|
|
|
@ -43,7 +43,8 @@ |
|
|
|
|
|
|
|
|
|
typedef struct MySofa { /* contains data of one SOFA file */ |
|
|
|
|
struct MYSOFA_EASY *easy; |
|
|
|
|
int n_samples; /* length of one impulse response (IR) */ |
|
|
|
|
int ir_samples; /* length of one impulse response (IR) */ |
|
|
|
|
int n_samples; /* ir_samples to next power of 2 */ |
|
|
|
|
float *lir, *rir; /* IRs (time-domain) */ |
|
|
|
|
int max_delay; |
|
|
|
|
} MySofa; |
|
|
|
@ -126,7 +127,8 @@ static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) |
|
|
|
|
if (mysofa->DataSamplingRate.elements != 1) |
|
|
|
|
return AVERROR(EINVAL); |
|
|
|
|
*samplingrate = mysofa->DataSamplingRate.values[0]; |
|
|
|
|
s->sofa.n_samples = mysofa->N; |
|
|
|
|
s->sofa.ir_samples = mysofa->N; |
|
|
|
|
s->sofa.n_samples = 1 << (32 - ff_clz(s->sofa.ir_samples)); |
|
|
|
|
license = mysofa_getAttribute(mysofa->attributes, (char *)"License"); |
|
|
|
|
if (license) |
|
|
|
|
av_log(ctx, AV_LOG_INFO, "SOFA license: %s\n", license); |
|
|
|
@ -291,7 +293,8 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n |
|
|
|
|
int *n_clippings = &td->n_clippings[jobnr]; |
|
|
|
|
float *ringbuffer = td->ringbuffer[jobnr]; |
|
|
|
|
float *temp_src = td->temp_src[jobnr]; |
|
|
|
|
const int n_samples = s->sofa.n_samples; /* length of one IR */ |
|
|
|
|
const int ir_samples = s->sofa.ir_samples; /* length of one IR */ |
|
|
|
|
const int n_samples = s->sofa.n_samples; |
|
|
|
|
const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */ |
|
|
|
|
float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */ |
|
|
|
|
const int in_channels = s->n_conv; /* number of input channels */ |
|
|
|
@ -327,7 +330,7 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n |
|
|
|
|
/* LFE is an input channel but requires no convolution */ |
|
|
|
|
/* apply gain to LFE signal and add to output buffer */ |
|
|
|
|
*dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe; |
|
|
|
|
temp_ir += FFALIGN(n_samples, 32); |
|
|
|
|
temp_ir += n_samples; |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -346,8 +349,8 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* multiply signal and IR, and add up the results */ |
|
|
|
|
dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples); |
|
|
|
|
temp_ir += FFALIGN(n_samples, 32); |
|
|
|
|
dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_samples, 32)); |
|
|
|
|
temp_ir += n_samples; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* clippings counter */ |
|
|
|
@ -563,6 +566,7 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
{ |
|
|
|
|
struct SOFAlizerContext *s = ctx->priv; |
|
|
|
|
int n_samples; |
|
|
|
|
int ir_samples; |
|
|
|
|
int n_conv = s->n_conv; /* no. channels to convolve */ |
|
|
|
|
int n_fft; |
|
|
|
|
float delay_l; /* broadband delay for each IR */ |
|
|
|
@ -588,9 +592,10 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
n_samples = s->sofa.n_samples; |
|
|
|
|
ir_samples = s->sofa.ir_samples; |
|
|
|
|
|
|
|
|
|
s->data_ir[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); |
|
|
|
|
s->data_ir[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); |
|
|
|
|
s->data_ir[0] = av_calloc(n_samples, sizeof(float) * s->n_conv); |
|
|
|
|
s->data_ir[1] = av_calloc(n_samples, sizeof(float) * s->n_conv); |
|
|
|
|
s->delay[0] = av_calloc(s->n_conv, sizeof(int)); |
|
|
|
|
s->delay[1] = av_calloc(s->n_conv, sizeof(int)); |
|
|
|
|
|
|
|
|
@ -600,16 +605,16 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* get temporary IR for L and R channel */ |
|
|
|
|
data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_l)); |
|
|
|
|
data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_r)); |
|
|
|
|
data_ir_l = av_calloc(n_conv * n_samples, sizeof(*data_ir_l)); |
|
|
|
|
data_ir_r = av_calloc(n_conv * n_samples, sizeof(*data_ir_r)); |
|
|
|
|
if (!data_ir_r || !data_ir_l) { |
|
|
|
|
ret = AVERROR(ENOMEM); |
|
|
|
|
goto fail; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
s->temp_src[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); |
|
|
|
|
s->temp_src[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); |
|
|
|
|
s->temp_src[0] = av_calloc(n_samples, sizeof(float)); |
|
|
|
|
s->temp_src[1] = av_calloc(n_samples, sizeof(float)); |
|
|
|
|
if (!s->temp_src[0] || !s->temp_src[1]) { |
|
|
|
|
ret = AVERROR(ENOMEM); |
|
|
|
|
goto fail; |
|
|
|
@ -644,8 +649,8 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
|
|
|
|
|
/* get id of IR closest to desired position */ |
|
|
|
|
mysofa_getfilter_float(s->sofa.easy, coordinates[0], coordinates[1], coordinates[2], |
|
|
|
|
data_ir_l + FFALIGN(n_samples, 32) * i, |
|
|
|
|
data_ir_r + FFALIGN(n_samples, 32) * i, |
|
|
|
|
data_ir_l + n_samples * i, |
|
|
|
|
data_ir_r + n_samples * i, |
|
|
|
|
&delay_l, &delay_r); |
|
|
|
|
|
|
|
|
|
s->delay[0][i] = delay_l * sample_rate; |
|
|
|
@ -656,7 +661,7 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
|
|
|
|
|
/* get size of ringbuffer (longest IR plus max. delay) */ |
|
|
|
|
/* then choose next power of 2 for performance optimization */ |
|
|
|
|
n_current = s->sofa.n_samples + s->sofa.max_delay; |
|
|
|
|
n_current = n_samples + s->sofa.max_delay; |
|
|
|
|
/* length of longest IR plus max. delay */ |
|
|
|
|
n_max = FFMAX(n_max, n_current); |
|
|
|
|
|
|
|
|
@ -721,24 +726,24 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int |
|
|
|
|
for (i = 0; i < s->n_conv; i++) { |
|
|
|
|
float *lir, *rir; |
|
|
|
|
|
|
|
|
|
offset = i * FFALIGN(n_samples, 32); /* no. samples already written */ |
|
|
|
|
offset = i * n_samples; /* no. samples already written */ |
|
|
|
|
|
|
|
|
|
lir = data_ir_l + offset; |
|
|
|
|
rir = data_ir_r + offset; |
|
|
|
|
|
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
for (j = 0; j < n_samples; j++) { |
|
|
|
|
for (j = 0; j < ir_samples; j++) { |
|
|
|
|
/* load reversed IRs of the specified source position
|
|
|
|
|
* sample-by-sample for left and right ear; and apply gain */ |
|
|
|
|
s->data_ir[0][offset + j] = lir[n_samples - 1 - j] * gain_lin; |
|
|
|
|
s->data_ir[1][offset + j] = rir[n_samples - 1 - j] * gain_lin; |
|
|
|
|
s->data_ir[0][offset + j] = lir[ir_samples - 1 - j] * gain_lin; |
|
|
|
|
s->data_ir[1][offset + j] = rir[ir_samples - 1 - j] * gain_lin; |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); |
|
|
|
|
memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); |
|
|
|
|
|
|
|
|
|
offset = i * n_fft; /* no. samples already written */ |
|
|
|
|
for (j = 0; j < n_samples; j++) { |
|
|
|
|
for (j = 0; j < ir_samples; j++) { |
|
|
|
|
/* load non-reversed IRs of the specified source position
|
|
|
|
|
* sample-by-sample and apply gain, |
|
|
|
|
* L channel is loaded to real part, R channel to imag part, |
|
|
|
|