mirror of https://github.com/FFmpeg/FFmpeg.git
According to discussion in https://etherpad.mit.edu/p/FF_dev_meeting_20221202 and the proposal in http://ffmpeg.org/pipermail/ffmpeg-devel/2022-December/304534.html, the DNN native backend should be removed at first step. All the DNN native backend related codes are deleted. Signed-off-by: Ting Fu <ting.fu@intel.com>pull/389/head
parent
a9fb141719
commit
78f95f1088
37 changed files with 4 additions and 4440 deletions
@ -1,561 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN native backend implementation. |
||||
*/ |
||||
|
||||
#include "dnn_backend_native.h" |
||||
#include "libavutil/avassert.h" |
||||
#include "dnn_backend_native_layer_conv2d.h" |
||||
#include "dnn_backend_native_layers.h" |
||||
#include "dnn_io_proc.h" |
||||
#include "dnn_backend_common.h" |
||||
|
||||
#define OFFSET(x) offsetof(NativeContext, x) |
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM |
||||
static const AVOption dnn_native_options[] = { |
||||
{ "conv2d_threads", "threads num for conv2d layer", OFFSET(options.conv2d_threads), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS }, |
||||
{ "async", "use DNN async inference", OFFSET(options.async), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, |
||||
{ NULL }, |
||||
}; |
||||
|
||||
static const AVClass dnn_native_class = { |
||||
.class_name = "dnn_native", |
||||
.item_name = av_default_item_name, |
||||
.option = dnn_native_options, |
||||
.version = LIBAVUTIL_VERSION_INT, |
||||
.category = AV_CLASS_CATEGORY_FILTER, |
||||
}; |
||||
|
||||
static int execute_model_native(Queue *lltask_queue); |
||||
|
||||
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue) |
||||
{ |
||||
NativeModel *native_model = task->model; |
||||
NativeContext *ctx = &native_model->ctx; |
||||
LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask)); |
||||
|
||||
if (!lltask) { |
||||
av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
task->inference_todo = 1; |
||||
task->inference_done = 0; |
||||
lltask->task = task; |
||||
|
||||
if (ff_queue_push_back(lltask_queue, lltask) < 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n"); |
||||
av_freep(&lltask); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
static int get_input_native(void *model, DNNData *input, const char *input_name) |
||||
{ |
||||
NativeModel *native_model = model; |
||||
NativeContext *ctx = &native_model->ctx; |
||||
|
||||
for (int i = 0; i < native_model->operands_num; ++i) { |
||||
DnnOperand *oprd = &native_model->operands[i]; |
||||
if (strcmp(oprd->name, input_name) == 0) { |
||||
if (oprd->type != DOT_INPUT) { |
||||
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
input->dt = oprd->data_type; |
||||
av_assert0(oprd->dims[0] == 1); |
||||
input->height = oprd->dims[1]; |
||||
input->width = oprd->dims[2]; |
||||
input->channels = oprd->dims[3]; |
||||
return 0; |
||||
} |
||||
} |
||||
|
||||
// do not find the input operand
|
||||
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
|
||||
static int get_output_native(void *model, const char *input_name, int input_width, int input_height, |
||||
const char *output_name, int *output_width, int *output_height) |
||||
{ |
||||
int ret = 0; |
||||
NativeModel *native_model = model; |
||||
NativeContext *ctx = &native_model->ctx; |
||||
TaskItem task; |
||||
DNNExecBaseParams exec_params = { |
||||
.input_name = input_name, |
||||
.output_names = &output_name, |
||||
.nb_output = 1, |
||||
.in_frame = NULL, |
||||
.out_frame = NULL, |
||||
}; |
||||
|
||||
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx); |
||||
if (ret != 0) { |
||||
goto err; |
||||
} |
||||
|
||||
ret = extract_lltask_from_task(&task, native_model->lltask_queue); |
||||
if (ret != 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); |
||||
goto err; |
||||
} |
||||
|
||||
ret = execute_model_native(native_model->lltask_queue); |
||||
*output_width = task.out_frame->width; |
||||
*output_height = task.out_frame->height; |
||||
|
||||
err: |
||||
av_frame_free(&task.out_frame); |
||||
av_frame_free(&task.in_frame); |
||||
return ret; |
||||
} |
||||
|
||||
// Loads model and its parameters that are stored in a binary file with following structure:
|
||||
// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
|
||||
// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
|
||||
// For DEPTH_TO_SPACE layer: block_size
|
||||
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) |
||||
{ |
||||
#define DNN_NATIVE_MAGIC "FFMPEGDNNNATIVE" |
||||
DNNModel *model = NULL; |
||||
// sizeof - 1 to skip the terminating '\0' which is not written in the file
|
||||
char buf[sizeof(DNN_NATIVE_MAGIC) - 1]; |
||||
int version, header_size, major_version_expected = 1; |
||||
NativeModel *native_model = NULL; |
||||
AVIOContext *model_file_context; |
||||
int file_size, dnn_size, parsed_size; |
||||
int32_t layer; |
||||
DNNLayerType layer_type; |
||||
|
||||
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ |
||||
return NULL; |
||||
} |
||||
file_size = avio_size(model_file_context); |
||||
|
||||
model = av_mallocz(sizeof(DNNModel)); |
||||
if (!model){ |
||||
goto fail; |
||||
} |
||||
|
||||
/**
|
||||
* check file header with string and version |
||||
*/ |
||||
if (avio_read(model_file_context, buf, sizeof(buf)) != sizeof(buf) || |
||||
memcmp(buf, DNN_NATIVE_MAGIC, sizeof(buf))) |
||||
goto fail; |
||||
dnn_size = sizeof(buf); |
||||
|
||||
version = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
if (version != major_version_expected) { |
||||
goto fail; |
||||
} |
||||
|
||||
// currently no need to check minor version
|
||||
version = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
header_size = dnn_size; |
||||
|
||||
native_model = av_mallocz(sizeof(NativeModel)); |
||||
if (!native_model){ |
||||
goto fail; |
||||
} |
||||
model->model = native_model; |
||||
|
||||
native_model->ctx.class = &dnn_native_class; |
||||
model->options = options; |
||||
if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0) |
||||
goto fail; |
||||
native_model->model = model; |
||||
|
||||
if (native_model->ctx.options.async) { |
||||
av_log(&native_model->ctx, AV_LOG_WARNING, "Async not supported. Rolling back to sync\n"); |
||||
native_model->ctx.options.async = 0; |
||||
} |
||||
|
||||
#if !HAVE_PTHREAD_CANCEL |
||||
if (native_model->ctx.options.conv2d_threads > 1){ |
||||
av_log(&native_model->ctx, AV_LOG_WARNING, "'conv2d_threads' option was set but it is not supported " |
||||
"on this build (pthread support is required)\n"); |
||||
} |
||||
#endif |
||||
|
||||
avio_seek(model_file_context, file_size - 8, SEEK_SET); |
||||
native_model->layers_num = (int32_t)avio_rl32(model_file_context); |
||||
native_model->operands_num = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
avio_seek(model_file_context, header_size, SEEK_SET); |
||||
|
||||
native_model->layers = av_mallocz(native_model->layers_num * sizeof(Layer)); |
||||
if (!native_model->layers){ |
||||
goto fail; |
||||
} |
||||
|
||||
native_model->operands = av_mallocz(native_model->operands_num * sizeof(DnnOperand)); |
||||
if (!native_model->operands){ |
||||
goto fail; |
||||
} |
||||
|
||||
native_model->task_queue = ff_queue_create(); |
||||
if (!native_model->task_queue) { |
||||
goto fail; |
||||
} |
||||
|
||||
native_model->lltask_queue = ff_queue_create(); |
||||
if (!native_model->lltask_queue) { |
||||
goto fail; |
||||
} |
||||
|
||||
for (layer = 0; layer < native_model->layers_num; ++layer){ |
||||
layer_type = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
if (layer_type >= DLT_COUNT) { |
||||
goto fail; |
||||
} |
||||
|
||||
native_model->layers[layer].type = layer_type; |
||||
parsed_size = ff_layer_funcs[layer_type].pf_load(&native_model->layers[layer], model_file_context, file_size, native_model->operands_num); |
||||
if (!parsed_size) { |
||||
goto fail; |
||||
} |
||||
dnn_size += parsed_size; |
||||
} |
||||
|
||||
for (int32_t i = 0; i < native_model->operands_num; ++i){ |
||||
DnnOperand *oprd; |
||||
int32_t name_len; |
||||
int32_t operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
if (operand_index >= native_model->operands_num) { |
||||
goto fail; |
||||
} |
||||
|
||||
oprd = &native_model->operands[operand_index]; |
||||
name_len = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name)); |
||||
dnn_size += name_len; |
||||
|
||||
oprd->type = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
oprd->data_type = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
for (int32_t dim = 0; dim < 4; ++dim) { |
||||
oprd->dims[dim] = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
} |
||||
if (oprd->type == DOT_INPUT && oprd->dims[0] != 1) |
||||
goto fail; |
||||
|
||||
oprd->isNHWC = 1; |
||||
} |
||||
|
||||
avio_closep(&model_file_context); |
||||
|
||||
if (dnn_size != file_size){ |
||||
ff_dnn_free_model_native(&model); |
||||
return NULL; |
||||
} |
||||
|
||||
model->get_input = &get_input_native; |
||||
model->get_output = &get_output_native; |
||||
model->filter_ctx = filter_ctx; |
||||
model->func_type = func_type; |
||||
|
||||
return model; |
||||
|
||||
fail: |
||||
ff_dnn_free_model_native(&model); |
||||
avio_closep(&model_file_context); |
||||
return NULL; |
||||
} |
||||
|
||||
static int execute_model_native(Queue *lltask_queue) |
||||
{ |
||||
NativeModel *native_model = NULL; |
||||
NativeContext *ctx = NULL; |
||||
int32_t layer; |
||||
DNNData input, output; |
||||
DnnOperand *oprd = NULL; |
||||
LastLevelTaskItem *lltask = NULL; |
||||
TaskItem *task = NULL; |
||||
int ret = 0; |
||||
|
||||
lltask = ff_queue_pop_front(lltask_queue); |
||||
if (!lltask) { |
||||
av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n"); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
task = lltask->task; |
||||
native_model = task->model; |
||||
ctx = &native_model->ctx; |
||||
|
||||
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n"); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
|
||||
for (int i = 0; i < native_model->operands_num; ++i) { |
||||
oprd = &native_model->operands[i]; |
||||
if (strcmp(oprd->name, task->input_name) == 0) { |
||||
if (oprd->type != DOT_INPUT) { |
||||
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
break; |
||||
} |
||||
oprd = NULL; |
||||
} |
||||
if (!oprd) { |
||||
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
|
||||
oprd->dims[1] = task->in_frame->height; |
||||
oprd->dims[2] = task->in_frame->width; |
||||
|
||||
av_freep(&oprd->data); |
||||
oprd->length = ff_calculate_operand_data_length(oprd); |
||||
if (oprd->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n"); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
oprd->data = av_malloc(oprd->length); |
||||
if (!oprd->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n"); |
||||
ret = AVERROR(ENOMEM); |
||||
goto err; |
||||
} |
||||
|
||||
input.height = oprd->dims[1]; |
||||
input.width = oprd->dims[2]; |
||||
input.channels = oprd->dims[3]; |
||||
input.data = oprd->data; |
||||
input.dt = oprd->data_type; |
||||
if (task->do_ioproc) { |
||||
if (native_model->model->frame_pre_proc != NULL) { |
||||
native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx); |
||||
} else { |
||||
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); |
||||
} |
||||
} |
||||
|
||||
if (task->nb_output != 1) { |
||||
// currently, the filter does not need multiple outputs,
|
||||
// so we just pending the support until we really need it.
|
||||
avpriv_report_missing_feature(ctx, "multiple outputs"); |
||||
ret = AVERROR(ENOSYS); |
||||
goto err; |
||||
} |
||||
|
||||
for (layer = 0; layer < native_model->layers_num; ++layer){ |
||||
DNNLayerType layer_type = native_model->layers[layer].type; |
||||
ret = ff_layer_funcs[layer_type].pf_exec(native_model->operands, |
||||
native_model->layers[layer].input_operand_indexes, |
||||
native_model->layers[layer].output_operand_index, |
||||
native_model->layers[layer].params, |
||||
&native_model->ctx); |
||||
if (ret != 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n"); |
||||
goto err; |
||||
} |
||||
} |
||||
|
||||
for (uint32_t i = 0; i < task->nb_output; ++i) { |
||||
DnnOperand *oprd = NULL; |
||||
const char *output_name = task->output_names[i]; |
||||
for (int j = 0; j < native_model->operands_num; ++j) { |
||||
if (strcmp(native_model->operands[j].name, output_name) == 0) { |
||||
oprd = &native_model->operands[j]; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if (oprd == NULL) { |
||||
av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n"); |
||||
ret = AVERROR(EINVAL); |
||||
goto err; |
||||
} |
||||
|
||||
output.data = oprd->data; |
||||
output.height = oprd->dims[1]; |
||||
output.width = oprd->dims[2]; |
||||
output.channels = oprd->dims[3]; |
||||
output.dt = oprd->data_type; |
||||
|
||||
if (task->do_ioproc) { |
||||
if (native_model->model->frame_post_proc != NULL) { |
||||
native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx); |
||||
} else { |
||||
ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx); |
||||
} |
||||
} else { |
||||
task->out_frame->width = output.width; |
||||
task->out_frame->height = output.height; |
||||
} |
||||
} |
||||
task->inference_done++; |
||||
err: |
||||
av_freep(&lltask); |
||||
return ret; |
||||
} |
||||
|
||||
int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params) |
||||
{ |
||||
NativeModel *native_model = model->model; |
||||
NativeContext *ctx = &native_model->ctx; |
||||
TaskItem *task; |
||||
int ret = 0; |
||||
|
||||
ret = ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params); |
||||
if (ret != 0) { |
||||
return ret; |
||||
} |
||||
|
||||
task = av_malloc(sizeof(*task)); |
||||
if (!task) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
ret = ff_dnn_fill_task(task, exec_params, native_model, ctx->options.async, 1); |
||||
if (ret != 0) { |
||||
av_freep(&task); |
||||
return ret; |
||||
} |
||||
|
||||
if (ff_queue_push_back(native_model->task_queue, task) < 0) { |
||||
av_freep(&task); |
||||
av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
ret = extract_lltask_from_task(task, native_model->lltask_queue); |
||||
if (ret != 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); |
||||
return ret; |
||||
} |
||||
|
||||
return execute_model_native(native_model->lltask_queue); |
||||
} |
||||
|
||||
int ff_dnn_flush_native(const DNNModel *model) |
||||
{ |
||||
NativeModel *native_model = model->model; |
||||
|
||||
if (ff_queue_size(native_model->lltask_queue) == 0) { |
||||
// no pending task need to flush
|
||||
return 0; |
||||
} |
||||
|
||||
// for now, use sync node with flush operation
|
||||
// Switch to async when it is supported
|
||||
return execute_model_native(native_model->lltask_queue); |
||||
} |
||||
|
||||
DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out) |
||||
{ |
||||
NativeModel *native_model = model->model; |
||||
return ff_dnn_get_result_common(native_model->task_queue, in, out); |
||||
} |
||||
|
||||
int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd) |
||||
{ |
||||
int32_t result = 1; |
||||
for (int i = 0; i < 4; ++i) |
||||
result *= oprd->dims[i]; |
||||
|
||||
return result; |
||||
} |
||||
|
||||
int32_t ff_calculate_operand_data_length(const DnnOperand* oprd) |
||||
{ |
||||
// currently, we just support DNN_FLOAT
|
||||
uint64_t len = sizeof(float); |
||||
for (int i = 0; i < 4; i++) { |
||||
len *= oprd->dims[i]; |
||||
if (len > INT32_MAX) |
||||
return 0; |
||||
} |
||||
return len; |
||||
} |
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model) |
||||
{ |
||||
NativeModel *native_model; |
||||
ConvolutionalParams *conv_params; |
||||
int32_t layer; |
||||
|
||||
if (*model) |
||||
{ |
||||
if ((*model)->model) { |
||||
native_model = (*model)->model; |
||||
if (native_model->layers) { |
||||
for (layer = 0; layer < native_model->layers_num; ++layer){ |
||||
if (native_model->layers[layer].type == DLT_CONV2D){ |
||||
conv_params = (ConvolutionalParams *)native_model->layers[layer].params; |
||||
av_freep(&conv_params->kernel); |
||||
av_freep(&conv_params->biases); |
||||
} |
||||
av_freep(&native_model->layers[layer].params); |
||||
} |
||||
av_freep(&native_model->layers); |
||||
} |
||||
|
||||
if (native_model->operands) { |
||||
for (uint32_t operand = 0; operand < native_model->operands_num; ++operand) |
||||
av_freep(&native_model->operands[operand].data); |
||||
av_freep(&native_model->operands); |
||||
} |
||||
|
||||
while (ff_queue_size(native_model->lltask_queue) != 0) { |
||||
LastLevelTaskItem *item = ff_queue_pop_front(native_model->lltask_queue); |
||||
av_freep(&item); |
||||
} |
||||
ff_queue_destroy(native_model->lltask_queue); |
||||
|
||||
while (ff_queue_size(native_model->task_queue) != 0) { |
||||
TaskItem *item = ff_queue_pop_front(native_model->task_queue); |
||||
av_frame_free(&item->in_frame); |
||||
av_frame_free(&item->out_frame); |
||||
av_freep(&item); |
||||
} |
||||
ff_queue_destroy(native_model->task_queue); |
||||
|
||||
av_freep(&native_model); |
||||
} |
||||
av_freep(model); |
||||
} |
||||
} |
@ -1,149 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for native backend. |
||||
*/ |
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_H |
||||
|
||||
#include "../dnn_interface.h" |
||||
#include "libavformat/avio.h" |
||||
#include "libavutil/opt.h" |
||||
#include "queue.h" |
||||
|
||||
/**
|
||||
* the enum value of DNNLayerType should not be changed, |
||||
* the same values are used in convert_from_tensorflow.py |
||||
* and, it is used to index the layer execution/load function pointer. |
||||
*/ |
||||
typedef enum { |
||||
DLT_INPUT = 0, |
||||
DLT_CONV2D = 1, |
||||
DLT_DEPTH_TO_SPACE = 2, |
||||
DLT_MIRROR_PAD = 3, |
||||
DLT_MAXIMUM = 4, |
||||
DLT_MATH_BINARY = 5, |
||||
DLT_MATH_UNARY = 6, |
||||
DLT_AVG_POOL = 7, |
||||
DLT_DENSE = 8, |
||||
DLT_COUNT |
||||
} DNNLayerType; |
||||
|
||||
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; |
||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam; |
||||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; |
||||
|
||||
typedef struct Layer{ |
||||
DNNLayerType type; |
||||
/**
|
||||
* a layer can have multiple inputs and one output. |
||||
* 4 is just a big enough number for input operands (increase it if necessary), |
||||
* do not use 'int32_t *input_operand_indexes', so we don't worry about mem leaks. |
||||
*/ |
||||
int32_t input_operand_indexes[4]; |
||||
int32_t output_operand_index; |
||||
void *params; |
||||
} Layer; |
||||
|
||||
typedef struct DnnOperand{ |
||||
/**
|
||||
* there are two memory layouts, NHWC or NCHW, so we use dims, |
||||
* dims[0] is Number. |
||||
*/ |
||||
int32_t dims[4]; |
||||
|
||||
/**
|
||||
* input/output/intermediate operand of the network |
||||
*/ |
||||
DNNOperandType type; |
||||
|
||||
/**
|
||||
* support different kinds of data type such as float, half float, int8 etc, |
||||
* first support float now. |
||||
*/ |
||||
DNNDataType data_type; |
||||
|
||||
/**
|
||||
* NHWC if 1, otherwise NCHW. |
||||
* let's first support NHWC only, this flag is for extensive usage. |
||||
*/ |
||||
int8_t isNHWC; |
||||
|
||||
/**
|
||||
* to avoid possible memory leak, do not use char *name |
||||
*/ |
||||
char name[128]; |
||||
|
||||
/**
|
||||
* data pointer with data length in bytes. |
||||
* usedNumbersLeft is only valid for intermediate operand, |
||||
* it means how many layers still depend on this operand, |
||||
* todo: the memory can be reused when usedNumbersLeft is zero. |
||||
*/ |
||||
void *data; |
||||
int32_t length; |
||||
int32_t usedNumbersLeft; |
||||
}DnnOperand; |
||||
|
||||
typedef struct InputParams{ |
||||
int height, width, channels; |
||||
} InputParams; |
||||
|
||||
typedef struct NativeOptions{ |
||||
uint8_t async; |
||||
uint32_t conv2d_threads; |
||||
} NativeOptions; |
||||
|
||||
typedef struct NativeContext { |
||||
const AVClass *class; |
||||
NativeOptions options; |
||||
} NativeContext; |
||||
|
||||
// Represents simple feed-forward convolutional network.
|
||||
typedef struct NativeModel{ |
||||
NativeContext ctx; |
||||
DNNModel *model; |
||||
Layer *layers; |
||||
int32_t layers_num; |
||||
DnnOperand *operands; |
||||
int32_t operands_num; |
||||
Queue *task_queue; |
||||
Queue *lltask_queue; |
||||
} NativeModel; |
||||
|
||||
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx); |
||||
|
||||
int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params); |
||||
|
||||
DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out); |
||||
|
||||
int ff_dnn_flush_native(const DNNModel *model); |
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model); |
||||
|
||||
// NOTE: User must check for error (return value <= 0) to handle
|
||||
// case like integer overflow.
|
||||
int32_t ff_calculate_operand_data_length(const DnnOperand *oprd); |
||||
int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd); |
||||
#endif |
@ -1,147 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN native backend implementation. |
||||
*/ |
||||
|
||||
#include "libavutil/avassert.h" |
||||
#include "dnn_backend_native_layer_avgpool.h" |
||||
|
||||
int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
AvgPoolParams *avgpool_params; |
||||
int dnn_size = 0; |
||||
avgpool_params = av_malloc(sizeof(*avgpool_params)); |
||||
if(!avgpool_params) |
||||
return 0; |
||||
|
||||
avgpool_params->strides = (int32_t)avio_rl32(model_file_context); |
||||
avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); |
||||
avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 12; |
||||
|
||||
if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ |
||||
av_freep(&avgpool_params); |
||||
return 0; |
||||
} |
||||
|
||||
layer->params = avgpool_params; |
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
return dnn_size; |
||||
} |
||||
|
||||
int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
float *output; |
||||
int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; |
||||
int32_t input_operand_index = input_operand_indexes[0]; |
||||
int number = operands[input_operand_index].dims[0]; |
||||
int height = operands[input_operand_index].dims[1]; |
||||
int width = operands[input_operand_index].dims[2]; |
||||
int channel = operands[input_operand_index].dims[3]; |
||||
const float *input = operands[input_operand_index].data; |
||||
const AvgPoolParams *avgpool_params = parameters; |
||||
|
||||
int kernel_strides = avgpool_params->strides; |
||||
int src_linesize = width * channel; |
||||
DnnOperand *output_operand = &operands[output_operand_index]; |
||||
|
||||
/**
|
||||
* When padding_method = SAME, the tensorflow will only padding the hald number of 0 pixels |
||||
* except the remainders. |
||||
* Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 |
||||
* and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, |
||||
* and 5 - 2 - 1 = 2 lines after the last line of input image. |
||||
* and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, |
||||
* and 7 - 2 - 2 = 3 lines after the last line of input image. |
||||
*/ |
||||
if (avgpool_params->padding_method == SAME) { |
||||
height_end = height; |
||||
width_end = width; |
||||
height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); |
||||
width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); |
||||
height_radius = height_radius < 0 ? 0 : height_radius >> 1; |
||||
width_radius = width_radius < 0 ? 0 : width_radius >> 1; |
||||
output_height = ceil(height / (kernel_strides * 1.0)); |
||||
output_width = ceil(width / (kernel_strides * 1.0)); |
||||
} else { |
||||
av_assert0(avgpool_params->padding_method == VALID); |
||||
height_end = height - avgpool_params->kernel_size + 1; |
||||
width_end = width - avgpool_params->kernel_size + 1; |
||||
height_radius = 0; |
||||
width_radius = 0; |
||||
output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); |
||||
output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); |
||||
} |
||||
|
||||
output_operand->dims[0] = number; |
||||
output_operand->dims[1] = output_height; |
||||
output_operand->dims[2] = output_width; |
||||
// not support pooling in channel dimension now
|
||||
output_operand->dims[3] = channel; |
||||
output_operand->data_type = operands[input_operand_index].data_type; |
||||
output_operand->length = ff_calculate_operand_data_length(output_operand); |
||||
if (output_operand->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length); |
||||
if (!output_operand->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
output = output_operand->data; |
||||
|
||||
for (int y = 0; y < height_end; y += kernel_strides) { |
||||
for (int x = 0; x < width_end; x += kernel_strides) { |
||||
for (int n_channel = 0; n_channel < channel; ++n_channel) { |
||||
output[n_channel] = 0.0; |
||||
kernel_area = 0; |
||||
for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { |
||||
for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { |
||||
float input_pel; |
||||
int y_pos = y + (kernel_y - height_radius); |
||||
int x_pos = x + (kernel_x - width_radius); |
||||
if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { |
||||
input_pel = 0.0; |
||||
} else { |
||||
kernel_area++; |
||||
input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; |
||||
} |
||||
output[n_channel] += input_pel; |
||||
} |
||||
} |
||||
output[n_channel] /= kernel_area; |
||||
} |
||||
output += channel; |
||||
} |
||||
} |
||||
|
||||
return 0; |
||||
} |
@ -1,69 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for native backend. |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H |
||||
|
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef struct AvgPoolParams{ |
||||
int32_t strides, kernel_size; |
||||
DNNPaddingParam padding_method; |
||||
} AvgPoolParams; |
||||
|
||||
/**
|
||||
* @brief Load Average Pooling Layer. |
||||
* |
||||
* It assigns the Average Pooling layer with AvgPoolParams |
||||
* after parsing from the model file context. |
||||
* |
||||
* @param layer pointer to the DNN layer instance |
||||
* @param model_file_context pointer to model file context |
||||
* @param file_size model file size to check if data is read |
||||
* correctly from the model file |
||||
* @param operands_num operand count of the whole model to |
||||
* check if data is read correctly from the model file |
||||
* @return number of bytes read from the model file |
||||
* @retval 0 if out of memory or an error occurs |
||||
*/ |
||||
int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
|
||||
/**
|
||||
* @brief Execute the Average Pooling Layer. |
||||
* Padding in channel dimensions is currently not supported. |
||||
* |
||||
* @param operands all operands for the model |
||||
* @param input_operand_indexes input operand indexes for this layer |
||||
* @param output_operand_index output operand index for this layer |
||||
* @param parameters average pooling parameters |
||||
* @param ctx pointer to Native model context for logging |
||||
* @retval 0 if the execution succeeds |
||||
* @retval AVERROR(ENOMEM) if memory allocation fails |
||||
* @retval AVERROR(EINVAL) for invalid arguments |
||||
*/ |
||||
int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
|
||||
#endif |
@ -1,265 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include "libavutil/avassert.h" |
||||
#include "libavutil/thread.h" |
||||
#include "libavutil/cpu.h" |
||||
#include "dnn_backend_native_layer_conv2d.h" |
||||
|
||||
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) |
||||
|
||||
//struct to pass parameters
|
||||
typedef struct ThreadCommonParam{ |
||||
DnnOperand *operands; |
||||
const int32_t *input_operand_indexes; |
||||
int32_t output_operand_index; |
||||
const void *parameters; |
||||
NativeContext *ctx; |
||||
float *output_data; |
||||
} ThreadCommonParam; |
||||
|
||||
typedef struct ThreadParam{ |
||||
ThreadCommonParam *thread_common_param; |
||||
int thread_start, thread_end; |
||||
#if HAVE_PTHREAD_CANCEL |
||||
pthread_t thread; |
||||
#endif |
||||
} ThreadParam; |
||||
|
||||
int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
ConvolutionalParams *conv_params; |
||||
int kernel_size; |
||||
int dnn_size = 0; |
||||
conv_params = av_malloc(sizeof(*conv_params)); |
||||
if (!conv_params) |
||||
return 0; |
||||
|
||||
conv_params->dilation = (int32_t)avio_rl32(model_file_context); |
||||
conv_params->padding_method = (int32_t)avio_rl32(model_file_context); |
||||
conv_params->activation = (int32_t)avio_rl32(model_file_context); |
||||
conv_params->input_num = (int32_t)avio_rl32(model_file_context); |
||||
conv_params->output_num = (int32_t)avio_rl32(model_file_context); |
||||
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); |
||||
conv_params->has_bias = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 28; |
||||
|
||||
kernel_size = conv_params->input_num * conv_params->output_num * |
||||
conv_params->kernel_size * conv_params->kernel_size; |
||||
dnn_size += kernel_size * 4; |
||||
if (conv_params->has_bias) |
||||
dnn_size += conv_params->output_num * 4; |
||||
|
||||
if (dnn_size > file_size || conv_params->input_num <= 0 || |
||||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ |
||||
av_freep(&conv_params); |
||||
return 0; |
||||
} |
||||
|
||||
conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel)); |
||||
if (!conv_params->kernel) { |
||||
av_freep(&conv_params); |
||||
return 0; |
||||
} |
||||
for (int i = 0; i < kernel_size; ++i) { |
||||
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); |
||||
} |
||||
|
||||
conv_params->biases = NULL; |
||||
if (conv_params->has_bias) { |
||||
conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases)); |
||||
if (!conv_params->biases){ |
||||
av_freep(&conv_params->kernel); |
||||
av_freep(&conv_params); |
||||
return 0; |
||||
} |
||||
for (int i = 0; i < conv_params->output_num; ++i){ |
||||
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); |
||||
} |
||||
} |
||||
|
||||
layer->params = conv_params; |
||||
|
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
|
||||
return dnn_size; |
||||
} |
||||
|
||||
static void * dnn_execute_layer_conv2d_thread(void *threadarg) |
||||
{ |
||||
//pass parameters
|
||||
ThreadParam *thread_param = threadarg; |
||||
ThreadCommonParam *thread_common_param = thread_param->thread_common_param; |
||||
DnnOperand *operands = thread_common_param->operands; |
||||
int32_t input_operand_index = thread_common_param->input_operand_indexes[0]; |
||||
int height = operands[input_operand_index].dims[1]; |
||||
int width = operands[input_operand_index].dims[2]; |
||||
int channel = operands[input_operand_index].dims[3]; |
||||
const float *input = operands[input_operand_index].data; |
||||
const ConvolutionalParams *conv_params = thread_common_param->parameters; |
||||
|
||||
int radius = conv_params->kernel_size >> 1; |
||||
int src_linesize = width * conv_params->input_num; |
||||
int filter_linesize = conv_params->kernel_size * conv_params->input_num; |
||||
int filter_size = conv_params->kernel_size * filter_linesize; |
||||
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; |
||||
|
||||
float *output = thread_common_param->output_data; |
||||
output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size); |
||||
|
||||
av_assert0(channel == conv_params->input_num); |
||||
|
||||
for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) { |
||||
for (int x = pad_size; x < width - pad_size; ++x) { |
||||
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { |
||||
if (conv_params->has_bias) |
||||
output[n_filter] = conv_params->biases[n_filter]; |
||||
else |
||||
output[n_filter] = 0.f; |
||||
|
||||
for (int ch = 0; ch < conv_params->input_num; ++ch) { |
||||
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { |
||||
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { |
||||
float input_pel; |
||||
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { |
||||
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height); |
||||
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width); |
||||
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
||||
} else { |
||||
int y_pos = y + (kernel_y - radius) * conv_params->dilation; |
||||
int x_pos = x + (kernel_x - radius) * conv_params->dilation; |
||||
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : |
||||
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
||||
} |
||||
|
||||
|
||||
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + |
||||
kernel_x * conv_params->input_num + ch]; |
||||
} |
||||
} |
||||
} |
||||
switch (conv_params->activation){ |
||||
case RELU: |
||||
output[n_filter] = FFMAX(output[n_filter], 0.0); |
||||
break; |
||||
case TANH: |
||||
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; |
||||
break; |
||||
case SIGMOID: |
||||
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); |
||||
break; |
||||
case NONE: |
||||
break; |
||||
case LEAKY_RELU: |
||||
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); |
||||
} |
||||
} |
||||
output += conv_params->output_num; |
||||
} |
||||
} |
||||
return NULL; |
||||
} |
||||
|
||||
|
||||
int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
#if HAVE_PTHREAD_CANCEL |
||||
int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count()) |
||||
? (av_cpu_count() + 1) : (ctx->options.conv2d_threads); |
||||
int ret = 0, thread_stride; |
||||
ThreadParam *thread_param; |
||||
#else |
||||
ThreadParam thread_param = { 0 }; |
||||
#endif |
||||
ThreadCommonParam thread_common_param; |
||||
const ConvolutionalParams *conv_params = parameters; |
||||
int height = operands[input_operand_indexes[0]].dims[1]; |
||||
int width = operands[input_operand_indexes[0]].dims[2]; |
||||
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; |
||||
DnnOperand *output_operand = &operands[output_operand_index]; |
||||
void *tmp; |
||||
|
||||
output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0]; |
||||
output_operand->dims[1] = height - pad_size * 2; |
||||
output_operand->dims[2] = width - pad_size * 2; |
||||
output_operand->dims[3] = conv_params->output_num; |
||||
output_operand->data_type = operands[input_operand_indexes[0]].data_type; |
||||
output_operand->length = ff_calculate_operand_data_length(output_operand); |
||||
if (output_operand->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
tmp = av_realloc(output_operand->data, output_operand->length); |
||||
if (!tmp) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
output_operand->data = tmp; |
||||
thread_common_param.output_data = output_operand->data; |
||||
thread_common_param.operands = operands; |
||||
thread_common_param.input_operand_indexes = input_operand_indexes; |
||||
thread_common_param.output_operand_index = output_operand_index; |
||||
thread_common_param.parameters = parameters; |
||||
thread_common_param.ctx = ctx; |
||||
|
||||
#if HAVE_PTHREAD_CANCEL |
||||
thread_param = av_malloc_array(thread_num, sizeof(*thread_param)); |
||||
if (!thread_param) |
||||
return AVERROR(ENOMEM); |
||||
thread_stride = (height - pad_size * 2) / thread_num; |
||||
//create threads
|
||||
for (int i = 0; i < thread_num; i++){ |
||||
int thread_ret = 0; |
||||
thread_param[i].thread_common_param = &thread_common_param; |
||||
thread_param[i].thread_start = thread_stride * i + pad_size; |
||||
thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride); |
||||
thread_ret = pthread_create(&thread_param[i].thread, NULL, |
||||
dnn_execute_layer_conv2d_thread, &thread_param[i]); |
||||
if (thread_ret) { |
||||
thread_num = i; |
||||
ret = AVERROR(thread_ret); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
for (int i = 0; i < thread_num; i++){ |
||||
pthread_join(thread_param[i].thread, NULL); |
||||
} |
||||
|
||||
//release memory
|
||||
av_freep(&thread_param); |
||||
|
||||
return ret; |
||||
#else |
||||
thread_param.thread_common_param = &thread_common_param; |
||||
thread_param.thread_start = pad_size; |
||||
thread_param.thread_end = height - pad_size; |
||||
dnn_execute_layer_conv2d_thread(&thread_param); |
||||
|
||||
return 0; |
||||
#endif |
||||
} |
@ -1,68 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H |
||||
|
||||
#include "dnn_backend_native.h" |
||||
|
||||
|
||||
typedef struct ConvolutionalParams{ |
||||
int32_t input_num, output_num, kernel_size; |
||||
DNNActivationFunc activation; |
||||
DNNPaddingParam padding_method; |
||||
int32_t dilation; |
||||
int32_t has_bias; |
||||
float *kernel; |
||||
float *biases; |
||||
} ConvolutionalParams; |
||||
|
||||
/**
|
||||
* @brief Load the 2D Convolution Layer. |
||||
* |
||||
* It assigns the 2D convolution layer with ConvolutionalParams |
||||
* after parsing from the model file context. |
||||
* |
||||
* @param layer pointer to the DNN layer instance |
||||
* @param model_file_context pointer to model file context |
||||
* @param file_size model file size to check if data is read |
||||
* correctly from the model file |
||||
* @param operands_num operand count of the whole model to |
||||
* check if data is read correctly from the model file |
||||
* @return number of bytes read from the model file |
||||
* @retval 0 if out of memory or an error occurs |
||||
*/ |
||||
int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
|
||||
/**
|
||||
* @brief Execute the 2D Convolution Layer. |
||||
* |
||||
* @param operands all operands for the model |
||||
* @param input_operand_indexes input operand indexes for this layer |
||||
* @param output_operand_index output operand index for this layer |
||||
* @param parameters convolution parameters |
||||
* @param ctx pointer to Native model context for logging |
||||
* @retval 0 if the execution succeeds |
||||
* @retval AVERROR(ENOMEM) if memory allocation fails |
||||
* @retval AVERROR(EINVAL) for invalid arguments |
||||
*/ |
||||
int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
#endif |
@ -1,151 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include "libavutil/avassert.h" |
||||
#include "dnn_backend_native_layer_dense.h" |
||||
|
||||
int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
DenseParams *dense_params; |
||||
int kernel_size; |
||||
int dnn_size = 0; |
||||
dense_params = av_malloc(sizeof(*dense_params)); |
||||
if (!dense_params) |
||||
return 0; |
||||
|
||||
dense_params->activation = (int32_t)avio_rl32(model_file_context); |
||||
dense_params->input_num = (int32_t)avio_rl32(model_file_context); |
||||
dense_params->output_num = (int32_t)avio_rl32(model_file_context); |
||||
dense_params->has_bias = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 16; |
||||
|
||||
kernel_size = dense_params->input_num * dense_params->output_num; |
||||
dnn_size += kernel_size * 4; |
||||
if (dense_params->has_bias) |
||||
dnn_size += dense_params->output_num * 4; |
||||
|
||||
if (dnn_size > file_size || dense_params->input_num <= 0 || |
||||
dense_params->output_num <= 0){ |
||||
av_freep(&dense_params); |
||||
return 0; |
||||
} |
||||
|
||||
dense_params->kernel = av_malloc(kernel_size * sizeof(float)); |
||||
if (!dense_params->kernel) { |
||||
av_freep(&dense_params); |
||||
return 0; |
||||
} |
||||
for (int i = 0; i < kernel_size; ++i) { |
||||
dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); |
||||
} |
||||
|
||||
dense_params->biases = NULL; |
||||
if (dense_params->has_bias) { |
||||
dense_params->biases = av_malloc(dense_params->output_num * sizeof(float)); |
||||
if (!dense_params->biases){ |
||||
av_freep(&dense_params->kernel); |
||||
av_freep(&dense_params); |
||||
return 0; |
||||
} |
||||
for (int i = 0; i < dense_params->output_num; ++i){ |
||||
dense_params->biases[i] = av_int2float(avio_rl32(model_file_context)); |
||||
} |
||||
} |
||||
|
||||
layer->params = dense_params; |
||||
|
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
|
||||
return dnn_size; |
||||
} |
||||
|
||||
int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
float *output; |
||||
int32_t input_operand_index = input_operand_indexes[0]; |
||||
int number = operands[input_operand_index].dims[0]; |
||||
int height = operands[input_operand_index].dims[1]; |
||||
int width = operands[input_operand_index].dims[2]; |
||||
int channel = operands[input_operand_index].dims[3]; |
||||
const float *input = operands[input_operand_index].data; |
||||
const DenseParams *dense_params = parameters; |
||||
|
||||
int src_linesize = width * channel; |
||||
DnnOperand *output_operand = &operands[output_operand_index]; |
||||
output_operand->dims[0] = number; |
||||
output_operand->dims[1] = height; |
||||
output_operand->dims[2] = width; |
||||
output_operand->dims[3] = dense_params->output_num; |
||||
output_operand->data_type = operands[input_operand_index].data_type; |
||||
output_operand->length = ff_calculate_operand_data_length(output_operand); |
||||
if (output_operand->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length); |
||||
if (!output_operand->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
output = output_operand->data; |
||||
|
||||
av_assert0(channel == dense_params->input_num); |
||||
|
||||
for (int y = 0; y < height; ++y) { |
||||
for (int x = 0; x < width; ++x) { |
||||
for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) { |
||||
if (dense_params->has_bias) |
||||
output[n_filter] = dense_params->biases[n_filter]; |
||||
else |
||||
output[n_filter] = 0.f; |
||||
|
||||
for (int ch = 0; ch < dense_params->input_num; ++ch) { |
||||
float input_pel; |
||||
input_pel = input[y * src_linesize + x * dense_params->input_num + ch]; |
||||
output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch]; |
||||
} |
||||
switch (dense_params->activation){ |
||||
case RELU: |
||||
output[n_filter] = FFMAX(output[n_filter], 0.0); |
||||
break; |
||||
case TANH: |
||||
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; |
||||
break; |
||||
case SIGMOID: |
||||
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); |
||||
break; |
||||
case NONE: |
||||
break; |
||||
case LEAKY_RELU: |
||||
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); |
||||
} |
||||
} |
||||
output += dense_params->output_num; |
||||
} |
||||
} |
||||
return 0; |
||||
} |
@ -1,65 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H |
||||
|
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef struct DenseParams{ |
||||
int32_t input_num, output_num; |
||||
DNNActivationFunc activation; |
||||
int32_t has_bias; |
||||
float *kernel; |
||||
float *biases; |
||||
} DenseParams; |
||||
|
||||
/**
|
||||
* @brief Load the Densely-Connected Layer. |
||||
* |
||||
* It assigns the densely connected layer with DenseParams |
||||
* after parsing from the model file context. |
||||
* |
||||
* @param layer pointer to the DNN layer instance |
||||
* @param model_file_context pointer to model file context |
||||
* @param file_size model file size to check if data is read |
||||
* correctly from the model file |
||||
* @param operands_num operand count of the whole model to |
||||
* check if data is read correctly from the model file |
||||
* @return number of bytes read from the model file |
||||
* @retval 0 if out of memory or an error occurs |
||||
*/ |
||||
int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
|
||||
/**
|
||||
* @brief Execute the Densely-Connected Layer. |
||||
* |
||||
* @param operands all operands for the model |
||||
* @param input_operand_indexes input operand indexes for this layer |
||||
* @param output_operand_index output operand index for this layer |
||||
* @param parameters dense layer parameters |
||||
* @param ctx pointer to Native model context for logging |
||||
* @retval 0 if the execution succeeds |
||||
* @retval AVERROR(ENOMEM) if memory allocation fails |
||||
* @retval AVERROR(EINVAL) for invalid arguments |
||||
*/ |
||||
int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
#endif |
@ -1,102 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN native backend implementation. |
||||
*/ |
||||
|
||||
#include "dnn_backend_native.h" |
||||
#include "dnn_backend_native_layer_depth2space.h" |
||||
|
||||
int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
DepthToSpaceParams *params; |
||||
int dnn_size = 0; |
||||
params = av_malloc(sizeof(*params)); |
||||
if (!params) |
||||
return 0; |
||||
|
||||
params->block_size = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
layer->params = params; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
|
||||
return dnn_size; |
||||
} |
||||
|
||||
int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
float *output; |
||||
const DepthToSpaceParams *params = parameters; |
||||
int block_size = params->block_size; |
||||
int32_t input_operand_index = input_operand_indexes[0]; |
||||
int number = operands[input_operand_index].dims[0]; |
||||
int height = operands[input_operand_index].dims[1]; |
||||
int width = operands[input_operand_index].dims[2]; |
||||
int channels = operands[input_operand_index].dims[3]; |
||||
const float *input = operands[input_operand_index].data; |
||||
|
||||
int y, x, by, bx, ch; |
||||
int new_channels = channels / (block_size * block_size); |
||||
int output_linesize = width * channels; |
||||
int by_linesize = output_linesize / block_size; |
||||
int x_linesize = new_channels * block_size; |
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index]; |
||||
output_operand->dims[0] = number; |
||||
output_operand->dims[1] = height * block_size; |
||||
output_operand->dims[2] = width * block_size; |
||||
output_operand->dims[3] = new_channels; |
||||
output_operand->data_type = operands[input_operand_index].data_type; |
||||
output_operand->length = ff_calculate_operand_data_length(output_operand); |
||||
if (output_operand->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length); |
||||
if (!output_operand->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
output = output_operand->data; |
||||
|
||||
for (y = 0; y < height; ++y){ |
||||
for (x = 0; x < width; ++x){ |
||||
for (by = 0; by < block_size; ++by){ |
||||
for (bx = 0; bx < block_size; ++bx){ |
||||
for (ch = 0; ch < new_channels; ++ch){ |
||||
output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch]; |
||||
} |
||||
input += new_channels; |
||||
} |
||||
} |
||||
} |
||||
output += output_linesize; |
||||
} |
||||
return 0; |
||||
} |
@ -1,72 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for native backend. |
||||
*/ |
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H |
||||
|
||||
#include "../dnn_interface.h" |
||||
#include "libavformat/avio.h" |
||||
|
||||
typedef struct DepthToSpaceParams{ |
||||
int block_size; |
||||
} DepthToSpaceParams; |
||||
|
||||
/**
|
||||
* @brief Load the Depth to Space Layer. |
||||
* |
||||
* It assigns the depth to space layer with DepthToSpaceParams |
||||
* after parsing from the model file context. |
||||
* |
||||
* @param layer pointer to the DNN layer instance |
||||
* @param model_file_context pointer to model file context |
||||
* @param file_size model file size to check if data is read |
||||
* correctly from the model file |
||||
* @param operands_num operand count of the whole model to |
||||
* check if data is read correctly from the model file |
||||
* @return number of bytes read from the model file |
||||
* @retval 0 if an error occurs or out of memory |
||||
*/ |
||||
int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
|
||||
/**
|
||||
* @brief Execute the Depth to Space Layer. |
||||
* |
||||
* It rearranges the input data from depth into spatial |
||||
* form by applying Depth to Space transformation. |
||||
* |
||||
* @param operands all operands for the model |
||||
* @param input_operand_indexes input operand indexes for this layer |
||||
* @param output_operand_index output operand index for this layer |
||||
* @param parameters depth to space layer parameters |
||||
* @param ctx pointer to Native model context for logging |
||||
* @retval 0 if the execution succeeds |
||||
* @retval AVERROR(ENOMEM) if memory allocation fails |
||||
* @retval AVERROR(EINVAL) for invalid arguments |
||||
*/ |
||||
int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
|
||||
#endif |
@ -1,193 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN native backend implementation. |
||||
*/ |
||||
|
||||
#include "dnn_backend_native.h" |
||||
#include "dnn_backend_native_layer_mathbinary.h" |
||||
|
||||
typedef float (*FunType)(float src0, float src1); |
||||
|
||||
static float sub(float src0, float src1) |
||||
{ |
||||
return src0 - src1; |
||||
} |
||||
static float add(float src0, float src1) |
||||
{ |
||||
return src0 + src1; |
||||
} |
||||
static float mul(float src0, float src1) |
||||
{ |
||||
return src0 * src1; |
||||
} |
||||
static float realdiv(float src0, float src1) |
||||
{ |
||||
return src0 / src1; |
||||
} |
||||
static float minimum(float src0, float src1) |
||||
{ |
||||
return FFMIN(src0, src1); |
||||
} |
||||
static float floormod(float src0, float src1) |
||||
{ |
||||
return (float)((int)(src0) % (int)(src1)); |
||||
} |
||||
|
||||
static void math_binary_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) |
||||
{ |
||||
int dims_count; |
||||
const float *src; |
||||
float *dst; |
||||
dims_count = ff_calculate_operand_dims_count(output); |
||||
src = input->data; |
||||
dst = output->data; |
||||
if (params->input0_broadcast || params->input1_broadcast) { |
||||
for (int i = 0; i < dims_count; ++i) { |
||||
dst[i] = pfun(params->v, src[i]); |
||||
} |
||||
} else { |
||||
const DnnOperand *input1 = &operands[input_operand_indexes[1]]; |
||||
const float *src1 = input1->data; |
||||
for (int i = 0; i < dims_count; ++i) { |
||||
dst[i] = pfun(src[i], src1[i]); |
||||
} |
||||
} |
||||
} |
||||
static void math_binary_not_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) |
||||
{ |
||||
int dims_count; |
||||
const float *src; |
||||
float *dst; |
||||
dims_count = ff_calculate_operand_dims_count(output); |
||||
src = input->data; |
||||
dst = output->data; |
||||
if (params->input0_broadcast) { |
||||
for (int i = 0; i < dims_count; ++i) { |
||||
dst[i] = pfun(params->v, src[i]); |
||||
} |
||||
} else if (params->input1_broadcast) { |
||||
for (int i = 0; i < dims_count; ++i) { |
||||
dst[i] = pfun(src[i], params->v); |
||||
} |
||||
} else { |
||||
const DnnOperand *input1 = &operands[input_operand_indexes[1]]; |
||||
const float *src1 = input1->data; |
||||
for (int i = 0; i < dims_count; ++i) { |
||||
dst[i] = pfun(src[i], src1[i]); |
||||
} |
||||
} |
||||
} |
||||
int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
DnnLayerMathBinaryParams params = { 0 }; |
||||
int dnn_size = 0; |
||||
int input_index = 0; |
||||
|
||||
params.bin_op = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
params.input0_broadcast = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
if (params.input0_broadcast) { |
||||
params.v = av_int2float(avio_rl32(model_file_context)); |
||||
} else { |
||||
layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); |
||||
if (layer->input_operand_indexes[input_index] >= operands_num) { |
||||
return 0; |
||||
} |
||||
input_index++; |
||||
} |
||||
dnn_size += 4; |
||||
|
||||
params.input1_broadcast = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
if (params.input1_broadcast) { |
||||
params.v = av_int2float(avio_rl32(model_file_context)); |
||||
} else { |
||||
layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); |
||||
if (layer->input_operand_indexes[input_index] >= operands_num) { |
||||
return 0; |
||||
} |
||||
input_index++; |
||||
} |
||||
dnn_size += 4; |
||||
|
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
|
||||
if (layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
layer->params = av_memdup(¶ms, sizeof(params)); |
||||
if (!layer->params) |
||||
return 0; |
||||
|
||||
return dnn_size; |
||||
} |
||||
|
||||
int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
const DnnOperand *input = &operands[input_operand_indexes[0]]; |
||||
DnnOperand *output = &operands[output_operand_index]; |
||||
const DnnLayerMathBinaryParams *params = parameters; |
||||
|
||||
for (int i = 0; i < 4; ++i) |
||||
output->dims[i] = input->dims[i]; |
||||
|
||||
output->data_type = input->data_type; |
||||
output->length = ff_calculate_operand_data_length(output); |
||||
if (output->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output->data = av_realloc(output->data, output->length); |
||||
if (!output->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
switch (params->bin_op) { |
||||
case DMBO_SUB: |
||||
math_binary_not_commutative(sub, params, input, output, operands, input_operand_indexes); |
||||
return 0; |
||||
case DMBO_ADD: |
||||
math_binary_commutative(add, params, input, output, operands, input_operand_indexes); |
||||
return 0; |
||||
case DMBO_MUL: |
||||
math_binary_commutative(mul, params, input, output, operands, input_operand_indexes); |
||||
return 0; |
||||
case DMBO_REALDIV: |
||||
math_binary_not_commutative(realdiv, params, input, output, operands, input_operand_indexes); |
||||
return 0; |
||||
case DMBO_MINIMUM: |
||||
math_binary_commutative(minimum, params, input, output, operands, input_operand_indexes); |
||||
return 0; |
||||
case DMBO_FLOORMOD: |
||||
math_binary_not_commutative(floormod, params, input, output, operands, input_operand_indexes); |
||||
return 0; |
||||
default: |
||||
av_log(ctx, AV_LOG_ERROR, "Unmatch math binary operator\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
} |
@ -1,54 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for native backend. |
||||
*/ |
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H |
||||
|
||||
#include "libavformat/avio.h" |
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef enum { |
||||
DMBO_SUB = 0, |
||||
DMBO_ADD = 1, |
||||
DMBO_MUL = 2, |
||||
DMBO_REALDIV = 3, |
||||
DMBO_MINIMUM = 4, |
||||
DMBO_FLOORMOD = 5, |
||||
DMBO_COUNT |
||||
} DNNMathBinaryOperation; |
||||
|
||||
typedef struct DnnLayerMathBinaryParams{ |
||||
DNNMathBinaryOperation bin_op; |
||||
int input0_broadcast; |
||||
int input1_broadcast; |
||||
float v; |
||||
} DnnLayerMathBinaryParams; |
||||
|
||||
int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
|
||||
#endif |
@ -1,156 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN native backend implementation. |
||||
*/ |
||||
|
||||
#include <math.h> |
||||
|
||||
#include "dnn_backend_native.h" |
||||
#include "dnn_backend_native_layer_mathunary.h" |
||||
|
||||
int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
DnnLayerMathUnaryParams *params; |
||||
int dnn_size = 0; |
||||
params = av_malloc(sizeof(*params)); |
||||
if(!params) |
||||
return 0; |
||||
|
||||
params->un_op = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
layer->params = params; |
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
|
||||
return dnn_size; |
||||
|
||||
} |
||||
|
||||
int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
const DnnOperand *input = &operands[input_operand_indexes[0]]; |
||||
DnnOperand *output = &operands[output_operand_index]; |
||||
const DnnLayerMathUnaryParams *params = parameters; |
||||
int dims_count; |
||||
const float *src; |
||||
float *dst; |
||||
|
||||
for (int i = 0; i < 4; ++i) |
||||
output->dims[i] = input->dims[i]; |
||||
|
||||
output->data_type = input->data_type; |
||||
output->length = ff_calculate_operand_data_length(output); |
||||
if (output->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output->data = av_realloc(output->data, output->length); |
||||
if (!output->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
dims_count = ff_calculate_operand_dims_count(output); |
||||
src = input->data; |
||||
dst = output->data; |
||||
|
||||
switch (params->un_op) { |
||||
case DMUO_ABS: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = FFABS(src[i]); |
||||
return 0; |
||||
case DMUO_SIN: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = sin(src[i]); |
||||
return 0; |
||||
case DMUO_COS: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = cos(src[i]); |
||||
return 0; |
||||
case DMUO_TAN: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = tan(src[i]); |
||||
return 0; |
||||
case DMUO_ASIN: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = asin(src[i]); |
||||
return 0; |
||||
case DMUO_ACOS: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = acos(src[i]); |
||||
return 0; |
||||
case DMUO_ATAN: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = atan(src[i]); |
||||
return 0; |
||||
case DMUO_SINH: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = sinh(src[i]); |
||||
return 0; |
||||
case DMUO_COSH: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = cosh(src[i]); |
||||
return 0; |
||||
case DMUO_TANH: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = tanh(src[i]); |
||||
return 0; |
||||
case DMUO_ASINH: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = asinh(src[i]); |
||||
return 0; |
||||
case DMUO_ACOSH: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = acosh(src[i]); |
||||
return 0; |
||||
case DMUO_ATANH: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = atanh(src[i]); |
||||
return 0; |
||||
case DMUO_CEIL: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = ceil(src[i]); |
||||
return 0; |
||||
case DMUO_FLOOR: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = floor(src[i]); |
||||
return 0; |
||||
case DMUO_ROUND: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = round(src[i]); |
||||
return 0; |
||||
case DMUO_EXP: |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = exp(src[i]); |
||||
return 0; |
||||
default: |
||||
av_log(ctx, AV_LOG_ERROR, "Unmatch math unary operator\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
} |
@ -1,92 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for native backend. |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H |
||||
|
||||
#include "libavformat/avio.h" |
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef enum { |
||||
DMUO_ABS = 0, |
||||
DMUO_SIN = 1, |
||||
DMUO_COS = 2, |
||||
DMUO_TAN = 3, |
||||
DMUO_ASIN = 4, |
||||
DMUO_ACOS = 5, |
||||
DMUO_ATAN = 6, |
||||
DMUO_SINH = 7, |
||||
DMUO_COSH = 8, |
||||
DMUO_TANH = 9, |
||||
DMUO_ASINH = 10, |
||||
DMUO_ACOSH = 11, |
||||
DMUO_ATANH = 12, |
||||
DMUO_CEIL = 13, |
||||
DMUO_FLOOR = 14, |
||||
DMUO_ROUND = 15, |
||||
DMUO_EXP = 16, |
||||
DMUO_COUNT |
||||
} DNNMathUnaryOperation; |
||||
|
||||
typedef struct DnnLayerMathUnaryParams{ |
||||
DNNMathUnaryOperation un_op; |
||||
} DnnLayerMathUnaryParams; |
||||
|
||||
/**
|
||||
* @brief Load the Unary Math Layer. |
||||
* |
||||
* It assigns the unary math layer with DnnLayerMathUnaryParams |
||||
* after parsing from the model file context. |
||||
* |
||||
* @param layer pointer to the DNN layer instance |
||||
* @param model_file_context pointer to model file context |
||||
* @param file_size model file size to check if data is read |
||||
* correctly from the model file |
||||
* @param operands_num operand count of the whole model to |
||||
* check if data is read correctly from the model file |
||||
* @return number of bytes read from the model file |
||||
* @retval 0 if out of memory or an error occurs |
||||
*/ |
||||
int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
|
||||
/**
|
||||
* @brief Execute the Unary Math Layer. |
||||
* |
||||
* It applies the unary operator parsed while |
||||
* loading to the given input operands. |
||||
* |
||||
* @param operands all operands for the model |
||||
* @param input_operand_indexes input operand indexes for this layer |
||||
* @param output_operand_index output operand index for this layer |
||||
* @param parameters unary math layer parameters |
||||
* @param ctx pointer to Native model context for logging |
||||
* @retval 0 if the execution succeeds |
||||
* @retval AVERROR(ENOMEM) if memory allocation fails |
||||
* @retval AVERROR(EINVAL) for invalid arguments |
||||
*/ |
||||
int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
|
||||
#endif |
@ -1,83 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN native backend implementation. |
||||
*/ |
||||
|
||||
#include "dnn_backend_native.h" |
||||
#include "dnn_backend_native_layer_maximum.h" |
||||
|
||||
int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
DnnLayerMaximumParams *params; |
||||
int dnn_size = 0; |
||||
params = av_malloc(sizeof(*params)); |
||||
if (!params) |
||||
return 0; |
||||
|
||||
params->val.u32 = avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
layer->params = params; |
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
|
||||
return dnn_size; |
||||
} |
||||
|
||||
int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
const DnnOperand *input = &operands[input_operand_indexes[0]]; |
||||
DnnOperand *output = &operands[output_operand_index]; |
||||
const DnnLayerMaximumParams *params = parameters; |
||||
int dims_count; |
||||
const float *src; |
||||
float *dst; |
||||
|
||||
for (int i = 0; i < 4; ++i) |
||||
output->dims[i] = input->dims[i]; |
||||
|
||||
output->data_type = input->data_type; |
||||
output->length = ff_calculate_operand_data_length(output); |
||||
if (output->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output->data = av_realloc(output->data, output->length); |
||||
if (!output->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
dims_count = ff_calculate_operand_dims_count(output); |
||||
src = input->data; |
||||
dst = output->data; |
||||
for (int i = 0; i < dims_count; ++i) |
||||
dst[i] = FFMAX(src[i], params->val.y); |
||||
|
||||
return 0; |
||||
} |
@ -1,44 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* DNN inference functions interface for native backend. |
||||
*/ |
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H |
||||
|
||||
#include "libavformat/avio.h" |
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef struct DnnLayerMaximumParams{ |
||||
union { |
||||
uint32_t u32; |
||||
float y; |
||||
}val; |
||||
} DnnLayerMaximumParams; |
||||
|
||||
int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
|
||||
#endif |
@ -1,268 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <string.h> |
||||
#include "libavutil/avassert.h" |
||||
#include "dnn_backend_native_layer_pad.h" |
||||
|
||||
int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) |
||||
{ |
||||
LayerPadParams *params; |
||||
int dnn_size = 0; |
||||
params = av_malloc(sizeof(*params)); |
||||
if (!params) |
||||
return 0; |
||||
|
||||
params->mode = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 4; |
||||
for (int i = 0; i < 4; ++i) { |
||||
params->paddings[i][0] = avio_rl32(model_file_context); |
||||
params->paddings[i][1] = avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
} |
||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); |
||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); |
||||
dnn_size += 8; |
||||
layer->params = params; |
||||
|
||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { |
||||
return 0; |
||||
} |
||||
|
||||
return dnn_size; |
||||
} |
||||
|
||||
static int before_get_buddy(int given, int paddings, LayerPadModeParam mode) |
||||
{ |
||||
if (mode == LPMP_SYMMETRIC) { |
||||
return (2 * paddings - 1 - given); |
||||
} else if (mode == LPMP_REFLECT) { |
||||
return (2 * paddings - given); |
||||
} else { |
||||
av_assert0(!"should not reach here"); |
||||
return 0; |
||||
} |
||||
} |
||||
|
||||
static int after_get_buddy(int given, int border, LayerPadModeParam mode) |
||||
{ |
||||
if (mode == LPMP_SYMMETRIC) { |
||||
int offset = given - border; |
||||
return (border - 1 - offset); |
||||
} else if (mode == LPMP_REFLECT) { |
||||
int offset = given - border; |
||||
return (border - 2 - offset); |
||||
} else { |
||||
av_assert0(!"should not reach here"); |
||||
return 0; |
||||
} |
||||
} |
||||
|
||||
int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx) |
||||
{ |
||||
int32_t before_paddings; |
||||
int32_t after_paddings; |
||||
float* output; |
||||
const LayerPadParams *params = parameters; |
||||
|
||||
// suppose format is <N, H, W, C>
|
||||
int32_t input_operand_index = input_operand_indexes[0]; |
||||
int number = operands[input_operand_index].dims[0]; |
||||
int height = operands[input_operand_index].dims[1]; |
||||
int width = operands[input_operand_index].dims[2]; |
||||
int channel = operands[input_operand_index].dims[3]; |
||||
const float *input = operands[input_operand_index].data; |
||||
|
||||
int new_number = number + params->paddings[0][0] + params->paddings[0][1]; |
||||
int new_height = height + params->paddings[1][0] + params->paddings[1][1]; |
||||
int new_width = width + params->paddings[2][0] + params->paddings[2][1]; |
||||
int new_channel = channel + params->paddings[3][0] + params->paddings[3][1]; |
||||
|
||||
int c_stride = channel; |
||||
int wc_stride = c_stride * width; |
||||
int hwc_stride = wc_stride * height; |
||||
|
||||
int new_c_stride = new_channel; |
||||
int new_wc_stride = new_c_stride * new_width; |
||||
int new_hwc_stride = new_wc_stride * new_height; |
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index]; |
||||
output_operand->dims[0] = new_number; |
||||
output_operand->dims[1] = new_height; |
||||
output_operand->dims[2] = new_width; |
||||
output_operand->dims[3] = new_channel; |
||||
output_operand->data_type = operands[input_operand_index].data_type; |
||||
output_operand->length = ff_calculate_operand_data_length(output_operand); |
||||
if (output_operand->length <= 0) { |
||||
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length); |
||||
if (!output_operand->data) { |
||||
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
output = output_operand->data; |
||||
|
||||
// copy the original data
|
||||
for (int n = 0; n < number; n++) { |
||||
for (int h = 0; h < height; h++) { |
||||
for (int w = 0; w < width; w++) { |
||||
const float *src = input + n * hwc_stride + h * wc_stride + w * c_stride; |
||||
float *dst = output + (n + params->paddings[0][0]) * new_hwc_stride |
||||
+ (h + params->paddings[1][0]) * new_wc_stride |
||||
+ (w + params->paddings[2][0]) * new_c_stride |
||||
+ params->paddings[3][0]; |
||||
memcpy(dst, src, channel * sizeof(float)); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// handle the first dimension
|
||||
before_paddings = params->paddings[0][0]; |
||||
after_paddings = params->paddings[0][1]; |
||||
for (int n = 0; n < before_paddings; n++) { |
||||
float *dst = output + n * new_hwc_stride; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
for (int i = 0; i < new_hwc_stride; i++) { |
||||
dst[i] = params->constant_values; |
||||
} |
||||
} |
||||
else { |
||||
int buddy = before_get_buddy(n, before_paddings, params->mode); |
||||
float *src = output + buddy * new_hwc_stride; |
||||
memcpy(dst, src, new_hwc_stride * sizeof(float)); |
||||
} |
||||
} |
||||
for (int n = 0; n < after_paddings; n++) { |
||||
int given = number + before_paddings + n; |
||||
float *dst = output + given * new_hwc_stride; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
for (int i = 0; i < new_hwc_stride; i++) { |
||||
dst[i] = params->constant_values; |
||||
} |
||||
} else { |
||||
int buddy = after_get_buddy(given, number + before_paddings, params->mode); |
||||
float *src = output + buddy * new_hwc_stride; |
||||
memcpy(dst, src, new_hwc_stride * sizeof(float)); |
||||
} |
||||
} |
||||
|
||||
// handle the second dimension
|
||||
before_paddings = params->paddings[1][0]; |
||||
after_paddings = params->paddings[1][1]; |
||||
for (int n = 0; n < new_number; n++) { |
||||
float *start = output + n * new_hwc_stride; |
||||
for (int h = 0; h < before_paddings; h++) { |
||||
float *dst = start + h * new_wc_stride; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
for (int i = 0; i < new_wc_stride; i++) { |
||||
dst[i] = params->constant_values; |
||||
} |
||||
} else { |
||||
int buddy = before_get_buddy(h, before_paddings, params->mode); |
||||
float *src = start + buddy * new_wc_stride; |
||||
memcpy(dst, src, new_wc_stride * sizeof(float)); |
||||
} |
||||
} |
||||
for (int h = 0; h < after_paddings; h++) { |
||||
int given = height + before_paddings + h; |
||||
float *dst = start + given * new_wc_stride; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
for (int i = 0; i < new_wc_stride; i++) { |
||||
dst[i] = params->constant_values; |
||||
} |
||||
} else { |
||||
int buddy = after_get_buddy(given, height + before_paddings, params->mode); |
||||
float *src = start + buddy * new_wc_stride; |
||||
memcpy(dst, src, new_wc_stride * sizeof(float)); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// handle the third dimension
|
||||
before_paddings = params->paddings[2][0]; |
||||
after_paddings = params->paddings[2][1]; |
||||
for (int n = 0; n < new_number; n++) { |
||||
for (int h = 0; h < new_height; h++) { |
||||
float *start = output + n * new_hwc_stride + h * new_wc_stride; |
||||
for (int w = 0; w < before_paddings; w++) { |
||||
float *dst = start + w * new_c_stride; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
for (int i = 0; i < new_c_stride; i++) { |
||||
dst[i] = params->constant_values; |
||||
} |
||||
} else { |
||||
int buddy = before_get_buddy(w, before_paddings, params->mode); |
||||
float *src = start + buddy * new_c_stride; |
||||
memcpy(dst, src, new_c_stride * sizeof(float)); |
||||
} |
||||
} |
||||
for (int w = 0; w < after_paddings; w++) { |
||||
int given = width + before_paddings + w; |
||||
float *dst = start + given * new_c_stride; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
for (int i = 0; i < new_c_stride; i++) { |
||||
dst[i] = params->constant_values; |
||||
} |
||||
} else { |
||||
int buddy = after_get_buddy(given, width + before_paddings, params->mode); |
||||
float *src = start + buddy * new_c_stride; |
||||
memcpy(dst, src, new_c_stride * sizeof(float)); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
// handle the fourth dimension
|
||||
before_paddings = params->paddings[3][0]; |
||||
after_paddings = params->paddings[3][1]; |
||||
for (int n = 0; n < new_number; n++) { |
||||
for (int h = 0; h < new_height; h++) { |
||||
for (int w = 0; w < new_width; w++) { |
||||
float *start = output + n * new_hwc_stride + h * new_wc_stride + w * new_c_stride; |
||||
for (int c = 0; c < before_paddings; c++) { |
||||
float *dst = start + c; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
*dst = params->constant_values; |
||||
} else { |
||||
int buddy = before_get_buddy(c, before_paddings, params->mode); |
||||
float *src = start + buddy; |
||||
*dst = *src; |
||||
} |
||||
} |
||||
for (int c = 0; c < after_paddings; c++) { |
||||
int given = channel + before_paddings + c; |
||||
float *dst = start + given; |
||||
if (params->mode == LPMP_CONSTANT) { |
||||
*dst = params->constant_values; |
||||
} else { |
||||
int buddy = after_get_buddy(given, channel + before_paddings, params->mode); |
||||
float *src = start + buddy; |
||||
*dst = *src; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
return 0; |
||||
} |
@ -1,43 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* layer pad (equivalent to tf.pad) for native backend. |
||||
*/ |
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H |
||||
|
||||
#include <stdint.h> |
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam; |
||||
|
||||
typedef struct LayerPadParams{ |
||||
int32_t paddings[4][2]; |
||||
LayerPadModeParam mode; |
||||
float constant_values; |
||||
} LayerPadParams; |
||||
|
||||
int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
|
||||
#endif |
@ -1,42 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <string.h> |
||||
#include "dnn_backend_native_layers.h" |
||||
#include "dnn_backend_native_layer_pad.h" |
||||
#include "dnn_backend_native_layer_conv2d.h" |
||||
#include "dnn_backend_native_layer_depth2space.h" |
||||
#include "dnn_backend_native_layer_maximum.h" |
||||
#include "dnn_backend_native_layer_mathbinary.h" |
||||
#include "dnn_backend_native_layer_mathunary.h" |
||||
#include "dnn_backend_native_layer_avgpool.h" |
||||
#include "dnn_backend_native_layer_dense.h" |
||||
|
||||
const LayerFunc ff_layer_funcs[DLT_COUNT] = { |
||||
{NULL, NULL}, |
||||
{ff_dnn_execute_layer_conv2d, ff_dnn_load_layer_conv2d}, |
||||
{ff_dnn_execute_layer_depth2space, ff_dnn_load_layer_depth2space}, |
||||
{ff_dnn_execute_layer_pad, ff_dnn_load_layer_pad}, |
||||
{ff_dnn_execute_layer_maximum, ff_dnn_load_layer_maximum}, |
||||
{ff_dnn_execute_layer_math_binary, ff_dnn_load_layer_math_binary}, |
||||
{ff_dnn_execute_layer_math_unary, ff_dnn_load_layer_math_unary}, |
||||
{ff_dnn_execute_layer_avg_pool, ff_dnn_load_layer_avg_pool}, |
||||
{ff_dnn_execute_layer_dense, ff_dnn_load_layer_dense}, |
||||
}; |
@ -1,38 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H |
||||
|
||||
#include <stdint.h> |
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef int (*LAYER_EXEC_FUNC)(DnnOperand *operands, const int32_t *input_operand_indexes, |
||||
int32_t output_operand_index, const void *parameters, NativeContext *ctx); |
||||
typedef int (*LAYER_LOAD_FUNC)(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); |
||||
|
||||
typedef struct LayerFunc { |
||||
LAYER_EXEC_FUNC pf_exec; |
||||
LAYER_LOAD_FUNC pf_load; |
||||
}LayerFunc; |
||||
|
||||
extern const LayerFunc ff_layer_funcs[DLT_COUNT]; |
||||
|
||||
#endif |
@ -1,197 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_avgpool.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test_with_same(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
import tensorflow as tf |
||||
import numpy as np |
||||
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID') |
||||
data = np.random.rand(1, 5, 6, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
|
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print("input:") |
||||
print(data.shape) |
||||
print(list(data.flatten())) |
||||
|
||||
print("output:") |
||||
print(output.shape) |
||||
print(list(output.flatten())) |
||||
*/ |
||||
|
||||
AvgPoolParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*5*6*3] = { |
||||
0.7461309859908424, 0.7567538372797069, 0.07662743569678687, 0.8882112610336333, 0.9720443314026668, 0.3337200343220823, 0.4421032129780248, |
||||
0.14940809044964876, 0.6773177061961277, 0.9778844630669781, 0.6522650522626998, 0.0317651530878591, 0.31259897552911364, 0.6235936821891896, |
||||
0.40016094349542775, 0.4599222930032276, 0.7893807222960093, 0.8475986363538283, 0.5058802717647394, 0.7827005363222633, 0.3032188123727916, |
||||
0.8983728631302361, 0.20622408444965523, 0.22966072303869878, 0.09535751273161308, 0.8760709100995375, 0.9982324154558745, 0.7904595468621013, |
||||
0.13883671508879347, 0.9332751439533138, 0.0010861680752152214, 0.3607210449251048, 0.6600652759586171, 0.7629572058138805, 0.29441975810476106, |
||||
0.2683471432889405, 0.22574580829831536, 0.8893251976212904, 0.3907737043801005, 0.6421829842863968, 0.6670373870457297, 0.9383850793160277, |
||||
0.4120458907436003, 0.3589847212711481, 0.48047736550128983, 0.6428192648418949, 0.0313661686292348, 0.429357100401472, 0.5123413386514056, |
||||
0.8492446404097114, 0.9045286128486804, 0.8123708563814285, 0.3943245008451698, 0.9576713003177785, 0.5985610965938726, 0.9350833279543561, |
||||
0.8010079897491659, 0.45882114217642866, 0.35275037908941487, 0.4555844661432271, 0.12352455940255314, 0.37801756635035544, 0.2824056214573083, |
||||
0.6229462823245029, 0.7235305681391472, 0.5408259266122064, 0.12142224381781208, 0.34431198802873686, 0.7112823816321276, 0.6307144385115417, |
||||
0.8136734589018082, 0.842095618140585, 0.8602767724004784, 0.6649236853766185, 0.5184782829419623, 0.9119607270982825, 0.3084111974561645, |
||||
0.39460705638161364, 0.17710447526170836, 0.1715485945814199, 0.17277563576521882, 0.40188232428735704, 0.22847985411491878, 0.4135361701550696, |
||||
0.24621846601980057, 0.6576588108454774, 0.6063336087333997, 0.6452342242996931, 0.7071689702737508, 0.1973416063225648 |
||||
}; |
||||
float expected_output[] = { |
||||
0.75964886, 0.6794307, 0.23580676, 0.5810112, 0.5509369, 0.55973274, 0.5764512, 0.45414522, 0.6601476, 0.52050734, 0.44385415, |
||||
0.50631666, 0.38414115, 0.5170288, 0.544043, 0.61143976, 0.5419003, 0.5579729, 0.5680455, 0.6363218, 0.4655096, 0.51198983, |
||||
0.5270792, 0.66168886, 0.48517057, 0.3513146, 0.7103355, 0.48667657, 0.34504217, 0.7318065, 0.5221889, 0.4746775, 0.69765306, |
||||
0.78766406, 0.34437215, 0.6130092, 0.48132777, 0.7110491, 0.6464378, 0.40914366, 0.4391975, 0.5392131, 0.45033398, 0.37297475, |
||||
0.43326652, 0.4748823, 0.48711336, 0.64649844, 0.51921225, 0.60038865, 0.8538945, 0.7215426, 0.60399896, 0.89988345, 0.707405, |
||||
0.5652921, 0.54241943, 0.41785273, 0.30268195, 0.3263432, 0.3313644, 0.37539417, 0.35238582, 0.34811732, 0.48849532, 0.56799453, |
||||
0.41089734, 0.63070333, 0.5892633, 0.6379743, 0.7604212, 0.5197186, 0.88611877, 0.48666745, 0.45654267, 0.5445326, 0.2399799, |
||||
0.28369135, 0.28949338, 0.20001422, 0.2931559, 0.3240504, 0.44306934, 0.5099349, 0.44572634, 0.68241394, 0.40183762, 0.6452342, |
||||
0.707169, 0.1973416 |
||||
}; |
||||
float *output; |
||||
|
||||
params.strides = 1; |
||||
params.kernel_size = 2; |
||||
params.padding_method = SAME; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 5; |
||||
operands[0].dims[2] = 6; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
static int test_with_valid(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
import tensorflow as tf |
||||
import numpy as np |
||||
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID') |
||||
data = np.random.rand(1, 5, 6, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
|
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print("input:") |
||||
print(data.shape) |
||||
print(list(data.flatten())) |
||||
|
||||
print("output:") |
||||
print(output.shape) |
||||
print(list(output.flatten())) |
||||
*/ |
||||
|
||||
AvgPoolParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*5*6*3] = { |
||||
0.5046741692941682, 0.9273653202485155, 0.8193878359859937, 0.1904059431360905, 0.8664919633253656, 0.7484625128286059, 0.984534184632278, |
||||
0.31900804890072254, 0.3259426099940872, 0.05388974903570376, 0.7356610151331133, 0.46710858713311965, 0.718553768817036, 0.062478421853278676, |
||||
0.7813224786584609, 0.4826837517658389, 0.9748095400220147, 0.8078547703898341, 0.11976750668368585, 0.8713586777195065, 0.41447321551284355, |
||||
0.9818788239089807, 0.4335715767584073, 0.4059793452147419, 0.3677205907204525, 0.47919995923571, 0.8341395256258882, 0.7059726374074609, |
||||
0.5478504551919791, 0.8622900484790175, 0.8343709722511167, 0.05089827275068537, 0.6465283980840416, 0.544539116066677, 0.39812057257884337, |
||||
0.9578115576866337, 0.25012888117580145, 0.579333516024662, 0.5556732133051457, 0.6119862111181243, 0.0018736758772316398, 0.9795490254040474, |
||||
0.4488085008883018, 0.28947489777011737, 0.4834108668633247, 0.9280490084385024, 0.9895821458049648, 0.31777618554697606, 0.42679693258977847, |
||||
0.74447844466923, 0.9752225305081498, 0.17564130841849335, 0.22382692067314292, 0.009602884447469373, 0.5144884415025782, 0.031622570708844555, |
||||
0.8277532752502512, 0.4111593210409763, 0.5272084646575664, 0.28856508082905297, 0.11317726946036655, 0.7203328275540273, 0.8310055019972384, |
||||
0.8535951508685228, 0.40230347305233227, 0.2819703265132867, 0.6243143957791139, 0.7512463693822311, 0.7523056340495644, 0.8838077258040928, |
||||
0.5472240664033092, 0.2550538284454935, 0.5560317774456567, 0.8966847087518931, 0.6728358284165321, 0.30361297147530875, 0.464343925441822, |
||||
0.34507695659461224, 0.6333175615390685, 0.26661369038523497, 0.9926748632253231, 0.9994267301382666, 0.8684917986974414, 0.3598754806113009, |
||||
0.49550268625464666, 0.03652458679973214, 0.13469081713137177, 0.4579424049273835, 0.48641107969110353, 0.9670250266945365 |
||||
}; |
||||
float expected_output[1*4*5*3] = { |
||||
0.44918162, 0.7746969, 0.5970757, 0.63113487, 0.5245679, 0.578631, 0.52802926, 0.52042985, 0.6223702, 0.57819676, 0.34922206, |
||||
0.6893124, 0.64503694, 0.37157673, 0.7983793, 0.49094033, 0.47153437, 0.5889187, 0.6025985, 0.30103004, 0.6757697, 0.6126377, |
||||
0.5765268, 0.62440413, 0.7237974, 0.5832023, 0.7004543, 0.49533707, 0.35433105, 0.6472913, 0.44694072, 0.28500956, 0.6628852, |
||||
0.39628282, 0.38472247, 0.6456326, 0.58590746, 0.60042334, 0.47854072, 0.7081889, 0.7219026, 0.5818187, 0.5276401, 0.56669396, |
||||
0.49804622, 0.4463231, 0.4799649, 0.5335578, 0.36531678, 0.4946247, 0.6143306, 0.6498792, 0.5644355, 0.6163815, 0.7432098, |
||||
0.5146416, 0.38221055, 0.6153918, 0.45535153, 0.5272688 |
||||
}; |
||||
float *output; |
||||
|
||||
params.strides = 1; |
||||
params.kernel_size = 2; |
||||
params.padding_method = VALID; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 5; |
||||
operands[0].dims[2] = 6; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test_with_same()) |
||||
return 1; |
||||
if (test_with_valid()) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
@ -1,248 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_conv2d.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test_with_same_dilate(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='same', dilation_rate=(2, 2), bias_initializer=tf.keras.initializers.he_normal()) |
||||
data = np.random.rand(1, 5, 6, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
|
||||
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) |
||||
kernel = weights['conv2d/kernel:0'] |
||||
kernel = np.transpose(kernel, [3, 0, 1, 2]) |
||||
print("kernel:") |
||||
print(kernel.shape) |
||||
print(list(kernel.flatten())) |
||||
|
||||
bias = weights['conv2d/bias:0'] |
||||
print("bias:") |
||||
print(bias.shape) |
||||
print(list(bias.flatten())) |
||||
|
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print("input:") |
||||
print(data.shape) |
||||
print(list(data.flatten())) |
||||
|
||||
print("output:") |
||||
print(output.shape) |
||||
print(list(output.flatten())) |
||||
*/ |
||||
|
||||
ConvolutionalParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*5*6*3] = { |
||||
0.7012556460308194, 0.4233847954643357, 0.19515900664313612, 0.16343083004926495, 0.5758261611052848, 0.9510767434014871, 0.11014085055947687, |
||||
0.906327053637727, 0.8136794715542507, 0.45371764543639526, 0.5768443343523952, 0.19543668786046986, 0.15648326047898609, 0.2099500241141279, |
||||
0.17658777090552413, 0.059335724777169196, 0.1729991838469117, 0.8150514704819208, 0.4435535466703049, 0.3752188477566878, 0.749936650421431, |
||||
0.6823494635284907, 0.10776389679424747, 0.34247481674596836, 0.5147867256244629, 0.9063709728129032, 0.12423605800856818, 0.6064872945412728, |
||||
0.5891681538551459, 0.9865836236466314, 0.9002163879294677, 0.003968273184274618, 0.8628374809643967, 0.1327176268279583, 0.8449799925703798, |
||||
0.1937671869354366, 0.41524410152707425, 0.02038786604756837, 0.49792466069597496, 0.8881874553848784, 0.9683921035597336, 0.4122972568010813, |
||||
0.843553550993252, 0.9588482762501964, 0.5190350762645546, 0.4283584264145317, 0.09781496073714646, 0.9501058833776156, 0.8665541760152776, |
||||
0.31669272550095806, 0.07133074675453632, 0.606438007334886, 0.7007157020538224, 0.4827996264130444, 0.5167615606392761, 0.6385043039312651, |
||||
0.23069664707810555, 0.058233497329354456, 0.06323892961591071, 0.24816458893245974, 0.8646369065257812, 0.24742185893094837, 0.09991225948167437, |
||||
0.625700606979606, 0.7678541502111257, 0.6215834594679912, 0.5623003956582483, 0.07389123942681242, 0.7659100715711249, 0.486061471642225, |
||||
0.9947455699829012, 0.9094911797643259, 0.7644355876253265, 0.05384315321492239, 0.13565394382783613, 0.9810628204953316, 0.007386389078887889, |
||||
0.226182754156241, 0.2609021390764772, 0.24182802076928933, 0.13264782451941648, 0.2035816485767682, 0.005504188177612557, 0.7014619934040155, |
||||
0.956215988391991, 0.5670398541013633, 0.9809764721750784, 0.6886338100487461, 0.5758152317218274, 0.7137823176776179 |
||||
}; |
||||
float expected_output[1*5*6*2] = { |
||||
-0.9480655, -0.7169147, -0.9404794, -0.5567385, -0.8991124, -0.8306558, -0.94487447, -0.8932543, -0.88238764, -0.7301602, |
||||
-0.8974813, -0.7026703, -0.8858988, -0.53203243, -0.92881465, -0.5648504, -0.8871471, -0.7000097, -0.91754407, -0.79684794, |
||||
-0.760465, -0.117928326, -0.88302773, -0.8975289, -0.70615053, 0.19231977, -0.8318776, -0.386184, -0.80698484, -0.8556624, |
||||
-0.7336671, -0.6168619, -0.7658234, -0.63449603, -0.73314047, -0.87502456, -0.58158904, -0.4184259, -0.52618927, -0.13613208, |
||||
-0.5093187, -0.21027721, -0.39455596, -0.44507834, -0.22269244, -0.73400885, -0.77655095, -0.74408925, -0.57313335, -0.15333457, |
||||
-0.74620694, -0.34858236, -0.42586932, -0.5240488, 0.1634339, -0.2447881, -0.57927346, -0.62732303, -0.82287043, -0.8474058 |
||||
}; |
||||
float *output; |
||||
float kernel[2*3*3*3] = { |
||||
0.26025516, 0.16536498, -0.24351254, 0.33892477, -0.34005195, 0.35202783, 0.34056443, 0.01422739, 0.13799345, 0.29489166, |
||||
0.2781723, 0.178585, 0.22122234, 0.044115514, 0.13134438, 0.31705368, 0.22527462, -0.021323413, 0.115134746, -0.18216397, |
||||
-0.21197563, -0.027848959, -0.01704529, -0.12401503, -0.23415318, -0.12661739, -0.35338148, 0.20049328, -0.076153606, |
||||
-0.23642601, -0.3125769, -0.025851756, -0.30006272, 0.050762743, 0.32003498, 0.3052225, -0.0017385483, 0.25337684, -0.25664508, |
||||
0.27846587, -0.3112659, 0.2066065, 0.31499845, 0.113178134, 0.09449363, -0.11828774, -0.12671001, -0.36259216, 0.2710235, |
||||
-0.19676702, 0.023612618, -0.2596915, -0.34949252, -0.108270735 |
||||
}; |
||||
float bias[2] = { -1.6574852, -0.72915393 }; |
||||
|
||||
NativeContext ctx; |
||||
ctx.class = NULL; |
||||
ctx.options.conv2d_threads = 1; |
||||
|
||||
params.activation = TANH; |
||||
params.has_bias = 1; |
||||
params.biases = bias; |
||||
params.dilation = 2; |
||||
params.input_num = 3; |
||||
params.kernel = kernel; |
||||
params.kernel_size = 3; |
||||
params.output_num = 2; |
||||
params.padding_method = SAME; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 5; |
||||
operands[0].dims[2] = 6; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
static int test_with_valid(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='valid', bias_initializer=tf.keras.initializers.he_normal()) |
||||
data = np.random.rand(1, 5, 6, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
|
||||
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) |
||||
kernel = weights['conv2d/kernel:0'] |
||||
kernel = np.transpose(kernel, [3, 0, 1, 2]) |
||||
print("kernel:") |
||||
print(kernel.shape) |
||||
print(list(kernel.flatten())) |
||||
|
||||
bias = weights['conv2d/bias:0'] |
||||
print("bias:") |
||||
print(bias.shape) |
||||
print(list(bias.flatten())) |
||||
|
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print("input:") |
||||
print(data.shape) |
||||
print(list(data.flatten())) |
||||
|
||||
print("output:") |
||||
print(output.shape) |
||||
print(list(output.flatten())) |
||||
*/ |
||||
|
||||
ConvolutionalParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*5*6*3] = { |
||||
0.26126657468269665, 0.42762216215337556, 0.7466274030131497, 0.802550266787863, 0.3709323443076644, 0.5919817068197668, 0.49274512279324967, |
||||
0.7170132295090351, 0.0911793215410649, 0.5134213878288361, 0.670132600785118, 0.49417034512633484, 0.03887389460089885, 0.436785102836845, |
||||
0.1490231658611978, 0.6413606121498127, 0.8595987991375995, 0.9132593077586231, 0.7075959004873255, 0.17754995944845464, 0.5212507214937141, |
||||
0.35379732738215475, 0.25205107358505296, 0.3928792840544273, 0.09485294189485782, 0.8685115437448666, 0.6489046799288605, 0.509253797582924, |
||||
0.8993255536791972, 0.18740056466602373, 0.34237617336313986, 0.3871438962989183, 0.1488532571774911, 0.5187002331293636, 0.8137098818752955, |
||||
0.521761863717401, 0.4622312310118274, 0.29038411334638825, 0.16194915718170566, 0.5175999923925211, 0.8852230040101133, 0.0218263385047206, |
||||
0.08482355352852367, 0.3463638568376264, 0.28627127120619733, 0.9553293378948409, 0.4803391055970835, 0.841635695030805, 0.3556828280031952, |
||||
0.06778527221541808, 0.28193560357091596, 0.8399957619031576, 0.03305536359456385, 0.6625039162109645, 0.9300552020023897, 0.8551529138204146, |
||||
0.6133216915522418, 0.222427800857393, 0.1315422686800336, 0.6189144989185527, 0.5346184916866876, 0.8348888624532548, 0.6544834567840291, |
||||
0.2844062293389934, 0.28780026600883324, 0.5372272015684924, 0.6250226011503823, 0.28119106062279453, 0.49655812908420094, 0.6451488959145951, |
||||
0.7362580606834843, 0.44815578616664087, 0.6454760235835586, 0.6794062414265861, 0.045378883014935756, 0.9008388543865096, 0.7949752851269782, |
||||
0.4179928876222264, 0.28733419007048644, 0.996902319501908, 0.5690851338677467, 0.9511814013279738, 0.025323788678181636, 0.5594359732604794, |
||||
0.1213732595086251, 0.7172624313368294, 0.6759328959074691, 0.07252138454885071, 0.17557735158403442, 0.5988895455048769 |
||||
}; |
||||
float expected_output[1*3*4*2] = { |
||||
-0.556947, -0.42143887, -0.092070885, 0.27404794, -0.41886684, 0.0862887, -0.25001016, -0.342721, 0.020730592, 0.04016919, -0.69839877, |
||||
-0.06136704, 0.14186388, -0.11655602, -0.23489095, -0.3845829, -0.19017771, 0.1595885, -0.18308741, -0.3071209, -0.5848686, -0.22509028, |
||||
-0.6023201, -0.14448485 |
||||
}; |
||||
float *output; |
||||
float kernel[2*3*3*3] = { |
||||
-0.25291282, 0.22402048, 0.028642118, -0.14615723, -0.27362752, -0.34801802, -0.2759148, 0.19594926, -0.25029412, 0.34606284, 0.10376671, |
||||
-0.1015394, 0.23616093, 0.2134214, 0.35285157, 0.05893758, 0.0024731457, -0.17143056, 0.35758412, 0.2186206, -0.28384736, -0.21206513, |
||||
-0.20871592, 0.27070445, 0.25878823, 0.11136332, -0.33737376, 0.08353335, -0.34290665, 0.041805506, -0.09738535, 0.3284936, -0.16838405, |
||||
-0.032494456, -0.29193437, 0.033259362, -0.09272635, -0.2802651, -0.28648436, 0.3542878, 0.2432127, -0.24551713, 0.27813476, 0.21024024, |
||||
-0.013690501, -0.1350077, -0.07826337, -0.34563828, 0.3220685, -0.07571727, 0.19420576, 0.20783454, 0.18738335, 0.16672492 |
||||
}; |
||||
float bias[2] = { -0.4773722, -0.19620377 }; |
||||
|
||||
NativeContext ctx; |
||||
ctx.class = NULL; |
||||
ctx.options.conv2d_threads = 1; |
||||
|
||||
params.activation = TANH; |
||||
params.has_bias = 1; |
||||
params.biases = bias; |
||||
params.dilation = 1; |
||||
params.input_num = 3; |
||||
params.kernel = kernel; |
||||
params.kernel_size = 3; |
||||
params.output_num = 2; |
||||
params.padding_method = VALID; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 5; |
||||
operands[0].dims[2] = 6; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test_with_valid()) |
||||
return 1; |
||||
if (test_with_same_dilate()) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
@ -1,131 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_dense.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.layers.dense(input_x, 3, activation=tf.nn.sigmoid, bias_initializer=tf.keras.initializers.he_normal()) |
||||
data = np.random.rand(1, 5, 6, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
|
||||
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) |
||||
kernel = weights['dense/kernel:0'] |
||||
kernel = np.transpose(kernel, [1, 0]) |
||||
print("kernel:") |
||||
print(kernel.shape) |
||||
print(list(kernel.flatten())) |
||||
|
||||
bias = weights['dense/bias:0'] |
||||
print("bias:") |
||||
print(bias.shape) |
||||
print(list(bias.flatten())) |
||||
|
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print("input:") |
||||
print(data.shape) |
||||
print(list(data.flatten())) |
||||
|
||||
print("output:") |
||||
print(output.shape) |
||||
print(list(output.flatten())) |
||||
*/ |
||||
|
||||
DenseParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*5*6*3] = { |
||||
0.5552418686576308, 0.20653189262022464, 0.31115120939398877, 0.5897014433221428, 0.37340078861060655, 0.6470921693941893, 0.8039950367872679, 0.8762700891949274, |
||||
0.6556655583829558, 0.5911096107039339, 0.18640250865290997, 0.2803248779238966, 0.31586613136402053, 0.9447300740056483, 0.9443980824873418, 0.8158851991115941, |
||||
0.5631010340387631, 0.9407402251929046, 0.6485434876551682, 0.5631376966470001, 0.17581924875609634, 0.7033802439103178, 0.04802402495561675, 0.9183681450194972, |
||||
0.46059317944364, 0.07964160481596883, 0.871787076270302, 0.973743142324361, 0.15923146943258415, 0.8212946080584571, 0.5415954459227064, 0.9552813822803975, |
||||
0.4908552668172057, 0.33723691635292274, 0.46588057864910026, 0.8994239961321776, 0.09845220457674186, 0.1713400292123486, 0.39570294912818826, 0.08018956486392803, |
||||
0.5290478278169032, 0.7141906125920976, 0.0320878067840098, 0.6412406575332606, 0.0075712007102423096, 0.7150828462386156, 0.1311989216968138, 0.4706847944253756, |
||||
0.5447610794883336, 0.3430923933318001, 0.536082357943209, 0.4371629342483694, 0.40227962985019927, 0.3553806249465469, 0.031806622424259245, 0.7053916426174, |
||||
0.3261570237309813, 0.419500213292063, 0.3155691223480851, 0.05664028113178088, 0.3636491555914486, 0.8502419746667123, 0.9836596530684955, 0.1628681802975801, |
||||
0.09410832912479894, 0.28407218939480294, 0.7983417928813697, 0.24132158596506748, 0.8154729498062224, 0.29173768373895637, 0.13407102008052096, 0.18705786678800385, |
||||
0.7167943621295573, 0.09222004247174376, 0.2319220738766018, 0.17708964382285064, 0.1391440370249517, 0.3254088083499256, 0.4013916894718289, 0.4819742663322323, |
||||
0.15080103744648077, 0.9302407847555013, 0.9397597961319524, 0.5719200825550793, 0.9538938024682824, 0.9583882089203861, 0.5168861091262276, 0.1926396841842669, |
||||
0.6781176744337578, 0.719366447288566 |
||||
}; |
||||
float expected_output[1*5*6*3] = { |
||||
-0.3921688, -0.9243112, -0.29659146, -0.64000785, -0.9466343, -0.62125254, -0.71759033, -0.9171336, -0.735589, -0.34365994, |
||||
-0.92100817, -0.23903961, -0.8962277, -0.9521279, -0.90962386, -0.7488303, -0.9563761, -0.7701762, -0.40800542, -0.87684774, |
||||
-0.3339763, -0.6354543, -0.97068924, -0.6246325, -0.6992075, -0.9706726, -0.6818918, -0.51864433, -0.9592881, -0.51187396, |
||||
-0.7423632, -0.89911884, -0.7457824, -0.82009757, -0.96402895, -0.8235518, -0.61980766, -0.94494647, -0.5410502, -0.8281218, |
||||
-0.95508635, -0.8201453, -0.5937325, -0.8679507, -0.500767, -0.39430764, -0.93967676, -0.32183182, -0.58913624, -0.939717, |
||||
-0.55179894, -0.55004454, -0.9214453, -0.4889004, -0.75294703, -0.9118363, -0.7200309, -0.3248641, -0.8878874, -0.18977344, |
||||
-0.8873837, -0.9571257, -0.90145934, -0.50521654, -0.93739635, -0.39051685, -0.61143184, -0.9591179, -0.605999, -0.40008977, |
||||
-0.92219675, -0.26732883, -0.19607787, -0.9172511, -0.07068595, -0.5409857, -0.9387041, -0.44181606, -0.4705004, -0.8899935, |
||||
-0.37997037, -0.66105115, -0.89754754, -0.68141997, -0.6324047, -0.886776, -0.65066385, -0.8334821, -0.94801456, -0.83297 |
||||
}; |
||||
float *output; |
||||
float kernel[3*3] = { |
||||
0.56611896, -0.5144603, -0.82600045, 0.19219112, 0.3835776, -0.7475352, 0.5209291, -0.6301091, -0.99442935}; |
||||
float bias[3] = {-0.3654299, -1.5711838, -0.15546428}; |
||||
|
||||
params.activation = TANH; |
||||
params.has_bias = 1; |
||||
params.biases = bias; |
||||
params.input_num = 3; |
||||
params.kernel = kernel; |
||||
params.output_num = 3; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 5; |
||||
operands[0].dims[2] = 6; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_dense(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test()) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
@ -1,102 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native.h" |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_depth2space.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 4]) |
||||
y = tf.depth_to_space(x, 2) |
||||
data = np.random.rand(1, 5, 3, 4); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
|
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print("input:") |
||||
print(data.shape) |
||||
print(list(data.flatten())) |
||||
|
||||
print("output:") |
||||
print(output.shape) |
||||
print(list(output.flatten())) |
||||
*/ |
||||
|
||||
DepthToSpaceParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*5*3*4] = { |
||||
0.09771065121566602, 0.6336807372403175, 0.5142416549709786, 0.8027206567330333, 0.2154276025069397, 0.12112878462616772, 0.913936596765778, |
||||
0.38881443647542646, 0.5850447615898835, 0.9311499327398275, 0.3613660929428246, 0.5420722002125493, 0.6002131190230359, 0.44800665702299525, |
||||
0.7271322557896777, 0.3869293511885826, 0.5144404769364138, 0.6910844856987723, 0.6142102742269762, 0.6249991371621018, 0.45663376215836626, |
||||
0.19523477129943423, 0.2483895888532045, 0.64326768256278, 0.5485877602998981, 0.45442067849873546, 0.529374943304256, 0.30439850391811885, |
||||
0.11961343361340993, 0.2909643484561082, 0.9810970344127848, 0.8886928489786549, 0.6112237084436409, 0.8852482695156674, 0.9110868043114374, |
||||
0.21242780027585217, 0.7101536973207572, 0.9709717457443375, 0.2702666770969332, 0.7718295953780221, 0.3957005164588574, 0.24383544252475453, |
||||
0.040143453532367035, 0.26358051835323115, 0.013130251443791319, 0.3016550481482074, 0.03582340459943956, 0.718025513612361, 0.09844204177633753, |
||||
0.04433767496953056, 0.6221895044119757, 0.6190414032940228, 0.8963550834625371, 0.5642449700064629, 0.2482982014723497, 0.17824909294583013, |
||||
0.024401882408643272, 0.21742800875253465, 0.6794724473181843, 0.4814830479242237 |
||||
}; |
||||
float expected_output[1*10*6*1] = { |
||||
0.097710654, 0.63368076, 0.2154276, 0.12112878, 0.58504474, 0.93114996, 0.51424164, 0.80272067, 0.9139366, 0.38881445, |
||||
0.3613661, 0.5420722, 0.6002131, 0.44800666, 0.5144405, 0.6910845, 0.45663378, 0.19523478, 0.72713226, 0.38692936, |
||||
0.61421025, 0.62499917, 0.24838959, 0.6432677, 0.54858774, 0.4544207, 0.11961343, 0.29096434, 0.6112237, 0.88524824, |
||||
0.52937496, 0.3043985, 0.98109704, 0.88869286, 0.9110868, 0.2124278, 0.7101537, 0.97097176, 0.3957005, 0.24383545, |
||||
0.013130251, 0.30165505, 0.27026668, 0.7718296, 0.040143453, 0.26358053, 0.035823405, 0.7180255, 0.09844204, |
||||
0.044337675, 0.8963551, 0.564245, 0.024401883, 0.21742801, 0.6221895, 0.6190414, 0.2482982, 0.17824909, 0.67947245, 0.48148304 |
||||
}; |
||||
float *output; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 5; |
||||
operands[0].dims[2] = 3; |
||||
operands[0].dims[3] = 4; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
params.block_size = 2; |
||||
ff_dnn_execute_layer_depth2space(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
return test(); |
||||
} |
@ -1,214 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_mathbinary.h" |
||||
#include "libavutil/avassert.h" |
||||
|
||||
#define EPSON 0.00005 |
||||
|
||||
static float get_expected(float f1, float f2, DNNMathBinaryOperation op) |
||||
{ |
||||
switch (op) |
||||
{ |
||||
case DMBO_SUB: |
||||
return f1 - f2; |
||||
case DMBO_ADD: |
||||
return f1 + f2; |
||||
case DMBO_MUL: |
||||
return f1 * f2; |
||||
case DMBO_REALDIV: |
||||
return f1 / f2; |
||||
case DMBO_MINIMUM: |
||||
return (f1 < f2) ? f1 : f2; |
||||
case DMBO_FLOORMOD: |
||||
return (float)((int)(f1) % (int)(f2)); |
||||
default: |
||||
av_assert0(!"not supported yet"); |
||||
return 0.f; |
||||
} |
||||
} |
||||
|
||||
static int test_broadcast_input0(DNNMathBinaryOperation op) |
||||
{ |
||||
DnnLayerMathBinaryParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*1*2*3] = { |
||||
-3, 2.5, 2, -2.1, 7.8, 100 |
||||
}; |
||||
float *output; |
||||
|
||||
params.bin_op = op; |
||||
params.input0_broadcast = 1; |
||||
params.input1_broadcast = 0; |
||||
params.v = 7.28; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 1; |
||||
operands[0].dims[2] = 2; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(input) / sizeof(float); i++) { |
||||
float expected_output = get_expected(params.v, input[i], op); |
||||
if (fabs(output[i] - expected_output) > EPSON) { |
||||
printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", |
||||
op, i, output[i], expected_output, __FILE__, __LINE__); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
static int test_broadcast_input1(DNNMathBinaryOperation op) |
||||
{ |
||||
DnnLayerMathBinaryParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*1*2*3] = { |
||||
-3, 2.5, 2, -2.1, 7.8, 100 |
||||
}; |
||||
float *output; |
||||
|
||||
params.bin_op = op; |
||||
params.input0_broadcast = 0; |
||||
params.input1_broadcast = 1; |
||||
params.v = 7.28; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 1; |
||||
operands[0].dims[2] = 2; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(input) / sizeof(float); i++) { |
||||
float expected_output = get_expected(input[i], params.v, op); |
||||
if (fabs(output[i] - expected_output) > EPSON) { |
||||
printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", |
||||
op, i, output[i], expected_output, __FILE__, __LINE__); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
static int test_no_broadcast(DNNMathBinaryOperation op) |
||||
{ |
||||
DnnLayerMathBinaryParams params; |
||||
DnnOperand operands[3]; |
||||
int32_t input_indexes[2]; |
||||
float input0[1*1*2*3] = { |
||||
-3, 2.5, 2, -2.1, 7.8, 100 |
||||
}; |
||||
float input1[1*1*2*3] = { |
||||
-1, 2, 3, -21, 8, 10.0 |
||||
}; |
||||
float *output; |
||||
|
||||
params.bin_op = op; |
||||
params.input0_broadcast = 0; |
||||
params.input1_broadcast = 0; |
||||
|
||||
operands[0].data = input0; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 1; |
||||
operands[0].dims[2] = 2; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = input1; |
||||
operands[1].dims[0] = 1; |
||||
operands[1].dims[1] = 1; |
||||
operands[1].dims[2] = 2; |
||||
operands[1].dims[3] = 3; |
||||
operands[2].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
input_indexes[1] = 1; |
||||
ff_dnn_execute_layer_math_binary(operands, input_indexes, 2, ¶ms, NULL); |
||||
|
||||
output = operands[2].data; |
||||
for (int i = 0; i < sizeof(input0) / sizeof(float); i++) { |
||||
float expected_output = get_expected(input0[i], input1[i], op); |
||||
if (fabs(output[i] - expected_output) > EPSON) { |
||||
printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", |
||||
op, i, output[i], expected_output, __FILE__, __LINE__); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
static int test(DNNMathBinaryOperation op) |
||||
{ |
||||
if (test_broadcast_input0(op)) |
||||
return 1; |
||||
|
||||
if (test_broadcast_input1(op)) |
||||
return 1; |
||||
|
||||
if (test_no_broadcast(op)) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test(DMBO_SUB)) |
||||
return 1; |
||||
|
||||
if (test(DMBO_ADD)) |
||||
return 1; |
||||
|
||||
if (test(DMBO_MUL)) |
||||
return 1; |
||||
|
||||
if (test(DMBO_REALDIV)) |
||||
return 1; |
||||
|
||||
if (test(DMBO_MINIMUM)) |
||||
return 1; |
||||
|
||||
if (test(DMBO_FLOORMOD)) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
@ -1,148 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2020 |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_mathunary.h" |
||||
#include "libavutil/avassert.h" |
||||
|
||||
#define EPS 0.00001 |
||||
|
||||
static float get_expected(float f, DNNMathUnaryOperation op) |
||||
{ |
||||
switch (op) |
||||
{ |
||||
case DMUO_ABS: |
||||
return (f >= 0) ? f : -f; |
||||
case DMUO_SIN: |
||||
return sin(f); |
||||
case DMUO_COS: |
||||
return cos(f); |
||||
case DMUO_TAN: |
||||
return tan(f); |
||||
case DMUO_ASIN: |
||||
return asin(f); |
||||
case DMUO_ACOS: |
||||
return acos(f); |
||||
case DMUO_ATAN: |
||||
return atan(f); |
||||
case DMUO_SINH: |
||||
return sinh(f); |
||||
case DMUO_COSH: |
||||
return cosh(f); |
||||
case DMUO_TANH: |
||||
return tanh(f); |
||||
case DMUO_ASINH: |
||||
return asinh(f); |
||||
case DMUO_ACOSH: |
||||
return acosh(f); |
||||
case DMUO_ATANH: |
||||
return atanh(f); |
||||
case DMUO_CEIL: |
||||
return ceil(f); |
||||
case DMUO_FLOOR: |
||||
return floor(f); |
||||
case DMUO_ROUND: |
||||
return round(f); |
||||
case DMUO_EXP: |
||||
return exp(f); |
||||
default: |
||||
av_assert0(!"not supported yet"); |
||||
return 0.f; |
||||
} |
||||
} |
||||
|
||||
static int test(DNNMathUnaryOperation op) |
||||
{ |
||||
DnnLayerMathUnaryParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*1*3*3] = { |
||||
0.1, 0.5, 0.75, -3, 2.5, 2, -2.1, 7.8, 100}; |
||||
float *output; |
||||
|
||||
params.un_op = op; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 1; |
||||
operands[0].dims[2] = 3; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_math_unary(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(input) / sizeof(float); ++i) { |
||||
float expected_output = get_expected(input[i], op); |
||||
int output_nan = isnan(output[i]); |
||||
int expected_nan = isnan(expected_output); |
||||
if ((!output_nan && !expected_nan && fabs(output[i] - expected_output) > EPS) || |
||||
(output_nan && !expected_nan) || (!output_nan && expected_nan)) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
} |
||||
|
||||
int main(int agrc, char **argv) |
||||
{ |
||||
if (test(DMUO_ABS)) |
||||
return 1; |
||||
if (test(DMUO_SIN)) |
||||
return 1; |
||||
if (test(DMUO_COS)) |
||||
return 1; |
||||
if (test(DMUO_TAN)) |
||||
return 1; |
||||
if (test(DMUO_ASIN)) |
||||
return 1; |
||||
if (test(DMUO_ACOS)) |
||||
return 1; |
||||
if (test(DMUO_ATAN)) |
||||
return 1; |
||||
if (test(DMUO_SINH)) |
||||
return 1; |
||||
if (test(DMUO_COSH)) |
||||
return 1; |
||||
if (test(DMUO_TANH)) |
||||
return 1; |
||||
if (test(DMUO_ASINH)) |
||||
return 1; |
||||
if (test(DMUO_ACOSH)) |
||||
return 1; |
||||
if (test(DMUO_ATANH)) |
||||
return 1; |
||||
if (test(DMUO_CEIL)) |
||||
return 1; |
||||
if (test(DMUO_FLOOR)) |
||||
return 1; |
||||
if (test(DMUO_ROUND)) |
||||
return 1; |
||||
if (test(DMUO_EXP)) |
||||
return 1; |
||||
return 0; |
||||
} |
@ -1,71 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_maximum.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test(void) |
||||
{ |
||||
DnnLayerMaximumParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*1*2*3] = { |
||||
-3, 2.5, 2, -2.1, 7.8, 100 |
||||
}; |
||||
float *output; |
||||
|
||||
params.val.y = 2.3; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 1; |
||||
operands[0].dims[2] = 2; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_maximum(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(input) / sizeof(float); i++) { |
||||
float expected_output = input[i] > params.val.y ? input[i] : params.val.y; |
||||
if (fabs(output[i] - expected_output) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
|
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test()) |
||||
return 1; |
||||
|
||||
return 0; |
||||
} |
@ -1,239 +0,0 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_pad.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test_with_mode_symmetric(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') |
||||
data = np.arange(48).reshape(1, 4, 4, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print(list(data.flatten())) |
||||
print(list(output.flatten())) |
||||
print(data.shape) |
||||
print(output.shape) |
||||
*/ |
||||
|
||||
LayerPadParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*4*4*3] = { |
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 |
||||
}; |
||||
float expected_output[1*9*9*3] = { |
||||
18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, |
||||
4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, |
||||
4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, |
||||
21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, |
||||
34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, |
||||
44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, |
||||
27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, |
||||
13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 |
||||
}; |
||||
float *output; |
||||
|
||||
params.mode = LPMP_SYMMETRIC; |
||||
params.paddings[0][0] = 0; |
||||
params.paddings[0][1] = 0; |
||||
params.paddings[1][0] = 2; |
||||
params.paddings[1][1] = 3; |
||||
params.paddings[2][0] = 3; |
||||
params.paddings[2][1] = 2; |
||||
params.paddings[3][0] = 0; |
||||
params.paddings[3][1] = 0; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 4; |
||||
operands[0].dims[2] = 4; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
|
||||
} |
||||
|
||||
static int test_with_mode_reflect(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) |
||||
y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') |
||||
data = np.arange(36).reshape(3, 2, 2, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print(list(data.flatten())) |
||||
print(list(output.flatten())) |
||||
print(data.shape) |
||||
print(output.shape) |
||||
*/ |
||||
|
||||
LayerPadParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[3*2*2*3] = { |
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 |
||||
}; |
||||
float expected_output[6*2*2*3] = { |
||||
12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, |
||||
12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, |
||||
35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 |
||||
}; |
||||
float *output; |
||||
|
||||
params.mode = LPMP_REFLECT; |
||||
params.paddings[0][0] = 1; |
||||
params.paddings[0][1] = 2; |
||||
params.paddings[1][0] = 0; |
||||
params.paddings[1][1] = 0; |
||||
params.paddings[2][0] = 0; |
||||
params.paddings[2][1] = 0; |
||||
params.paddings[3][0] = 0; |
||||
params.paddings[3][1] = 0; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 3; |
||||
operands[0].dims[1] = 2; |
||||
operands[0].dims[2] = 2; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
|
||||
} |
||||
|
||||
static int test_with_mode_constant(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728) |
||||
data = np.arange(12).reshape(1, 2, 2, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print(list(data.flatten())) |
||||
print(list(output.flatten())) |
||||
print(data.shape) |
||||
print(output.shape) |
||||
*/ |
||||
|
||||
LayerPadParams params; |
||||
DnnOperand operands[2]; |
||||
int32_t input_indexes[1]; |
||||
float input[1*2*2*3] = { |
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 |
||||
}; |
||||
float expected_output[1*3*2*6] = { |
||||
728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, |
||||
728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0, |
||||
728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0 |
||||
}; |
||||
float *output; |
||||
|
||||
params.mode = LPMP_CONSTANT; |
||||
params.constant_values = 728; |
||||
params.paddings[0][0] = 0; |
||||
params.paddings[0][1] = 0; |
||||
params.paddings[1][0] = 1; |
||||
params.paddings[1][1] = 0; |
||||
params.paddings[2][0] = 0; |
||||
params.paddings[2][1] = 0; |
||||
params.paddings[3][0] = 1; |
||||
params.paddings[3][1] = 2; |
||||
|
||||
operands[0].data = input; |
||||
operands[0].dims[0] = 1; |
||||
operands[0].dims[1] = 2; |
||||
operands[0].dims[2] = 2; |
||||
operands[0].dims[3] = 3; |
||||
operands[1].data = NULL; |
||||
|
||||
input_indexes[0] = 0; |
||||
ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); |
||||
|
||||
output = operands[1].data; |
||||
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
av_freep(&output); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
av_freep(&output); |
||||
return 0; |
||||
|
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test_with_mode_symmetric()) |
||||
return 1; |
||||
|
||||
if (test_with_mode_reflect()) |
||||
return 1; |
||||
|
||||
if (test_with_mode_constant()) |
||||
return 1; |
||||
} |
@ -1,45 +0,0 @@ |
||||
DNNTESTSDIR := libavfilter/tests
|
||||
|
||||
FATE_DNN += fate-dnn-layer-pad
|
||||
fate-dnn-layer-pad: $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF) |
||||
fate-dnn-layer-pad: CMD = run $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF) |
||||
fate-dnn-layer-pad: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-conv2d
|
||||
fate-dnn-layer-conv2d: $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF) |
||||
fate-dnn-layer-conv2d: CMD = run $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF) |
||||
fate-dnn-layer-conv2d: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-dense
|
||||
fate-dnn-layer-dense: $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF) |
||||
fate-dnn-layer-dense: CMD = run $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF) |
||||
fate-dnn-layer-dense: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-depth2space
|
||||
fate-dnn-layer-depth2space: $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF) |
||||
fate-dnn-layer-depth2space: CMD = run $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF) |
||||
fate-dnn-layer-depth2space: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-mathbinary
|
||||
fate-dnn-layer-mathbinary: $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF) |
||||
fate-dnn-layer-mathbinary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF) |
||||
fate-dnn-layer-mathbinary: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-maximum
|
||||
fate-dnn-layer-maximum: $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF) |
||||
fate-dnn-layer-maximum: CMD = run $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF) |
||||
fate-dnn-layer-maximum: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-mathunary
|
||||
fate-dnn-layer-mathunary: $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF) |
||||
fate-dnn-layer-mathunary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF) |
||||
fate-dnn-layer-mathunary: CMP = null |
||||
|
||||
FATE_DNN += fate-dnn-layer-avgpool
|
||||
fate-dnn-layer-avgpool: $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF) |
||||
fate-dnn-layer-avgpool: CMD = run $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF) |
||||
fate-dnn-layer-avgpool: CMP = null |
||||
|
||||
FATE-$(CONFIG_DNN) += $(FATE_DNN)
|
||||
|
||||
fate-dnn: $(FATE_DNN) |
Loading…
Reference in new issue