mirror of https://github.com/FFmpeg/FFmpeg.git
(will be cleaned up in next commits) Originally committed as revision 14802 to svn://svn.ffmpeg.org/ffmpeg/trunkpull/126/head
parent
83e92ab6b8
commit
7a0d00d49e
2 changed files with 262 additions and 0 deletions
@ -0,0 +1,231 @@ |
||||
/*
|
||||
* Principal component analysis |
||||
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
||||
* |
||||
* This library is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2 of the License, or (at your option) any later version. |
||||
* |
||||
* This library is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with this library; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||||
* |
||||
*/ |
||||
|
||||
/**
|
||||
* @file pca.c |
||||
* Principal component analysis |
||||
*/ |
||||
|
||||
#include <math.h> |
||||
#include "avcodec.h" |
||||
#include "pca.h" |
||||
|
||||
int ff_pca_init(PCA *pca, int n){ |
||||
if(n<=0) |
||||
return -1; |
||||
|
||||
pca->n= n; |
||||
pca->count=0; |
||||
pca->covariance= av_mallocz(sizeof(double)*n*n); |
||||
pca->mean= av_mallocz(sizeof(double)*n); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
void ff_pca_free(PCA *pca){ |
||||
av_freep(&pca->covariance); |
||||
av_freep(&pca->mean); |
||||
} |
||||
|
||||
void ff_pca_add(PCA *pca, double *v){ |
||||
int i, j; |
||||
const int n= pca->n; |
||||
|
||||
for(i=0; i<n; i++){ |
||||
pca->mean[i] += v[i]; |
||||
for(j=i; j<n; j++) |
||||
pca->covariance[j + i*n] += v[i]*v[j]; |
||||
} |
||||
pca->count++; |
||||
} |
||||
|
||||
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ |
||||
int i, j, k, pass; |
||||
const int n= pca->n; |
||||
double z[n]; |
||||
|
||||
memset(eigenvector, 0, sizeof(double)*n*n); |
||||
|
||||
for(j=0; j<n; j++){ |
||||
pca->mean[j] /= pca->count; |
||||
eigenvector[j + j*n] = 1.0; |
||||
for(i=0; i<=j; i++){ |
||||
pca->covariance[j + i*n] /= pca->count; |
||||
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; |
||||
pca->covariance[i + j*n] = pca->covariance[j + i*n]; |
||||
} |
||||
eigenvalue[j]= pca->covariance[j + j*n]; |
||||
z[j]= 0; |
||||
} |
||||
|
||||
for(pass=0; pass < 50; pass++){ |
||||
double sum=0; |
||||
|
||||
for(i=0; i<n; i++) |
||||
for(j=i+1; j<n; j++) |
||||
sum += fabs(pca->covariance[j + i*n]); |
||||
|
||||
if(sum == 0){ |
||||
for(i=0; i<n; i++){ |
||||
double maxvalue= -1; |
||||
for(j=i; j<n; j++){ |
||||
if(eigenvalue[j] > maxvalue){ |
||||
maxvalue= eigenvalue[j]; |
||||
k= j; |
||||
} |
||||
} |
||||
eigenvalue[k]= eigenvalue[i]; |
||||
eigenvalue[i]= maxvalue; |
||||
for(j=0; j<n; j++){ |
||||
double tmp= eigenvector[k + j*n]; |
||||
eigenvector[k + j*n]= eigenvector[i + j*n]; |
||||
eigenvector[i + j*n]= tmp; |
||||
} |
||||
} |
||||
return pass; |
||||
} |
||||
|
||||
for(i=0; i<n; i++){ |
||||
for(j=i+1; j<n; j++){ |
||||
double covar= pca->covariance[j + i*n]; |
||||
double t,c,s,tau,theta, h; |
||||
|
||||
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
|
||||
continue; |
||||
if(fabs(covar) == 0.0) //FIXME shouldnt be needed
|
||||
continue; |
||||
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ |
||||
pca->covariance[j + i*n]=0.0; |
||||
continue; |
||||
} |
||||
|
||||
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); |
||||
theta=0.5*h/covar; |
||||
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); |
||||
if(theta < 0.0) t = -t; |
||||
|
||||
c=1.0/sqrt(1+t*t); |
||||
s=t*c; |
||||
tau=s/(1.0+c); |
||||
z[i] -= t*covar; |
||||
z[j] += t*covar; |
||||
|
||||
#define ROTATE(a,i,j,k,l)\ |
||||
double g=a[j + i*n];\
|
||||
double h=a[l + k*n];\
|
||||
a[j + i*n]=g-s*(h+g*tau);\
|
||||
a[l + k*n]=h+s*(g-h*tau); |
||||
for(k=0; k<n; k++) { |
||||
if(k!=i && k!=j){ |
||||
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) |
||||
} |
||||
ROTATE(eigenvector,k,i,k,j) |
||||
} |
||||
pca->covariance[j + i*n]=0.0; |
||||
} |
||||
} |
||||
for (i=0; i<n; i++) { |
||||
eigenvalue[i] += z[i]; |
||||
z[i]=0.0; |
||||
} |
||||
} |
||||
|
||||
return -1; |
||||
} |
||||
|
||||
#if 1 |
||||
|
||||
#undef printf |
||||
#include <stdio.h> |
||||
#include <stdlib.h> |
||||
|
||||
int main(){ |
||||
PCA pca; |
||||
int i, j, k; |
||||
#define LEN 8 |
||||
double eigenvector[LEN*LEN]; |
||||
double eigenvalue[LEN]; |
||||
|
||||
ff_pca_init(&pca, LEN); |
||||
|
||||
for(i=0; i<9000000; i++){ |
||||
double v[2*LEN+100]; |
||||
double sum=0; |
||||
int pos= random()%LEN; |
||||
int v2= (random()%101) - 50; |
||||
v[0]= (random()%101) - 50; |
||||
for(j=1; j<8; j++){ |
||||
if(j<=pos) v[j]= v[0]; |
||||
else v[j]= v2; |
||||
sum += v[j]; |
||||
} |
||||
/* for(j=0; j<LEN; j++){
|
||||
v[j] -= v[pos]; |
||||
}*/ |
||||
// sum += random()%10;
|
||||
/* for(j=0; j<LEN; j++){
|
||||
v[j] -= sum/LEN; |
||||
}*/ |
||||
// lbt1(v+100,v+100,LEN);
|
||||
ff_pca_add(&pca, v); |
||||
} |
||||
|
||||
|
||||
ff_pca(&pca, eigenvector, eigenvalue); |
||||
for(i=0; i<LEN; i++){ |
||||
pca.count= 1; |
||||
pca.mean[i]= 0; |
||||
|
||||
// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
|
||||
|
||||
|
||||
// pca.covariance[i + i*LEN]= pow(0.5, fabs
|
||||
for(j=i; j<LEN; j++){ |
||||
printf("%f ", pca.covariance[i + j*LEN]); |
||||
} |
||||
printf("\n"); |
||||
} |
||||
|
||||
#if 1 |
||||
for(i=0; i<LEN; i++){ |
||||
double v[LEN]; |
||||
double error=0; |
||||
memset(v, 0, sizeof(v)); |
||||
for(j=0; j<LEN; j++){ |
||||
for(k=0; k<LEN; k++){ |
||||
v[j] += pca.covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; |
||||
} |
||||
v[j] /= eigenvalue[i]; |
||||
error += fabs(v[j] - eigenvector[i + j*LEN]); |
||||
} |
||||
printf("%f ", error); |
||||
} |
||||
printf("\n"); |
||||
#endif |
||||
for(i=0; i<LEN; i++){ |
||||
for(j=0; j<LEN; j++){ |
||||
printf("%9.6f ", eigenvector[i + j*LEN]); |
||||
} |
||||
printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
#endif |
@ -0,0 +1,31 @@ |
||||
/*
|
||||
* Principal component analysis |
||||
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
||||
* |
||||
* This library is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2 of the License, or (at your option) any later version. |
||||
* |
||||
* This library is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with this library; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||||
* |
||||
*/ |
||||
|
||||
/**
|
||||
* @file pca.h |
||||
* Principal component analysis |
||||
*/ |
||||
|
||||
typedef struct PCA{ |
||||
int count; |
||||
int n; |
||||
double *covariance; |
||||
double *mean; |
||||
}PCA; |
Loading…
Reference in new issue