|
|
|
@ -23,6 +23,37 @@ import sys, struct |
|
|
|
|
|
|
|
|
|
__all__ = ['convert_from_tensorflow'] |
|
|
|
|
|
|
|
|
|
class Operand(object): |
|
|
|
|
IOTYPE_INPUT = 1 |
|
|
|
|
IOTYPE_OUTPUT = 2 |
|
|
|
|
IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT |
|
|
|
|
DTYPE_FLOAT = 1 |
|
|
|
|
DTYPE_UINT8 = 4 |
|
|
|
|
index = 0 |
|
|
|
|
def __init__(self, name, dtype, dims): |
|
|
|
|
self.name = name |
|
|
|
|
self.dtype = dtype |
|
|
|
|
self.dims = dims |
|
|
|
|
self.iotype = 0 |
|
|
|
|
self.used_count = 0 |
|
|
|
|
self.index = Operand.index |
|
|
|
|
Operand.index = Operand.index + 1 |
|
|
|
|
self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'} |
|
|
|
|
self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'} |
|
|
|
|
|
|
|
|
|
def add_iotype(self, iotype): |
|
|
|
|
self.iotype = self.iotype | iotype |
|
|
|
|
if iotype == Operand.IOTYPE_INPUT: |
|
|
|
|
self.used_count = self.used_count + 1 |
|
|
|
|
|
|
|
|
|
def __str__(self): |
|
|
|
|
return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index, |
|
|
|
|
self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype], |
|
|
|
|
self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count) |
|
|
|
|
|
|
|
|
|
def __lt__(self, other): |
|
|
|
|
return self.index < other.index |
|
|
|
|
|
|
|
|
|
class TFConverter: |
|
|
|
|
def __init__(self, graph_def, nodes, outfile, dump4tb): |
|
|
|
|
self.graph_def = graph_def |
|
|
|
@ -37,8 +68,28 @@ class TFConverter: |
|
|
|
|
self.conv_paddings = {'VALID':0, 'SAME':1} |
|
|
|
|
self.converted_nodes = set() |
|
|
|
|
self.conv2d_scope_names = set() |
|
|
|
|
self.conv2d_scopename_inputname_dict = {} |
|
|
|
|
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3} |
|
|
|
|
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} |
|
|
|
|
self.name_operand_dict = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_operand(self, name, type): |
|
|
|
|
node = self.name_node_dict[name] |
|
|
|
|
if name not in self.name_operand_dict: |
|
|
|
|
dtype = node.attr['dtype'].type |
|
|
|
|
if dtype == 0: |
|
|
|
|
dtype = node.attr['T'].type |
|
|
|
|
dims = [-1,-1,-1,-1] |
|
|
|
|
if 'shape' in node.attr: |
|
|
|
|
dims[0] = node.attr['shape'].shape.dim[0].size |
|
|
|
|
dims[1] = node.attr['shape'].shape.dim[1].size |
|
|
|
|
dims[2] = node.attr['shape'].shape.dim[2].size |
|
|
|
|
dims[3] = node.attr['shape'].shape.dim[3].size |
|
|
|
|
operand = Operand(name, dtype, dims) |
|
|
|
|
self.name_operand_dict[name] = operand; |
|
|
|
|
self.name_operand_dict[name].add_iotype(type) |
|
|
|
|
return self.name_operand_dict[name].index |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_for_tensorboard(self): |
|
|
|
@ -60,11 +111,10 @@ class TFConverter: |
|
|
|
|
# the BiasAdd name is possible be changed into the output name, |
|
|
|
|
# if activation is None, and BiasAdd.next is the last op which is Identity |
|
|
|
|
if conv2d_scope_name + '/BiasAdd' in self.edges: |
|
|
|
|
activation = self.edges[conv2d_scope_name + '/BiasAdd'][0] |
|
|
|
|
activation = activation.op |
|
|
|
|
anode = self.edges[conv2d_scope_name + '/BiasAdd'][0] |
|
|
|
|
else: |
|
|
|
|
activation = 'None' |
|
|
|
|
return knode, bnode, dnode, activation |
|
|
|
|
anode = None |
|
|
|
|
return knode, bnode, dnode, anode |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_conv2d_to_file(self, node, f): |
|
|
|
@ -73,16 +123,21 @@ class TFConverter: |
|
|
|
|
self.converted_nodes.add(node.name) |
|
|
|
|
|
|
|
|
|
scope_name = TFConverter.get_scope_name(node.name) |
|
|
|
|
#knode for kernel, bnode for bias, dnode for dilation |
|
|
|
|
knode, bnode, dnode, activation = self.get_conv2d_params(scope_name) |
|
|
|
|
#knode for kernel, bnode for bias, dnode for dilation, anode for activation |
|
|
|
|
knode, bnode, dnode, anode = self.get_conv2d_params(scope_name) |
|
|
|
|
|
|
|
|
|
if dnode is not None: |
|
|
|
|
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0] |
|
|
|
|
else: |
|
|
|
|
dilation = 1 |
|
|
|
|
|
|
|
|
|
if anode is not None: |
|
|
|
|
activation = anode.op |
|
|
|
|
else: |
|
|
|
|
activation = 'None' |
|
|
|
|
|
|
|
|
|
padding = node.attr['padding'].s.decode("utf-8") |
|
|
|
|
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use tricky. |
|
|
|
|
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method. |
|
|
|
|
if dilation > 1 and scope_name + '/stack' in self.name_node_dict: |
|
|
|
|
if self.name_node_dict[scope_name + '/stack'].op == "Const": |
|
|
|
|
padding = 'SAME' |
|
|
|
@ -107,6 +162,15 @@ class TFConverter: |
|
|
|
|
bias = btensor.tensor_content |
|
|
|
|
f.write(bias) |
|
|
|
|
|
|
|
|
|
input_name = self.conv2d_scopename_inputname_dict[scope_name] |
|
|
|
|
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) |
|
|
|
|
|
|
|
|
|
if anode is not None: |
|
|
|
|
output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) |
|
|
|
|
else: |
|
|
|
|
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) |
|
|
|
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_depth2space_to_file(self, node, f): |
|
|
|
|
assert(node.op == 'DepthToSpace') |
|
|
|
@ -114,6 +178,9 @@ class TFConverter: |
|
|
|
|
block_size = node.attr['block_size'].i |
|
|
|
|
np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f) |
|
|
|
|
self.converted_nodes.add(node.name) |
|
|
|
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) |
|
|
|
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
|
|
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_mirrorpad_to_file(self, node, f): |
|
|
|
@ -127,6 +194,9 @@ class TFConverter: |
|
|
|
|
paddings = pnode.attr['value'].tensor.tensor_content |
|
|
|
|
f.write(paddings) |
|
|
|
|
self.converted_nodes.add(node.name) |
|
|
|
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) |
|
|
|
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
|
|
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_layers_to_file(self, f): |
|
|
|
@ -147,10 +217,21 @@ class TFConverter: |
|
|
|
|
self.dump_mirrorpad_to_file(node, f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_operands_to_file(self, f): |
|
|
|
|
operands = sorted(self.name_operand_dict.values()) |
|
|
|
|
for operand in operands: |
|
|
|
|
#print('{}'.format(operand)) |
|
|
|
|
np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f) |
|
|
|
|
f.write(operand.name.encode('utf-8')) |
|
|
|
|
np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f) |
|
|
|
|
np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_to_file(self): |
|
|
|
|
with open(self.outfile, 'wb') as f: |
|
|
|
|
self.dump_layers_to_file(f) |
|
|
|
|
np.array([self.layer_number], dtype=np.uint32).tofile(f) |
|
|
|
|
self.dump_operands_to_file(f) |
|
|
|
|
np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_name_node_dict(self): |
|
|
|
@ -212,19 +293,29 @@ class TFConverter: |
|
|
|
|
return name[0:index] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_conv2d_scope_names(self): |
|
|
|
|
def generate_conv2d_scope_info(self): |
|
|
|
|
# conv2d is a sub block in graph, get the scope name |
|
|
|
|
for node in self.nodes: |
|
|
|
|
if node.op == 'Conv2D': |
|
|
|
|
scope = TFConverter.get_scope_name(node.name) |
|
|
|
|
self.conv2d_scope_names.add(scope) |
|
|
|
|
|
|
|
|
|
# get the input name to the conv2d sub block |
|
|
|
|
for node in self.nodes: |
|
|
|
|
scope = TFConverter.get_scope_name(node.name) |
|
|
|
|
if scope in self.conv2d_scope_names: |
|
|
|
|
if node.op == 'Conv2D' or node.op == 'Shape': |
|
|
|
|
for inp in node.input: |
|
|
|
|
if TFConverter.get_scope_name(inp) != scope: |
|
|
|
|
self.conv2d_scopename_inputname_dict[scope] = inp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run(self): |
|
|
|
|
self.generate_name_node_dict() |
|
|
|
|
self.generate_output_names() |
|
|
|
|
self.remove_identity() |
|
|
|
|
self.generate_edges() |
|
|
|
|
self.generate_conv2d_scope_names() |
|
|
|
|
self.generate_conv2d_scope_info() |
|
|
|
|
|
|
|
|
|
if self.dump4tb: |
|
|
|
|
self.dump_for_tensorboard() |
|
|
|
|