mirror of https://github.com/FFmpeg/FFmpeg.git
the logic is that one layer in one separated source file to make the source files simple for maintaining. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>pull/323/head
parent
c2ab998ff3
commit
5f058dd693
6 changed files with 143 additions and 92 deletions
@ -0,0 +1,101 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include "libavutil/avassert.h" |
||||
#include "dnn_backend_native_layer_conv2d.h" |
||||
|
||||
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) |
||||
|
||||
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params) |
||||
{ |
||||
float *output; |
||||
int32_t input_operand_index = input_operand_indexes[0]; |
||||
int number = operands[input_operand_index].dims[0]; |
||||
int height = operands[input_operand_index].dims[1]; |
||||
int width = operands[input_operand_index].dims[2]; |
||||
int channel = operands[input_operand_index].dims[3]; |
||||
const float *input = operands[input_operand_index].data; |
||||
|
||||
int radius = conv_params->kernel_size >> 1; |
||||
int src_linesize = width * conv_params->input_num; |
||||
int filter_linesize = conv_params->kernel_size * conv_params->input_num; |
||||
int filter_size = conv_params->kernel_size * filter_linesize; |
||||
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; |
||||
|
||||
DnnOperand *output_operand = &operands[output_operand_index]; |
||||
output_operand->dims[0] = number; |
||||
output_operand->dims[1] = height - pad_size * 2; |
||||
output_operand->dims[2] = width - pad_size * 2; |
||||
output_operand->dims[3] = conv_params->output_num; |
||||
output_operand->length = calculate_operand_data_length(output_operand); |
||||
output_operand->data = av_realloc(output_operand->data, output_operand->length); |
||||
if (!output_operand->data) |
||||
return -1; |
||||
output = output_operand->data; |
||||
|
||||
av_assert0(channel == conv_params->input_num); |
||||
|
||||
for (int y = pad_size; y < height - pad_size; ++y) { |
||||
for (int x = pad_size; x < width - pad_size; ++x) { |
||||
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { |
||||
output[n_filter] = conv_params->biases[n_filter]; |
||||
|
||||
for (int ch = 0; ch < conv_params->input_num; ++ch) { |
||||
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { |
||||
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { |
||||
float input_pel; |
||||
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { |
||||
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height); |
||||
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width); |
||||
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
||||
} else { |
||||
int y_pos = y + (kernel_y - radius) * conv_params->dilation; |
||||
int x_pos = x + (kernel_x - radius) * conv_params->dilation; |
||||
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : |
||||
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; |
||||
} |
||||
|
||||
|
||||
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + |
||||
kernel_x * conv_params->input_num + ch]; |
||||
} |
||||
} |
||||
} |
||||
switch (conv_params->activation){ |
||||
case RELU: |
||||
output[n_filter] = FFMAX(output[n_filter], 0.0); |
||||
break; |
||||
case TANH: |
||||
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; |
||||
break; |
||||
case SIGMOID: |
||||
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); |
||||
break; |
||||
case NONE: |
||||
break; |
||||
case LEAKY_RELU: |
||||
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); |
||||
} |
||||
} |
||||
output += conv_params->output_num; |
||||
} |
||||
} |
||||
return 0; |
||||
} |
@ -0,0 +1,39 @@ |
||||
/*
|
||||
* Copyright (c) 2018 Sergey Lavrushkin |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H |
||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H |
||||
|
||||
#include "dnn_backend_native.h" |
||||
|
||||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; |
||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam; |
||||
|
||||
typedef struct ConvolutionalParams{ |
||||
int32_t input_num, output_num, kernel_size; |
||||
DNNActivationFunc activation; |
||||
DNNConvPaddingParam padding_method; |
||||
int32_t dilation; |
||||
float *kernel; |
||||
float *biases; |
||||
} ConvolutionalParams; |
||||
|
||||
int convolve(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const ConvolutionalParams *conv_params); |
||||
#endif |
Loading…
Reference in new issue