@ -87,140 +87,405 @@ The format option may be needed for raw input files.
@chapter Detailed description
@c man begin DETAILED DESCRIPTION
The transcoding process in @command{ffmpeg} for each output can be described by
the following diagram:
@command{ffmpeg} builds a transcoding pipeline out of the components listed
below. The program's operation then consists of input data chunks flowing from
the sources down the pipes towards the sinks, while being transformed by the
components they encounter along the way.
@verbatim
_______ ______________
| | | |
| input | demuxer | encoded data | decoder
| file | ---------> | packets | -----+
|_______| |______________| |
v
_________
| |
| decoded |
| frames |
|_________|
________ ______________ |
| | | | |
| output | <-------- | encoded data | <----+
| file | muxer | packets | encoder
|________| |______________|
The following kinds of components are available:
@itemize
@item
@emph{Demuxers} (short for "demultiplexers") read an input source in order to
extract
@itemize
@item
global properties such as metadata or chapters;
@item
list of input elementary streams and their properties
@end itemize
One demuxer instance is created for each @option{-i} option, and sends encoded
@emph{packets} to @emph{decoders} or @emph{muxers}.
In other literature, demuxers are sometimes called @emph{splitters}, because
their main function is splitting a file into elementary streams (though some
files only contain one elementary stream).
A schematic representation of a demuxer looks like this:
@verbatim
┌──────────┬───────────────────────┐
│ demuxer │ │ packets for stream 0
╞══════════╡ elementary stream 0 ├──────────────────────⮞
│ │ │
│ global ├───────────────────────┤
│properties│ │ packets for stream 1
│ and │ elementary stream 1 ├──────────────────────⮞
│ metadata │ │
│ ├───────────────────────┤
│ │ │
│ │ ........... │
│ │ │
│ ├───────────────────────┤
│ │ │ packets for stream N
│ │ elementary stream N ├──────────────────────⮞
│ │ │
└──────────┴───────────────────────┘
⯅
│
│ read from file, network stream,
│ grabbing device, etc.
│
@end verbatim
@command{ffmpeg} calls the libavformat library (containing demuxers) to read
input files and get packets containing encoded data from them. When there are
multiple input files, @command{ffmpeg} tries to keep them synchronized by
tracking lowest timestamp on any active input stream.
@item
@emph{Decoders} receive encoded (compressed) @emph{packets} for an audio, video,
or subtitle elementary stream, and decode them into raw @emph{frames} (arrays of
pixels for video, PCM for audio). A decoder is typically associated with (and
receives its input from) an elementary stream in a @emph{demuxer}, but sometimes
may also exist on its own (see @ref{Loopback decoders}).
Encoded packets are then passed to the decoder (unless streamcopy is selected
for the stream, see further for a description). The decoder produces
uncompressed frames (raw video/PCM audio/...) which can be processed further by
filtering (see next section). After filtering, the frames are passed to the
encoder, which encodes them and outputs encoded packets. Finally, those are
passed to the muxer, which writes the encoded packets to the output file.
A schematic representation of a decoder looks like this:
@verbatim
┌─────────┐
packets │ │ raw frames
─────────⮞│ decoder ├────────────⮞
│ │
└─────────┘
@end verbatim
@section Filtering
Before encoding, @command{ffmpeg} can process raw audio and video frames using
filters from the libavfilter library. Several chained filters form a filter
graph. @command{ffmpeg} distinguishes between two types of filtergraphs:
simple and complex.
@item
@emph{Filtergraphs} process and transform raw audio or video @emph{frames}. A
filtergraph consists of one or more individual @emph{filters} linked into a
graph. Filtergraphs come in two flavors - @emph{simple} and @emph{complex},
configured with the @option{-filter} and @option{-filter_complex} options,
respectively.
A simple filtergraph is associated with an @emph{output elementary stream}; it
receives the input to be filtered from a @emph{decoder} and sends filtered
output to that output stream's @emph{encoder}.
A simple video filtergraph that performs deinterlacing (using the @code{yadif}
deinterlacer) followed by resizing (using the @code{scale} filter) can look like
this:
@verbatim
@subsection Simple filtergraphs
Simple filtergraphs are those that have exactly one input and output, both of
the same type. In the above diagram they can be represented by simply inserting
an additional step between decoding and encoding:
┌────────────────────────┐
│ simple filtergraph │
frames from ╞════════════════════════╡ frames for
a decoder │ ┌───────┐ ┌───────┐ │ an encoder
────────────⮞├─⮞│ yadif ├─⮞│ scale ├─⮞│────────────⮞
│ └───────┘ └───────┘ │
└────────────────────────┘
@end verbatim
A complex filtergraph is standalone and not associated with any specific stream.
It may have multiple (or zero) inputs, potentially of different types (audio or
video), each of which receiving data either from a decoder or another complex
filtergraph's output. It also has one or more outputs that feed either an
encoder or another complex filtergraph's input.
The following example diagram represents a complex filtergraph with 3 inputs and
2 outputs (all video):
@verbatim
_________ ______________
| | | |
| decoded | | encoded data |
| frames |\ _ | packets |
|_________| \ /||______________|
\ __________ /
simple _\|| | / encoder
filtergraph | filtered |/
| frames |
|__________|
┌─────────────────────────────────────────────────┐
│ complex filtergraph │
╞═════════════════════════════════════════════════╡
frames ├───────┐ ┌─────────┐ ┌─────────┐ ┌────────┤ frames
─────────⮞│input 0├─⮞│ overlay ├─────⮞│ overlay ├─⮞│output 0├────────⮞
├───────┘ │ │ │ │ └────────┤
frames ├───────┐╭⮞│ │ ╭⮞│ │ │
─────────⮞│input 1├╯ └─────────┘ │ └─────────┘ │
├───────┘ │ │
frames ├───────┐ ┌─────┐ ┌─────┬─╯ ┌────────┤ frames
─────────⮞│input 2├⮞│scale├⮞│split├───────────────⮞│output 1├────────⮞
├───────┘ └─────┘ └─────┘ └────────┤
└─────────────────────────────────────────────────┘
@end verbatim
Frames from second input are overlaid over those from the first. Frames from the
third input are rescaled, then the duplicated into two identical streams. One of
them is overlaid over the combined first two inputs, with the result exposed as
the filtergraph's first output. The other duplicate ends up being the
filtergraph's second output.
@item
@emph{Encoders} receive raw audio, video, or subtitle @emph{frames} and encode
them into encoded @emph{packets}. The encoding (compression) process is
typically @emph{lossy} - it degrades stream quality to make the output smaller;
some encoders are @emph{lossless}, but at the cost of much higher output size. A
video or audio encoder receives its input from some filtergraph's output,
subtitle encoders receive input from a decoder (since subtitle filtering is not
supported yet). Every encoder is associated with some muxer's @emph{output
elementary stream} and sends its output to that muxer.
A schematic representation of an encoder looks like this:
@verbatim
┌─────────┐
raw frames │ │ packets
────────────⮞│ encoder ├─────────⮞
│ │
└─────────┘
@end verbatim
Simple filtergraphs are configured with the per-stream @option{-filter} option
(with @option{-vf} and @option{-af} aliases for video and audio respectively).
A simple filtergraph for video can look for example like this:
@item
@emph{Muxers} (short for "multiplexers") receive encoded @emph{packets} for
their elementary streams from encoders (the @emph{transcoding} path) or directly
from demuxers (the @emph{streamcopy} path), interleave them (when there is more
than one elementary stream), and write the resulting bytes into the output file
(or pipe, network stream, etc.).
A schematic representation of a muxer looks like this:
@verbatim
_______ _____________ _______ ________
| | | | | | | |
| input | ---> | deinterlace | ---> | scale | ---> | output |
|_______| |_____________| |_______| |________|
┌──────────────────────┬───────────┐
packets for stream 0 │ │ muxer │
──────────────────────⮞│ elementary stream 0 ╞═══════════╡
│ │ │
├──────────────────────┤ global │
packets for stream 1 │ │properties │
──────────────────────⮞│ elementary stream 1 │ and │
│ │ metadata │
├──────────────────────┤ │
│ │ │
│ ........... │ │
│ │ │
├──────────────────────┤ │
packets for stream N │ │ │
──────────────────────⮞│ elementary stream N │ │
│ │ │
└──────────────────────┴─────┬─────┘
│
write to file, network stream, │
grabbing device, etc. │
│
▼
@end verbatim
@end itemize
@section Streamcopy
The simplest pipeline in @command{ffmpeg} is single-stream
@emph{streamcopy}, that is copying one @emph{input elementary stream}'s packets
without decoding, filtering, or encoding them. As an example, consider an input
file called @file{INPUT.mkv} with 3 elementary streams, from which we take the
second and write it to file @file{OUTPUT.mp4}. A schematic representation of
such a pipeline looks like this:
@verbatim
┌──────────┬─────────────────────┐
│ demuxer │ │ unused
╞══════════╡ elementary stream 0 ├────────╳
│ │ │
│INPUT.mkv ├─────────────────────┤ ┌──────────────────────┬───────────┐
│ │ │ packets │ │ muxer │
│ │ elementary stream 1 ├─────────⮞│ elementary stream 0 ╞═══════════╡
│ │ │ │ │OUTPUT.mp4 │
│ ├─────────────────────┤ └──────────────────────┴───────────┘
│ │ │ unused
│ │ elementary stream 2 ├────────╳
│ │ │
└──────────┴─────────────────────┘
@end verbatim
Note that some filters change frame properties but not frame contents. E.g. the
@code{fps} filter in the example above changes number of frames, but does not
touch the frame contents. Another example is the @code{setpts} filter, which
only sets timestamps and otherwise passes the frames unchanged.
The above pipeline can be constructed with the following commandline:
@example
ffmpeg -i INPUT.mkv -map 0:1 -c copy OUTPUT.mp4
@end example
@subsection Complex filtergraphs
Complex filtergraphs are those which cannot be described as simply a linear
processing chain applied to one stream. This is the case, for example, when the graph has
more than one input and/or output, or when output stream type is different from
input. They can be represented with the following diagram:
In this commandline
@itemize
@item
there is a single input @file{INPUT.mkv};
@item
there are no input options for this input;
@item
there is a single output @file{OUTPUT.mp4};
@item
there are two output options for this output:
@itemize
@item
@code{-map 0:1} selects the input stream to be used - from input with index 0
(i.e. the first one) the stream with index 1 (i.e. the second one);
@item
@code{-c copy} selects the @code{copy} encoder, i.e. streamcopy with no decoding
or encoding.
@end itemize
@end itemize
Streamcopy is useful for changing the elementary stream count, container format,
or modifying container-level metadata. Since there is no decoding or encoding,
it is very fast and there is no quality loss. However, it might not work in some
cases because of a variety of factors (e.g. certain information required by the
target container is not available in the source). Applying filters is obviously
also impossible, since filters work on decoded frames.
More complex streamcopy scenarios can be constructed - e.g. combining streams
from two input files into a single output:
@verbatim
_________
| |
| input 0 |\ __________
|_________| \ | |
\ _________ /| output 0 |
\ | | / |__________|
_________ \| complex | /
| | | |/
| input 1 |---->| filter |\
|_________| | | \ __________
/| graph | \ | |
/ | | \| output 1 |
_________ / |_________| |__________|
| | /
| input 2 |/
|_________|
┌──────────┬────────────────────┐ ┌────────────────────┬───────────┐
│ demuxer 0│ │ packets │ │ muxer │
╞══════════╡elementary stream 0 ├────────⮞│elementary stream 0 ╞═══════════╡
│INPUT0.mkv│ │ │ │OUTPUT.mp4 │
└──────────┴────────────────────┘ ├────────────────────┤ │
┌──────────┬────────────────────┐ │ │ │
│ demuxer 1│ │ packets │elementary stream 1 │ │
╞══════════╡elementary stream 0 ├────────⮞│ │ │
│INPUT1.aac│ │ └────────────────────┴───────────┘
└──────────┴────────────────────┘
@end verbatim
that can be built by the commandline
@example
ffmpeg -i INPUT0.mkv -i INPUT1.aac -map 0:0 -map 1:0 -c copy OUTPUT.mp4
@end example
The output @option{-map} option is used twice here, creating two streams in the
output file - one fed by the first input and one by the second. The single
instance of the @option{-c} option selects streamcopy for both of those streams.
You could also use multiple instances of this option together with
@ref{Stream specifiers} to apply different values to each stream, as will be
demonstrated in following sections.
A converse scenario is splitting multiple streams from a single input into
multiple outputs:
@verbatim
┌──────────┬─────────────────────┐ ┌───────────────────┬───────────┐
│ demuxer │ │ packets │ │ muxer 0 │
╞══════════╡ elementary stream 0 ├─────────⮞│elementary stream 0╞═══════════╡
│ │ │ │ │OUTPUT0.mp4│
│INPUT.mkv ├─────────────────────┤ └───────────────────┴───────────┘
│ │ │ packets ┌───────────────────┬───────────┐
│ │ elementary stream 1 ├─────────⮞│ │ muxer 1 │
│ │ │ │elementary stream 0╞═══════════╡
└──────────┴─────────────────────┘ │ │OUTPUT1.mp4│
└───────────────────┴───────────┘
@end verbatim
built with
@example
ffmpeg -i INPUT.mkv -map 0:0 -c copy OUTPUT0.mp4 -map 0:1 -c copy OUTPUT1.mp4
@end example
Note how a separate instance of the @option{-c} option is needed for every
output file even though their values are the same. This is because non-global
options (which is most of them) only apply in the context of the file before
which they are placed.
Complex filtergraphs are configured with the @option{-filter_complex} option.
Note that this option is global, since a complex filtergraph, by its nature,
cannot be unambiguously associated with a single stream or file.
These examples can of course be further generalized into arbitrary remappings
of any number of inputs into any number of outputs.
The @option{-lavfi} option is equivalent to @option{-filter_complex}.
@section Trancoding
@emph{Transcoding} is the process of decoding a stream and then encoding it
again. Since encoding tends to be computationally expensive and in most cases
degrades the stream quality (i.e. it is @emph{lossy}), you should only transcode
when you need to and perform streamcopy otherwise. Typical reasons to transcode
are:
A trivial example of a complex filtergraph is the @code{overlay} filter, which
has two video inputs and one video output, containing one video overlaid on top
of the other. Its audio counterpart is the @code{amix} filter.
@itemize
@item
applying filters - e.g. resizing, deinterlacing, or overlaying video; resampling
or mixing audio;
@section Stream copy
Stream copy is a mode selected by supplying the @code{copy} parameter to the
@option{-codec} option. It makes @command{ffmpeg} omit the decoding and encoding
step for the specified stream, so it does only demuxing and muxing. It is useful
for changing the container format or modifying container-level metadata. The
diagram above will, in this case, simplify to this:
@item
you want to feed the stream to something that cannot decode the original codec.
@end itemize
Note that @command{ffmpeg} will transcode all audio, video, and subtitle streams
unless you specify @option{-c copy} for them.
Consider an example pipeline that reads an input file with one audio and one
video stream, transcodes the video and copies the audio into a single output
file. This can be schematically represented as follows
@verbatim
_______ ______________ ________
| | | | | |
| input | demuxer | encoded data | muxer | output |
| file | ---------> | packets | -------> | file |
|_______| |______________| |________|
┌──────────┬─────────────────────┐
│ demuxer │ │ audio packets
╞══════════╡ stream 0 (audio) ├─────────────────────────────────────╮
│ │ │ │
│INPUT.mkv ├─────────────────────┤ video ┌─────────┐ raw │
│ │ │ packets │ video │ video frames │
│ │ stream 1 (video) ├─────────⮞│ decoder ├──────────────╮ │
│ │ │ │ │ │ │
└──────────┴─────────────────────┘ └─────────┘ │ │
▼ ▼
│ │
┌──────────┬─────────────────────┐ video ┌─────────┐ │ │
│ muxer │ │ packets │ video │ │ │
╞══════════╡ stream 0 (video) │⮜─────────┤ encoder ├──────────────╯ │
│ │ │ │(libx264)│ │
│OUTPUT.mp4├─────────────────────┤ └─────────┘ │
│ │ │ │
│ │ stream 1 (audio) │⮜────────────────────────────────────╯
│ │ │
└──────────┴─────────────────────┘
@end verbatim
and implemented with the following commandline:
@example
ffmpeg -i INPUT.mkv -map 0:v -map 0:a -c:v libx264 -c:a copy OUTPUT.mp4
@end example
Note how it uses stream specifiers @code{:v} and @code{:a} to select input
streams and apply different values of the @option{-c} option to them; see the
@ref{Stream specifiers} section for more details.
@section Filtering
When transcoding, audio and video streams can be filtered before encoding, with
either a @emph{simple} or @emph{complex} filtergraph.
@subsection Simple filtergraphs
Simple filtergraphs are those that have exactly one input and output, both of
the same type (audio or video). They are configured with the per-stream
@option{-filter} option (with @option{-vf} and @option{-af} aliases for
@option{-filter:v} (video) and @option{-filter:a} (audio) respectively). Note
that simple filtergraphs are tied to their output stream, so e.g. if you have
multiple audio streams, @option{-af} will create a separate filtergraph for each
one.
Taking the trancoding example from above, adding filtering (and omitting audio,
for clarity) makes it look like this:
@verbatim
┌──────────┬───────────────┐
│ demuxer │ │ ┌─────────┐
╞══════════╡ video stream │ packets │ video │ frames
│INPUT.mkv │ ├─────────⮞│ decoder ├─────⮞───╮
│ │ │ └─────────┘ │
└──────────┴───────────────┘ │
╭───────────⮜───────────╯
│ ┌────────────────────────┐
│ │ simple filtergraph │
│ ╞════════════════════════╡
│ │ ┌───────┐ ┌───────┐ │
╰──⮞├─⮞│ yadif ├─⮞│ scale ├─⮞├╮
│ └───────┘ └───────┘ ││
└────────────────────────┘│
│
│
┌──────────┬───────────────┐ video ┌─────────┐ │
│ muxer │ │ packets │ video │ │
╞══════════╡ video stream │⮜─────────┤ encoder ├───────⮜───────╯
│OUTPUT.mp4│ │ │ │
│ │ │ └─────────┘
└──────────┴───────────────┘
@end verbatim
Since there is no decoding or encoding, it is very fast and there is no quality
loss. However, it might not work in some cases because of many factors. Applying
filters is obviously also impossible, since filters work on uncompressed data.
@subsection Complex filtergraphs
Complex filtergraphs are those which cannot be described as simply a linear
processing chain applied to one stream. This is the case, for example, when the
graph has more than one input and/or output, or when output stream type is
different from input. Complex filtergraphs are configured with the
@option{-filter_complex} option. Note that this option is global, since a
complex filtergraph, by its nature, cannot be unambiguously associated with a
single stream or file. Each instance of @option{-filter_complex} creates a new
complex filtergraph, and there can be any number of them.
A trivial example of a complex filtergraph is the @code{overlay} filter, which
has two video inputs and one video output, containing one video overlaid on top
of the other. Its audio counterpart is the @code{amix} filter.
@anchor{Loopback decoders}
@section Loopback decoders
While decoders are normally associated with demuxer streams, it is also possible
to create "loopback" decoders that decode the output from some encoder and allow