|
|
|
@ -130,7 +130,6 @@ static uint16_t band_index_long[9][23]; |
|
|
|
|
static INTFLOAT is_table[2][16]; |
|
|
|
|
static INTFLOAT is_table_lsf[2][2][16]; |
|
|
|
|
static INTFLOAT csa_table[8][4]; |
|
|
|
|
static INTFLOAT mdct_win[8][36]; |
|
|
|
|
|
|
|
|
|
static int16_t division_tab3[1<<6 ]; |
|
|
|
|
static int16_t division_tab5[1<<8 ]; |
|
|
|
@ -417,43 +416,6 @@ static av_cold void decode_init_static(void) |
|
|
|
|
csa_table[i][3] = ca - cs; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* compute mdct windows */ |
|
|
|
|
for (i = 0; i < 36; i++) { |
|
|
|
|
for (j = 0; j < 4; j++) { |
|
|
|
|
double d; |
|
|
|
|
|
|
|
|
|
if (j == 2 && i % 3 != 1) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
d = sin(M_PI * (i + 0.5) / 36.0); |
|
|
|
|
if (j == 1) { |
|
|
|
|
if (i >= 30) d = 0; |
|
|
|
|
else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0); |
|
|
|
|
else if (i >= 18) d = 1; |
|
|
|
|
} else if (j == 3) { |
|
|
|
|
if (i < 6) d = 0; |
|
|
|
|
else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0); |
|
|
|
|
else if (i < 18) d = 1; |
|
|
|
|
} |
|
|
|
|
//merge last stage of imdct into the window coefficients
|
|
|
|
|
d *= 0.5 / cos(M_PI * (2 * i + 19) / 72); |
|
|
|
|
|
|
|
|
|
if (j == 2) |
|
|
|
|
mdct_win[j][i/3] = FIXHR((d / (1<<5))); |
|
|
|
|
else |
|
|
|
|
mdct_win[j][i ] = FIXHR((d / (1<<5))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* NOTE: we do frequency inversion adter the MDCT by changing
|
|
|
|
|
the sign of the right window coefs */ |
|
|
|
|
for (j = 0; j < 4; j++) { |
|
|
|
|
for (i = 0; i < 36; i += 2) { |
|
|
|
|
mdct_win[j + 4][i ] = mdct_win[j][i ]; |
|
|
|
|
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static av_cold int decode_init(AVCodecContext * avctx) |
|
|
|
@ -483,32 +445,9 @@ static av_cold int decode_init(AVCodecContext * avctx) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#define C3 FIXHR(0.86602540378443864676/2) |
|
|
|
|
|
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
|
|
|
static const INTFLOAT icos36[9] = { |
|
|
|
|
FIXR(0.50190991877167369479), |
|
|
|
|
FIXR(0.51763809020504152469), //0
|
|
|
|
|
FIXR(0.55168895948124587824), |
|
|
|
|
FIXR(0.61038729438072803416), |
|
|
|
|
FIXR(0.70710678118654752439), //1
|
|
|
|
|
FIXR(0.87172339781054900991), |
|
|
|
|
FIXR(1.18310079157624925896), |
|
|
|
|
FIXR(1.93185165257813657349), //2
|
|
|
|
|
FIXR(5.73685662283492756461), |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
|
|
|
static const INTFLOAT icos36h[9] = { |
|
|
|
|
FIXHR(0.50190991877167369479/2), |
|
|
|
|
FIXHR(0.51763809020504152469/2), //0
|
|
|
|
|
FIXHR(0.55168895948124587824/2), |
|
|
|
|
FIXHR(0.61038729438072803416/2), |
|
|
|
|
FIXHR(0.70710678118654752439/2), //1
|
|
|
|
|
FIXHR(0.87172339781054900991/2), |
|
|
|
|
FIXHR(1.18310079157624925896/4), |
|
|
|
|
FIXHR(1.93185165257813657349/4), //2
|
|
|
|
|
// FIXHR(5.73685662283492756461),
|
|
|
|
|
}; |
|
|
|
|
#define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
|
|
|
|
|
#define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
|
|
|
|
|
#define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
|
|
|
|
|
|
|
|
|
|
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
|
|
|
|
|
cases. */ |
|
|
|
@ -529,7 +468,7 @@ static void imdct12(INTFLOAT *out, INTFLOAT *in) |
|
|
|
|
in3 = MULH3(in3, C3, 4); |
|
|
|
|
|
|
|
|
|
t1 = in0 - in4; |
|
|
|
|
t2 = MULH3(in1 - in5, icos36h[4], 2); |
|
|
|
|
t2 = MULH3(in1 - in5, C4, 2); |
|
|
|
|
|
|
|
|
|
out[ 7] = |
|
|
|
|
out[10] = t1 + t2; |
|
|
|
@ -539,112 +478,20 @@ static void imdct12(INTFLOAT *out, INTFLOAT *in) |
|
|
|
|
in0 += SHR(in4, 1); |
|
|
|
|
in4 = in0 + in2; |
|
|
|
|
in5 += 2*in1; |
|
|
|
|
in1 = MULH3(in5 + in3, icos36h[1], 1); |
|
|
|
|
in1 = MULH3(in5 + in3, C5, 1); |
|
|
|
|
out[ 8] = |
|
|
|
|
out[ 9] = in4 + in1; |
|
|
|
|
out[ 2] = |
|
|
|
|
out[ 3] = in4 - in1; |
|
|
|
|
|
|
|
|
|
in0 -= in2; |
|
|
|
|
in5 = MULH3(in5 - in3, icos36h[7], 2); |
|
|
|
|
in5 = MULH3(in5 - in3, C6, 2); |
|
|
|
|
out[ 0] = |
|
|
|
|
out[ 5] = in0 - in5; |
|
|
|
|
out[ 6] = |
|
|
|
|
out[11] = in0 + in5; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* cos(pi*i/18) */ |
|
|
|
|
#define C1 FIXHR(0.98480775301220805936/2) |
|
|
|
|
#define C2 FIXHR(0.93969262078590838405/2) |
|
|
|
|
#define C3 FIXHR(0.86602540378443864676/2) |
|
|
|
|
#define C4 FIXHR(0.76604444311897803520/2) |
|
|
|
|
#define C5 FIXHR(0.64278760968653932632/2) |
|
|
|
|
#define C6 FIXHR(0.5/2) |
|
|
|
|
#define C7 FIXHR(0.34202014332566873304/2) |
|
|
|
|
#define C8 FIXHR(0.17364817766693034885/2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */ |
|
|
|
|
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; |
|
|
|
|
INTFLOAT tmp[18], *tmp1, *in1; |
|
|
|
|
|
|
|
|
|
for (i = 17; i >= 1; i--) |
|
|
|
|
in[i] += in[i-1]; |
|
|
|
|
for (i = 17; i >= 3; i -= 2) |
|
|
|
|
in[i] += in[i-2]; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < 2; j++) { |
|
|
|
|
tmp1 = tmp + j; |
|
|
|
|
in1 = in + j; |
|
|
|
|
|
|
|
|
|
t2 = in1[2*4] + in1[2*8] - in1[2*2]; |
|
|
|
|
|
|
|
|
|
t3 = in1[2*0] + SHR(in1[2*6],1); |
|
|
|
|
t1 = in1[2*0] - in1[2*6]; |
|
|
|
|
tmp1[ 6] = t1 - SHR(t2,1); |
|
|
|
|
tmp1[16] = t1 + t2; |
|
|
|
|
|
|
|
|
|
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); |
|
|
|
|
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); |
|
|
|
|
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); |
|
|
|
|
|
|
|
|
|
tmp1[10] = t3 - t0 - t2; |
|
|
|
|
tmp1[ 2] = t3 + t0 + t1; |
|
|
|
|
tmp1[14] = t3 + t2 - t1; |
|
|
|
|
|
|
|
|
|
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); |
|
|
|
|
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); |
|
|
|
|
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); |
|
|
|
|
t0 = MULH3(in1[2*3], C3, 2); |
|
|
|
|
|
|
|
|
|
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); |
|
|
|
|
|
|
|
|
|
tmp1[ 0] = t2 + t3 + t0; |
|
|
|
|
tmp1[12] = t2 + t1 - t0; |
|
|
|
|
tmp1[ 8] = t3 - t1 - t0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
i = 0; |
|
|
|
|
for (j = 0; j < 4; j++) { |
|
|
|
|
t0 = tmp[i]; |
|
|
|
|
t1 = tmp[i + 2]; |
|
|
|
|
s0 = t1 + t0; |
|
|
|
|
s2 = t1 - t0; |
|
|
|
|
|
|
|
|
|
t2 = tmp[i + 1]; |
|
|
|
|
t3 = tmp[i + 3]; |
|
|
|
|
s1 = MULH3(t3 + t2, icos36h[ j], 2); |
|
|
|
|
s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS); |
|
|
|
|
|
|
|
|
|
t0 = s0 + s1; |
|
|
|
|
t1 = s0 - s1; |
|
|
|
|
out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)]; |
|
|
|
|
out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)]; |
|
|
|
|
buf[4 * ( 9 + j )] = MULH3(t0, win[18 + 9 + j], 1); |
|
|
|
|
buf[4 * ( 8 - j )] = MULH3(t0, win[18 + 8 - j], 1); |
|
|
|
|
|
|
|
|
|
t0 = s2 + s3; |
|
|
|
|
t1 = s2 - s3; |
|
|
|
|
out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)]; |
|
|
|
|
out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)]; |
|
|
|
|
buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[18 + 9 + 8 - j], 1); |
|
|
|
|
buf[4 * ( j )] = MULH3(t0, win[18 + j], 1); |
|
|
|
|
i += 4; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
s0 = tmp[16]; |
|
|
|
|
s1 = MULH3(tmp[17], icos36h[4], 2); |
|
|
|
|
t0 = s0 + s1; |
|
|
|
|
t1 = s0 - s1; |
|
|
|
|
out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)]; |
|
|
|
|
out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)]; |
|
|
|
|
buf[4 * ( 9 + 4 )] = MULH3(t0, win[18 + 9 + 4], 1); |
|
|
|
|
buf[4 * ( 8 - 4 )] = MULH3(t0, win[18 + 8 - 4], 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* return the number of decoded frames */ |
|
|
|
|
static int mp_decode_layer1(MPADecodeContext *s) |
|
|
|
|
{ |
|
|
|
@ -1366,7 +1213,7 @@ static void compute_antialias(MPADecodeContext *s, GranuleDef *g) |
|
|
|
|
static void compute_imdct(MPADecodeContext *s, GranuleDef *g, |
|
|
|
|
INTFLOAT *sb_samples, INTFLOAT *mdct_buf) |
|
|
|
|
{ |
|
|
|
|
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; |
|
|
|
|
INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1; |
|
|
|
|
INTFLOAT out2[12]; |
|
|
|
|
int i, j, mdct_long_end, sblimit; |
|
|
|
|
|
|
|
|
@ -1392,26 +1239,16 @@ static void compute_imdct(MPADecodeContext *s, GranuleDef *g, |
|
|
|
|
mdct_long_end = sblimit; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
buf = mdct_buf; |
|
|
|
|
ptr = g->sb_hybrid; |
|
|
|
|
for (j = 0; j < mdct_long_end; j++) { |
|
|
|
|
/* apply window & overlap with previous buffer */ |
|
|
|
|
out_ptr = sb_samples + j; |
|
|
|
|
/* select window */ |
|
|
|
|
if (g->switch_point && j < 2) |
|
|
|
|
win1 = mdct_win[0]; |
|
|
|
|
else |
|
|
|
|
win1 = mdct_win[g->block_type]; |
|
|
|
|
/* select frequency inversion */ |
|
|
|
|
win = win1 + ((4 * 36) & -(j & 1)); |
|
|
|
|
imdct36(out_ptr, buf, ptr, win); |
|
|
|
|
out_ptr += 18 * SBLIMIT; |
|
|
|
|
ptr += 18; |
|
|
|
|
buf += (j&3) != 3 ? 1 : (4*18-3); |
|
|
|
|
} |
|
|
|
|
s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid, |
|
|
|
|
mdct_long_end, g->switch_point, |
|
|
|
|
g->block_type); |
|
|
|
|
|
|
|
|
|
buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3); |
|
|
|
|
ptr = g->sb_hybrid + 18 * mdct_long_end; |
|
|
|
|
|
|
|
|
|
for (j = mdct_long_end; j < sblimit; j++) { |
|
|
|
|
/* select frequency inversion */ |
|
|
|
|
win = mdct_win[2 + (4 & -(j & 1))]; |
|
|
|
|
win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))]; |
|
|
|
|
out_ptr = sb_samples + j; |
|
|
|
|
|
|
|
|
|
for (i = 0; i < 6; i++) { |
|
|
|
|