mirror of https://github.com/FFmpeg/FFmpeg.git
Originally committed as revision 16864 to svn://svn.ffmpeg.org/ffmpeg/trunkpull/126/head
parent
9d52d54df3
commit
6860254044
5 changed files with 162 additions and 1 deletions
@ -0,0 +1,127 @@ |
||||
/*
|
||||
* (I)RDFT transforms |
||||
* Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com> |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
#include <math.h> |
||||
#include "dsputil.h" |
||||
|
||||
/**
|
||||
* @file rdft.c |
||||
* (Inverse) Real Discrete Fourier Transforms. |
||||
*/ |
||||
|
||||
/* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */ |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]); |
||||
DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]); |
||||
FFTSample *ff_sin_tabs[] = { |
||||
ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024, |
||||
ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536, |
||||
}; |
||||
|
||||
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans) |
||||
{ |
||||
int n = 1 << nbits; |
||||
int i; |
||||
const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n; |
||||
|
||||
s->nbits = nbits; |
||||
s->inverse = trans == IRDFT || trans == IRIDFT; |
||||
s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1; |
||||
|
||||
if (nbits < 4 || nbits > 16) |
||||
return -1; |
||||
|
||||
if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0) |
||||
return -1; |
||||
|
||||
s->tcos = ff_cos_tabs[nbits-4]; |
||||
s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2); |
||||
for (i = 0; i < (n>>2); i++) { |
||||
s->tcos[i] = cos(i*theta); |
||||
s->tsin[i] = sin(i*theta); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
/** Map one real FFT into two parallel real even and odd FFTs. Then interleave
|
||||
* the two real FFTs into one complex FFT. Unmangle the results. |
||||
* ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
|
||||
*/ |
||||
void ff_rdft_calc_c(RDFTContext* s, FFTSample* data) |
||||
{ |
||||
int i, i1, i2; |
||||
FFTComplex ev, od; |
||||
const int n = 1 << s->nbits; |
||||
const float k1 = 0.5; |
||||
const float k2 = 0.5 - s->inverse; |
||||
const FFTSample *tcos = s->tcos; |
||||
const FFTSample *tsin = s->tsin; |
||||
|
||||
if (!s->inverse) { |
||||
ff_fft_permute(&s->fft, (FFTComplex*)data); |
||||
ff_fft_calc(&s->fft, (FFTComplex*)data); |
||||
} |
||||
/* i=0 is a special case because of packing, the DC term is real, so we
|
||||
are going to throw the N/2 term (also real) in with it. */ |
||||
ev.re = data[0]; |
||||
data[0] = ev.re+data[1]; |
||||
data[1] = ev.re-data[1]; |
||||
for (i = 1; i < (n>>2); i++) { |
||||
i1 = 2*i; |
||||
i2 = n-i1; |
||||
/* Separate even and odd FFTs */ |
||||
ev.re = k1*(data[i1 ]+data[i2 ]); |
||||
od.im = -k2*(data[i1 ]-data[i2 ]); |
||||
ev.im = k1*(data[i1+1]-data[i2+1]); |
||||
od.re = k2*(data[i1+1]+data[i2+1]); |
||||
/* Apply twiddle factors to the odd FFT and add to the even FFT */ |
||||
data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i]; |
||||
data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i]; |
||||
data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i]; |
||||
data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i]; |
||||
} |
||||
data[2*i+1]=s->sign_convention*data[2*i+1]; |
||||
if (s->inverse) { |
||||
data[0] *= k1; |
||||
data[1] *= k1; |
||||
ff_fft_permute(&s->fft, (FFTComplex*)data); |
||||
ff_fft_calc(&s->fft, (FFTComplex*)data); |
||||
} |
||||
} |
||||
|
||||
void ff_rdft_calc(RDFTContext *s, FFTSample *data) |
||||
{ |
||||
ff_rdft_calc_c(s, data); |
||||
} |
||||
|
||||
av_cold void ff_rdft_end(RDFTContext *s) |
||||
{ |
||||
ff_fft_end(&s->fft); |
||||
} |
Loading…
Reference in new issue