|
|
|
@ -45,6 +45,8 @@ typedef struct ASoftClipContext { |
|
|
|
|
int type; |
|
|
|
|
int oversample; |
|
|
|
|
int64_t delay; |
|
|
|
|
double threshold; |
|
|
|
|
double output; |
|
|
|
|
double param; |
|
|
|
|
|
|
|
|
|
SwrContext *up_ctx; |
|
|
|
@ -71,6 +73,8 @@ static const AVOption asoftclip_options[] = { |
|
|
|
|
{ "quintic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_QUINTIC},0, 0, A, "types" }, |
|
|
|
|
{ "sin", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_SIN}, 0, 0, A, "types" }, |
|
|
|
|
{ "erf", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ERF}, 0, 0, A, "types" }, |
|
|
|
|
{ "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A }, |
|
|
|
|
{ "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A }, |
|
|
|
|
{ "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01, 3, A }, |
|
|
|
|
{ "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, 32, F }, |
|
|
|
|
{ NULL } |
|
|
|
@ -108,13 +112,14 @@ static int query_formats(AVFilterContext *ctx) |
|
|
|
|
return ff_set_common_samplerates(ctx, formats); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#define SQR(x) ((x) * (x)) |
|
|
|
|
|
|
|
|
|
static void filter_flt(ASoftClipContext *s, |
|
|
|
|
void **dptr, const void **sptr, |
|
|
|
|
int nb_samples, int channels, |
|
|
|
|
int start, int end) |
|
|
|
|
{ |
|
|
|
|
float threshold = s->threshold; |
|
|
|
|
float gain = s->output * threshold; |
|
|
|
|
float factor = 1.f / threshold; |
|
|
|
|
float param = s->param; |
|
|
|
|
|
|
|
|
|
for (int c = start; c < end; c++) { |
|
|
|
@ -124,53 +129,73 @@ static void filter_flt(ASoftClipContext *s, |
|
|
|
|
switch (s->type) { |
|
|
|
|
case ASC_HARD: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = av_clipf(src[n], -1.f, 1.f); |
|
|
|
|
dst[n] = av_clipf(src[n] * factor, -1.f, 1.f); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_TANH: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = tanhf(src[n] * param); |
|
|
|
|
dst[n] = tanhf(src[n] * factor * param); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_ATAN: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
|
|
|
dst[n] = 2.f / M_PI * atanf(src[n] * param); |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = 2.f / M_PI * atanf(src[n] * factor * param); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_CUBIC: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
if (FFABS(src[n]) >= 1.5f) |
|
|
|
|
dst[n] = FFSIGN(src[n]); |
|
|
|
|
float sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
if (FFABS(sample) >= 1.5f) |
|
|
|
|
dst[n] = FFSIGN(sample); |
|
|
|
|
else |
|
|
|
|
dst[n] = src[n] - 0.1481f * powf(src[n], 3.f); |
|
|
|
|
dst[n] = sample - 0.1481f * powf(sample, 3.f); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_EXP: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
|
|
|
dst[n] = 2.f / (1.f + expf(-2.f * src[n])) - 1.; |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = 2.f / (1.f + expf(-2.f * src[n] * factor)) - 1.; |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_ALG: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
|
|
|
dst[n] = src[n] / (sqrtf(param + src[n] * src[n])); |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
float sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
dst[n] = sample / (sqrtf(param + sample * sample)); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_QUINTIC: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
if (FFABS(src[n]) >= 1.25) |
|
|
|
|
dst[n] = FFSIGN(src[n]); |
|
|
|
|
float sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
if (FFABS(sample) >= 1.25) |
|
|
|
|
dst[n] = FFSIGN(sample); |
|
|
|
|
else |
|
|
|
|
dst[n] = src[n] - 0.08192f * powf(src[n], 5.f); |
|
|
|
|
dst[n] = sample - 0.08192f * powf(sample, 5.f); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_SIN: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
if (FFABS(src[n]) >= M_PI_2) |
|
|
|
|
dst[n] = FFSIGN(src[n]); |
|
|
|
|
float sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
if (FFABS(sample) >= M_PI_2) |
|
|
|
|
dst[n] = FFSIGN(sample); |
|
|
|
|
else |
|
|
|
|
dst[n] = sinf(src[n]); |
|
|
|
|
dst[n] = sinf(sample); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_ERF: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = erff(src[n]); |
|
|
|
|
dst[n] = erff(src[n] * factor); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
@ -184,6 +209,9 @@ static void filter_dbl(ASoftClipContext *s, |
|
|
|
|
int nb_samples, int channels, |
|
|
|
|
int start, int end) |
|
|
|
|
{ |
|
|
|
|
double threshold = s->threshold; |
|
|
|
|
double gain = s->output * threshold; |
|
|
|
|
double factor = 1. / threshold; |
|
|
|
|
double param = s->param; |
|
|
|
|
|
|
|
|
|
for (int c = start; c < end; c++) { |
|
|
|
@ -193,53 +221,73 @@ static void filter_dbl(ASoftClipContext *s, |
|
|
|
|
switch (s->type) { |
|
|
|
|
case ASC_HARD: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = av_clipd(src[n], -1., 1.); |
|
|
|
|
dst[n] = av_clipd(src[n] * factor, -1., 1.); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_TANH: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = tanh(src[n] * param); |
|
|
|
|
dst[n] = tanh(src[n] * factor * param); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_ATAN: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
|
|
|
dst[n] = 2. / M_PI * atan(src[n] * param); |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = 2. / M_PI * atan(src[n] * factor * param); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_CUBIC: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
if (FFABS(src[n]) >= 1.5) |
|
|
|
|
dst[n] = FFSIGN(src[n]); |
|
|
|
|
double sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
if (FFABS(sample) >= 1.5) |
|
|
|
|
dst[n] = FFSIGN(sample); |
|
|
|
|
else |
|
|
|
|
dst[n] = src[n] - 0.1481 * pow(src[n], 3.); |
|
|
|
|
dst[n] = sample - 0.1481 * pow(sample, 3.); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_EXP: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
|
|
|
dst[n] = 2. / (1. + exp(-2. * src[n])) - 1.; |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = 2. / (1. + exp(-2. * src[n] * factor)) - 1.; |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_ALG: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) |
|
|
|
|
dst[n] = src[n] / (sqrt(param + src[n] * src[n])); |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
double sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
dst[n] = sample / (sqrt(param + sample * sample)); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_QUINTIC: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
if (FFABS(src[n]) >= 1.25) |
|
|
|
|
dst[n] = FFSIGN(src[n]); |
|
|
|
|
double sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
if (FFABS(sample) >= 1.25) |
|
|
|
|
dst[n] = FFSIGN(sample); |
|
|
|
|
else |
|
|
|
|
dst[n] = src[n] - 0.08192 * pow(src[n], 5.); |
|
|
|
|
dst[n] = sample - 0.08192 * pow(sample, 5.); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_SIN: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
if (FFABS(src[n]) >= M_PI_2) |
|
|
|
|
dst[n] = FFSIGN(src[n]); |
|
|
|
|
double sample = src[n] * factor; |
|
|
|
|
|
|
|
|
|
if (FFABS(sample) >= M_PI_2) |
|
|
|
|
dst[n] = FFSIGN(sample); |
|
|
|
|
else |
|
|
|
|
dst[n] = sin(src[n]); |
|
|
|
|
dst[n] = sin(sample); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case ASC_ERF: |
|
|
|
|
for (int n = 0; n < nb_samples; n++) { |
|
|
|
|
dst[n] = erf(src[n]); |
|
|
|
|
dst[n] = erf(src[n] * factor); |
|
|
|
|
dst[n] *= gain; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|