame_post_proc != NULL) { + tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx); + } else { + ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx); + } + } else { + task->out_frame->width = outputs[0].width; + task->out_frame->height = outputs[0].height; + } + break; + case DFT_ANALYTICS_DETECT: + if (!tf_model->model->detect_post_proc) { + av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n"); + return; + } + tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx); + break; + default: + av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); + goto err; + } + task->inference_done++; +err: + tf_free_request(infer_request); + av_freep(&outputs); + + if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) { + av_freep(&request->infer_request); + av_freep(&request); + av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n"); + } +} + static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue) { TFModel *tf_model; @@ -922,7 +981,6 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q TFInferRequest *infer_request; InferenceItem *inference; TaskItem *task; - DNNData *outputs; inference = ff_queue_peek_front(inference_queue); task = inference->task; @@ -944,56 +1002,11 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q task->nb_output, NULL, 0, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { - tf_free_request(infer_request); - av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n"); - return DNN_ERROR; - } - - outputs = av_malloc_array(task->nb_output, sizeof(*outputs)); - if (!outputs) { - tf_free_request(infer_request); - av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); - return DNN_ERROR; - } - - for (uint32_t i = 0; i < task->nb_output; ++i) { - outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1); - outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2); - outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3); - outputs[i].data = TF_TensorData(infer_request->output_tensors[i]); - outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]); - } - switch (tf_model->model->func_type) { - case DFT_PROCESS_FRAME: - //it only support 1 output if it's frame in & frame out - if (task->do_ioproc) { - if (tf_model->model->frame_post_proc != NULL) { - tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx); - } else { - ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx); - } - } else { - task->out_frame->width = outputs[0].width; - task->out_frame->height = outputs[0].height; - } - break; - case DFT_ANALYTICS_DETECT: - if (!tf_model->model->detect_post_proc) { - av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n"); - return DNN_ERROR; - } - tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx); - break; - default: tf_free_request(infer_request); - - av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); + av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n"); return DNN_ERROR; } - task->inference_done++; - tf_free_request(infer_request); - av_freep(&outputs); - ff_safe_queue_push_back(tf_model->request_queue, request); + infer_completion_callback(request); return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR; } }