@ -58,6 +58,12 @@ enum preset {
NB_PRESETS ,
} ;
enum interp {
INTERP_NATURAL ,
INTERP_PCHIP ,
NB_INTERPS ,
} ;
typedef struct CurvesContext {
const AVClass * class ;
int preset ;
@ -73,6 +79,7 @@ typedef struct CurvesContext {
int is_16bit ;
int depth ;
int parsed_psfile ;
int interp ;
int ( * filter_slice ) ( AVFilterContext * ctx , void * arg , int jobnr , int nb_jobs ) ;
} CurvesContext ;
@ -107,6 +114,9 @@ static const AVOption curves_options[] = {
{ " all " , " set points coordinates for all components " , OFFSET ( comp_points_str_all ) , AV_OPT_TYPE_STRING , { . str = NULL } , . flags = FLAGS } ,
{ " psfile " , " set Photoshop curves file name " , OFFSET ( psfile ) , AV_OPT_TYPE_STRING , { . str = NULL } , . flags = FLAGS } ,
{ " plot " , " save Gnuplot script of the curves in specified file " , OFFSET ( plot_filename ) , AV_OPT_TYPE_STRING , { . str = NULL } , . flags = FLAGS } ,
{ " interp " , " specify the kind of interpolation " , OFFSET ( interp ) , AV_OPT_TYPE_INT , { . i64 = INTERP_NATURAL } , INTERP_NATURAL , NB_INTERPS - 1 , FLAGS , " interp_name " } ,
{ " natural " , " natural cubic spline " , 0 , AV_OPT_TYPE_CONST , { . i64 = INTERP_NATURAL } , 0 , 0 , FLAGS , " interp_name " } ,
{ " pchip " , " monotonically cubic interpolation " , 0 , AV_OPT_TYPE_CONST , { . i64 = INTERP_PCHIP } , 0 , 0 , FLAGS , " interp_name " } ,
{ NULL }
} ;
@ -336,21 +346,239 @@ end:
av_free ( h ) ;
av_free ( r ) ;
return ret ;
}
# define DECLARE_INTERPOLATE_FUNC(nbits) \
static int interpolate # # nbits ( void * log_ctx , uint16_t * y , \
const struct keypoint * points ) \
{ \
return interpolate ( log_ctx , y , points , nbits ) ; \
# define SIGN(x) (x > 0.0 ? 1 : x < 0.0 ? -1 : 0)
/**
* Evalaute the derivative of an edge endpoint
*
* @ param h0 input interval of the interval closest to the edge
* @ param h1 input interval of the interval next to the closest
* @ param m0 linear slope of the interval closest to the edge
* @ param m1 linear slope of the intervalnext to the closest
* @ return edge endpoint derivative
*
* Based on scipy . interpolate . _edge_case ( )
* https : //github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L239
* which is a python implementation of the special case endpoints , as suggested in
* Cleve Moler , Numerical Computing with MATLAB , Chap 3.6 ( pchiptx . m )
*/
static double pchip_edge_case ( double h0 , double h1 , double m0 , double m1 )
{
int mask , mask2 ;
double d ;
d = ( ( 2 * h0 + h1 ) * m0 - h0 * m1 ) / ( h0 + h1 ) ;
mask = SIGN ( d ) ! = SIGN ( m0 ) ;
mask2 = ( SIGN ( m0 ) ! = SIGN ( m1 ) ) & & ( fabs ( d ) > 3. * fabs ( m0 ) ) ;
if ( mask ) d = 0.0 ;
else if ( mask2 ) d = 3.0 * m0 ;
return d ;
}
/**
* Evalaute the piecewise polynomial derivatives at endpoints
*
* @ param n input interval of the interval closest to the edge
* @ param hk input intervals
* @ param mk linear slopes over intervals
* @ param dk endpoint derivatives ( output )
* @ return 0 success
*
* Based on scipy . interpolate . _find_derivatives ( )
* https : //github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L254
*/
static int pchip_find_derivatives ( const int n , const double * hk , const double * mk , double * dk )
{
int ret = 0 ;
const int m = n - 1 ;
int8_t * smk ;
smk = av_malloc ( n ) ;
if ( ! smk ) {
ret = AVERROR ( ENOMEM ) ;
goto end ;
}
/* smk = sgn(mk) */
for ( int i = 0 ; i < n ; i + + ) smk [ i ] = SIGN ( mk [ i ] ) ;
/* check the strict monotonicity */
for ( int i = 0 ; i < m ; i + + ) {
int8_t condition = ( smk [ i + 1 ] ! = smk [ i ] ) | | ( mk [ i + 1 ] = = 0 ) | | ( mk [ i ] = = 0 ) ;
if ( condition ) {
dk [ i + 1 ] = 0.0 ;
} else {
double w1 = 2 * hk [ i + 1 ] + hk [ i ] ;
double w2 = hk [ i + 1 ] + 2 * hk [ i ] ;
dk [ i + 1 ] = ( w1 + w2 ) / ( w1 / mk [ i ] + w2 / mk [ i + 1 ] ) ;
}
}
dk [ 0 ] = pchip_edge_case ( hk [ 0 ] , hk [ 1 ] , mk [ 0 ] , mk [ 1 ] ) ;
dk [ n ] = pchip_edge_case ( hk [ n - 1 ] , hk [ n - 2 ] , mk [ n - 1 ] , mk [ n - 2 ] ) ;
end :
av_free ( smk ) ;
return ret ;
}
/**
* Evalaute half of the cubic hermite interpolation expression , wrt one interval endpoint
*
* @ param x normalized input value at the endpoint
* @ param f output value at the endpoint
* @ param d derivative at the endpoint : normalized to the interval , and properly sign adjusted
* @ return half of the interpolated value
*/
static inline double interp_cubic_hermite_half ( const double x , const double f ,
const double d )
{
double x2 = x * x , x3 = x2 * x ;
return f * ( 3.0 * x2 - 2.0 * x3 ) + d * ( x3 - x2 ) ;
}
/**
* Prepare the lookup table by piecewise monotonic cubic interpolation ( PCHIP )
*
* @ param log_ctx for logging
* @ param y output lookup table ( output )
* @ param points user - defined control points / endpoints
* @ param nbits bitdepth
* @ return 0 success
*
* References :
* [ 1 ] F . N . Fritsch and J . Butland , A method for constructing local monotone piecewise
* cubic interpolants , SIAM J . Sci . Comput . , 5 ( 2 ) , 300 - 304 ( 1984 ) . DOI : 10.1137 / 0905021.
* [ 2 ] scipy . interpolate : https : //docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
*/
static inline int interpolate_pchip ( void * log_ctx , uint16_t * y ,
const struct keypoint * points , int nbits )
{
const struct keypoint * point = points ;
const int lut_size = 1 < < nbits ;
const int n = get_nb_points ( points ) ; // number of endpoints
double * xi , * fi , * di , * hi , * mi ;
const int scale = lut_size - 1 ; // white value
uint16_t x ; /* input index/value */
int ret = 0 ;
/* no change for n = 0 or 1 */
if ( n = = 0 ) {
/* no points, no change */
for ( int i = 0 ; i < lut_size ; i + + ) y [ i ] = i ;
return 0 ;
}
if ( n = = 1 ) {
/* 1 point - 1 color everywhere */
const uint16_t yval = CLIP ( point - > y * scale ) ;
for ( int i = 0 ; i < lut_size ; i + + ) y [ i ] = yval ;
return 0 ;
}
xi = av_calloc ( 3 * n + 2 * ( n - 1 ) , sizeof ( double ) ) ; /* output values at interval endpoints */
if ( ! xi ) {
ret = AVERROR ( ENOMEM ) ;
goto end ;
}
fi = xi + n ; /* output values at inteval endpoints */
di = fi + n ; /* output slope wrt normalized input at interval endpoints */
hi = di + n ; /* interval widths */
mi = hi + n - 1 ; /* linear slope over intervals */
/* scale endpoints and store them in a contiguous memory block */
for ( int i = 0 ; i < n ; i + + ) {
xi [ i ] = point - > x * scale ;
fi [ i ] = point - > y * scale ;
point = point - > next ;
}
/* h(i) = x(i+1) - x(i); mi(i) = (f(i+1)-f(i))/h(i) */
for ( int i = 0 ; i < n - 1 ; i + + ) {
const double val = ( xi [ i + 1 ] - xi [ i ] ) ;
hi [ i ] = val ;
mi [ i ] = ( fi [ i + 1 ] - fi [ i ] ) / val ;
}
if ( n = = 2 ) {
/* edge case, use linear interpolation */
const double m = mi [ 0 ] , b = fi [ 0 ] - xi [ 0 ] * m ;
for ( int i = 0 ; i < lut_size ; i + + ) y [ i ] = CLIP ( i * m + b ) ;
goto end ;
}
/* compute the derivatives at the endpoints*/
ret = pchip_find_derivatives ( n - 1 , hi , mi , di ) ;
if ( ret )
goto end ;
/* interpolate/extrapolate */
x = 0 ;
if ( xi [ 0 ] > 0 ) {
/* below first endpoint, use the first endpoint value*/
const double xi0 = xi [ 0 ] ;
const double yi0 = fi [ 0 ] ;
const uint16_t yval = CLIP ( yi0 ) ;
for ( ; x < xi0 ; x + + ) {
y [ x ] = yval ;
av_log ( log_ctx , AV_LOG_TRACE , " f(%f)=%f -> y[%d]=%d \n " , xi0 , yi0 , x , y [ x ] ) ;
}
av_log ( log_ctx , AV_LOG_DEBUG , " Interval -1: [0, %d] -> %d \n " , x - 1 , yval ) ;
}
/* for each interval */
for ( int i = 0 , x0 = x ; i < n - 1 ; i + + , x0 = x ) {
const double xi0 = xi [ i ] ; /* start-of-interval input value */
const double xi1 = xi [ i + 1 ] ; /* end-of-interval input value */
const double h = hi [ i ] ; /* interval width */
const double f0 = fi [ i ] ; /* start-of-interval output value */
const double f1 = fi [ i + 1 ] ; /* end-of-interval output value */
const double d0 = di [ i ] ; /* start-of-interval derivative */
const double d1 = di [ i + 1 ] ; /* end-of-interval derivative */
/* fill the lut over the interval */
for ( ; x < xi1 ; x + + ) { /* safe not to check j < lut_size */
const double xx = ( x - xi0 ) / h ; /* normalize input */
const double yy = interp_cubic_hermite_half ( 1 - xx , f0 , - h * d0 )
+ interp_cubic_hermite_half ( xx , f1 , h * d1 ) ;
y [ x ] = CLIP ( yy ) ;
av_log ( log_ctx , AV_LOG_TRACE , " f(%f)=%f -> y[%d]=%d \n " , xx , yy , x , y [ x ] ) ;
}
if ( x > x0 )
av_log ( log_ctx , AV_LOG_DEBUG , " Interval %d: [%d, %d] -> [%d, %d] \n " ,
i , x0 , x - 1 , y [ x0 ] , y [ x - 1 ] ) ;
else
av_log ( log_ctx , AV_LOG_DEBUG , " Interval %d: empty \n " , i ) ;
}
if ( x & & x < lut_size ) {
/* above the last endpoint, use the last endpoint value*/
const double xi1 = xi [ n - 1 ] ;
const double yi1 = fi [ n - 1 ] ;
const uint16_t yval = CLIP ( yi1 ) ;
av_log ( log_ctx , AV_LOG_DEBUG , " Interval %d: [%d, %d] -> %d \n " ,
n - 1 , x , lut_size - 1 , yval ) ;
for ( ; x & & x < lut_size ; x + + ) { /* loop until int overflow */
y [ x ] = yval ;
av_log ( log_ctx , AV_LOG_TRACE , " f(%f)=%f -> y[%d]=%d \n " , xi1 , yi1 , x , yval ) ;
}
}
end :
av_free ( xi ) ;
return ret ;
}
DECLARE_INTERPOLATE_FUNC ( 8 )
DECLARE_INTERPOLATE_FUNC ( 9 )
DECLARE_INTERPOLATE_FUNC ( 10 )
DECLARE_INTERPOLATE_FUNC ( 12 )
DECLARE_INTERPOLATE_FUNC ( 14 )
DECLARE_INTERPOLATE_FUNC ( 16 )
static int parse_psfile ( AVFilterContext * ctx , const char * fname )
{
@ -651,14 +879,10 @@ static int config_input(AVFilterLink *inlink)
ret = parse_points_str ( ctx , comp_points + i , curves - > comp_points_str [ i ] , curves - > lut_size ) ;
if ( ret < 0 )
return ret ;
switch ( curves - > depth ) {
case 8 : ret = interpolate8 ( ctx , curves - > graph [ i ] , comp_points [ i ] ) ; break ;
case 9 : ret = interpolate9 ( ctx , curves - > graph [ i ] , comp_points [ i ] ) ; break ;
case 10 : ret = interpolate10 ( ctx , curves - > graph [ i ] , comp_points [ i ] ) ; break ;
case 12 : ret = interpolate12 ( ctx , curves - > graph [ i ] , comp_points [ i ] ) ; break ;
case 14 : ret = interpolate14 ( ctx , curves - > graph [ i ] , comp_points [ i ] ) ; break ;
case 16 : ret = interpolate16 ( ctx , curves - > graph [ i ] , comp_points [ i ] ) ; break ;
}
if ( curves - > interp = = INTERP_PCHIP )
ret = interpolate_pchip ( ctx , curves - > graph [ i ] , comp_points [ i ] , curves - > depth ) ;
else
ret = interpolate ( ctx , curves - > graph [ i ] , comp_points [ i ] , curves - > depth ) ;
if ( ret < 0 )
return ret ;
}
@ -735,7 +959,7 @@ static int process_command(AVFilterContext *ctx, const char *cmd, const char *ar
if ( ! strcmp ( cmd , " plot " ) ) {
curves - > saved_plot = 0 ;
} else if ( ! strcmp ( cmd , " all " ) | | ! strcmp ( cmd , " preset " ) | | ! strcmp ( cmd , " psfile " ) ) {
} else if ( ! strcmp ( cmd , " all " ) | | ! strcmp ( cmd , " preset " ) | | ! strcmp ( cmd , " psfile " ) | | ! strcmp ( cmd , " interp " ) ) {
if ( ! strcmp ( cmd , " psfile " ) )
curves - > parsed_psfile = 0 ;
av_freep ( & curves - > comp_points_str_all ) ;