lavfi/dnn_backend_tf: Error Handling

This commit adds handling for cases where an error may occur, clearing
the allocated memory resources.

Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
pull/359/head
Shubhanshu Saxena 4 years ago committed by Guo Yejun
parent 84e4e60fdc
commit 6f9570a633
  1. 80
      libavfilter/dnn/dnn_backend_tf.c

@ -127,14 +127,18 @@ static TFInferRequest *tf_create_inference_request(void)
static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue) static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue)
{ {
TFModel *tf_model = task->model;
TFContext *ctx = &tf_model->ctx;
InferenceItem *inference = av_malloc(sizeof(*inference)); InferenceItem *inference = av_malloc(sizeof(*inference));
if (!inference) { if (!inference) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for InferenceItem\n");
return DNN_ERROR; return DNN_ERROR;
} }
task->inference_todo = 1; task->inference_todo = 1;
task->inference_done = 0; task->inference_done = 0;
inference->task = task; inference->task = task;
if (ff_queue_push_back(inference_queue, inference) < 0) { if (ff_queue_push_back(inference_queue, inference) < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to push back inference_queue.\n");
av_freep(&inference); av_freep(&inference);
return DNN_ERROR; return DNN_ERROR;
} }
@ -245,14 +249,15 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
if (!in_frame) { if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
return DNN_ERROR; ret = DNN_ERROR;
goto err;
} }
out_frame = av_frame_alloc(); out_frame = av_frame_alloc();
if (!out_frame) { if (!out_frame) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n"); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n");
av_frame_free(&in_frame); ret = DNN_ERROR;
return DNN_ERROR; goto err;
} }
in_frame->width = input_width; in_frame->width = input_width;
@ -269,19 +274,22 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) { if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
return DNN_ERROR; ret = DNN_ERROR;
goto err;
} }
request = ff_safe_queue_pop_front(tf_model->request_queue); request = ff_safe_queue_pop_front(tf_model->request_queue);
if (!request) { if (!request) {
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return DNN_ERROR; ret = DNN_ERROR;
goto err;
} }
ret = execute_model_tf(request, tf_model->inference_queue); ret = execute_model_tf(request, tf_model->inference_queue);
*output_width = out_frame->width; *output_width = out_frame->width;
*output_height = out_frame->height; *output_height = out_frame->height;
err:
av_frame_free(&out_frame); av_frame_free(&out_frame);
av_frame_free(&in_frame); av_frame_free(&in_frame);
return ret; return ret;
@ -802,17 +810,12 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
av_opt_set_defaults(ctx); av_opt_set_defaults(ctx);
if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) { if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
av_freep(&tf_model); goto err;
av_freep(&model);
return NULL;
} }
if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
av_freep(&tf_model); goto err;
av_freep(&model);
return NULL;
} }
} }
@ -821,14 +824,34 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
} }
tf_model->request_queue = ff_safe_queue_create(); tf_model->request_queue = ff_safe_queue_create();
if (!tf_model->request_queue) {
goto err;
}
for (int i = 0; i < ctx->options.nireq; i++) { for (int i = 0; i < ctx->options.nireq; i++) {
TFRequestItem *item = av_mallocz(sizeof(*item)); TFRequestItem *item = av_mallocz(sizeof(*item));
if (!item) {
goto err;
}
item->infer_request = tf_create_inference_request(); item->infer_request = tf_create_inference_request();
ff_safe_queue_push_back(tf_model->request_queue, item); if (!item->infer_request) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for TensorFlow inference request\n");
av_freep(&item);
goto err;
}
if (ff_safe_queue_push_back(tf_model->request_queue, item) < 0) {
av_freep(&item->infer_request);
av_freep(&item);
goto err;
}
} }
tf_model->inference_queue = ff_queue_create(); tf_model->inference_queue = ff_queue_create();
if (!tf_model->inference_queue) {
goto err;
}
model->model = tf_model; model->model = tf_model;
model->get_input = &get_input_tf; model->get_input = &get_input_tf;
model->get_output = &get_output_tf; model->get_output = &get_output_tf;
@ -837,6 +860,9 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
model->func_type = func_type; model->func_type = func_type;
return model; return model;
err:
ff_dnn_free_model_tf(&model);
return NULL;
} }
static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) { static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
@ -851,24 +877,31 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
task = inference->task; task = inference->task;
request->inference = inference; request->inference = inference;
if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) {
return DNN_ERROR; goto err;
}
infer_request = request->infer_request; infer_request = request->infer_request;
input.height = task->in_frame->height; input.height = task->in_frame->height;
input.width = task->in_frame->width; input.width = task->in_frame->width;
infer_request->tf_input = av_malloc(sizeof(TF_Output)); infer_request->tf_input = av_malloc(sizeof(TF_Output));
if (!infer_request->tf_input) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
goto err;
}
infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name); infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name);
if (!infer_request->tf_input->oper){ if (!infer_request->tf_input->oper){
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
return DNN_ERROR; goto err;
} }
infer_request->tf_input->index = 0; infer_request->tf_input->index = 0;
infer_request->input_tensor = allocate_input_tensor(&input); infer_request->input_tensor = allocate_input_tensor(&input);
if (!infer_request->input_tensor){ if (!infer_request->input_tensor){
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
return DNN_ERROR; goto err;
} }
input.data = (float *)TF_TensorData(infer_request->input_tensor); input.data = (float *)TF_TensorData(infer_request->input_tensor);
@ -893,13 +926,13 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output)); infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
if (infer_request->tf_outputs == NULL) { if (infer_request->tf_outputs == NULL) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n");
return DNN_ERROR; goto err;
} }
infer_request->output_tensors = av_mallocz_array(task->nb_output, sizeof(*infer_request->output_tensors)); infer_request->output_tensors = av_mallocz_array(task->nb_output, sizeof(*infer_request->output_tensors));
if (!infer_request->output_tensors) { if (!infer_request->output_tensors) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n");
return DNN_ERROR; goto err;
} }
for (int i = 0; i < task->nb_output; ++i) { for (int i = 0; i < task->nb_output; ++i) {
@ -907,12 +940,15 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]); infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
if (!infer_request->tf_outputs[i].oper) { if (!infer_request->tf_outputs[i].oper) {
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]);
return DNN_ERROR; goto err;
} }
infer_request->tf_outputs[i].index = 0; infer_request->tf_outputs[i].index = 0;
} }
return DNN_SUCCESS; return DNN_SUCCESS;
err:
tf_free_request(infer_request);
return DNN_ERROR;
} }
static void infer_completion_callback(void *args) { static void infer_completion_callback(void *args) {
@ -983,6 +1019,10 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q
TaskItem *task; TaskItem *task;
inference = ff_queue_peek_front(inference_queue); inference = ff_queue_peek_front(inference_queue);
if (!inference) {
av_log(NULL, AV_LOG_ERROR, "Failed to get inference item\n");
return DNN_ERROR;
}
task = inference->task; task = inference->task;
tf_model = task->model; tf_model = task->model;
ctx = &tf_model->ctx; ctx = &tf_model->ctx;

Loading…
Cancel
Save