|
|
|
@ -28,7 +28,12 @@ |
|
|
|
|
#include "libavutil/avassert.h" |
|
|
|
|
#include <c_api/ie_c_api.h> |
|
|
|
|
|
|
|
|
|
typedef struct OVContext { |
|
|
|
|
const AVClass *class; |
|
|
|
|
} OVContext; |
|
|
|
|
|
|
|
|
|
typedef struct OVModel{ |
|
|
|
|
OVContext ctx; |
|
|
|
|
ie_core_t *core; |
|
|
|
|
ie_network_t *network; |
|
|
|
|
ie_executable_network_t *exe_network; |
|
|
|
@ -36,6 +41,14 @@ typedef struct OVModel{ |
|
|
|
|
ie_blob_t *input_blob; |
|
|
|
|
} OVModel; |
|
|
|
|
|
|
|
|
|
static const AVClass dnn_openvino_class = { |
|
|
|
|
.class_name = "dnn_openvino", |
|
|
|
|
.item_name = av_default_item_name, |
|
|
|
|
.option = NULL, |
|
|
|
|
.version = LIBAVUTIL_VERSION_INT, |
|
|
|
|
.category = AV_CLASS_CATEGORY_FILTER, |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
static DNNDataType precision_to_datatype(precision_e precision) |
|
|
|
|
{ |
|
|
|
|
switch (precision) |
|
|
|
@ -51,6 +64,7 @@ static DNNDataType precision_to_datatype(precision_e precision) |
|
|
|
|
static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input_name) |
|
|
|
|
{ |
|
|
|
|
OVModel *ov_model = (OVModel *)model; |
|
|
|
|
OVContext *ctx = &ov_model->ctx; |
|
|
|
|
char *model_input_name = NULL; |
|
|
|
|
IEStatusCode status; |
|
|
|
|
size_t model_input_count = 0; |
|
|
|
@ -58,25 +72,33 @@ static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input |
|
|
|
|
precision_e precision; |
|
|
|
|
|
|
|
|
|
status = ie_network_get_inputs_number(ov_model->network, &model_input_count); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to get input count\n"); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < model_input_count; i++) { |
|
|
|
|
status = ie_network_get_input_name(ov_model->network, i, &model_input_name); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to get No.%d input's name\n", (int)i); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
if (strcmp(model_input_name, input_name) == 0) { |
|
|
|
|
ie_network_name_free(&model_input_name); |
|
|
|
|
status |= ie_network_get_input_dims(ov_model->network, input_name, &dims); |
|
|
|
|
status |= ie_network_get_input_precision(ov_model->network, input_name, &precision); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to get No.%d input's dims or precision\n", (int)i); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// The order of dims in the openvino is fixed and it is always NCHW for 4-D data.
|
|
|
|
|
// while we pass NHWC data from FFmpeg to openvino
|
|
|
|
|
status = ie_network_set_input_layout(ov_model->network, input_name, NHWC); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Input \"%s\" does not match layout NHWC\n", input_name); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
input->channels = dims.dims[1]; |
|
|
|
|
input->height = dims.dims[2]; |
|
|
|
@ -88,12 +110,14 @@ static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input |
|
|
|
|
ie_network_name_free(&model_input_name); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", model_input_name); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input_name) |
|
|
|
|
{ |
|
|
|
|
OVModel *ov_model = (OVModel *)model; |
|
|
|
|
OVContext *ctx = &ov_model->ctx; |
|
|
|
|
IEStatusCode status; |
|
|
|
|
dimensions_t dims; |
|
|
|
|
precision_e precision; |
|
|
|
@ -129,6 +153,7 @@ err: |
|
|
|
|
ie_blob_free(&ov_model->input_blob); |
|
|
|
|
if (ov_model->infer_request) |
|
|
|
|
ie_infer_request_free(&ov_model->infer_request); |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to create inference instance or get input data/dims/precision/memory\n"); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -147,6 +172,7 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options) |
|
|
|
|
ov_model = av_mallocz(sizeof(OVModel)); |
|
|
|
|
if (!ov_model) |
|
|
|
|
goto err; |
|
|
|
|
ov_model->ctx.class = &dnn_openvino_class; |
|
|
|
|
|
|
|
|
|
status = ie_core_create("", &ov_model->core); |
|
|
|
|
if (status != OK) |
|
|
|
@ -188,25 +214,34 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, c |
|
|
|
|
precision_e precision; |
|
|
|
|
ie_blob_buffer_t blob_buffer; |
|
|
|
|
OVModel *ov_model = (OVModel *)model->model; |
|
|
|
|
OVContext *ctx = &ov_model->ctx; |
|
|
|
|
IEStatusCode status = ie_infer_request_infer(ov_model->infer_request); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n"); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < nb_output; ++i) { |
|
|
|
|
const char *output_name = output_names[i]; |
|
|
|
|
ie_blob_t *output_blob = NULL; |
|
|
|
|
status = ie_infer_request_get_blob(ov_model->infer_request, output_name, &output_blob); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n"); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
status = ie_blob_get_buffer(output_blob, &blob_buffer); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n"); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
status |= ie_blob_get_dims(output_blob, &dims); |
|
|
|
|
status |= ie_blob_get_precision(output_blob, &precision); |
|
|
|
|
if (status != OK) |
|
|
|
|
if (status != OK) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n"); |
|
|
|
|
return DNN_ERROR; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
outputs[i].channels = dims.dims[1]; |
|
|
|
|
outputs[i].height = dims.dims[2]; |
|
|
|
|