|
|
|
@ -392,29 +392,29 @@ static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (s->stop) { |
|
|
|
|
double theta, phi, psi, a, b, S, c; |
|
|
|
|
float theta, phi, psi, a, b, S, c; |
|
|
|
|
FFTComplex *g = s->fft_data[ch]; |
|
|
|
|
FFTComplex *h = s->fft_scratch[ch]; |
|
|
|
|
int L = s->buf_size; |
|
|
|
|
int N = s->win_size; |
|
|
|
|
int M = s->win_size / 2; |
|
|
|
|
|
|
|
|
|
phi = 2.0 * M_PI * (s->stop - s->start) / (double)inlink->sample_rate / (M - 1); |
|
|
|
|
theta = 2.0 * M_PI * s->start / (double)inlink->sample_rate; |
|
|
|
|
phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1); |
|
|
|
|
theta = 2.f * M_PI * s->start / (float)inlink->sample_rate; |
|
|
|
|
|
|
|
|
|
for (int n = 0; n < M; n++) { |
|
|
|
|
h[n].re = cos(n * n / 2.0 * phi); |
|
|
|
|
h[n].im = sin(n * n / 2.0 * phi); |
|
|
|
|
h[n].re = cosf(n * n / 2.f * phi); |
|
|
|
|
h[n].im = sinf(n * n / 2.f * phi); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int n = M; n < L; n++) { |
|
|
|
|
h[n].re = 0.0; |
|
|
|
|
h[n].im = 0.0; |
|
|
|
|
h[n].re = 0.f; |
|
|
|
|
h[n].im = 0.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int n = L - N; n < L; n++) { |
|
|
|
|
h[n].re = cos((L - n) * (L - n) / 2.0 * phi); |
|
|
|
|
h[n].im = sin((L - n) * (L - n) / 2.0 * phi); |
|
|
|
|
h[n].re = cosf((L - n) * (L - n) / 2.f * phi); |
|
|
|
|
h[n].im = sinf((L - n) * (L - n) / 2.f * phi); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int n = 0; n < N; n++) { |
|
|
|
@ -423,14 +423,14 @@ static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int n = N; n < L; n++) { |
|
|
|
|
g[n].re = 0.; |
|
|
|
|
g[n].im = 0.; |
|
|
|
|
g[n].re = 0.f; |
|
|
|
|
g[n].im = 0.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int n = 0; n < N; n++) { |
|
|
|
|
psi = n * theta + n * n / 2.0 * phi; |
|
|
|
|
c = cos(psi); |
|
|
|
|
S = -sin(psi); |
|
|
|
|
psi = n * theta + n * n / 2.f * phi; |
|
|
|
|
c = cosf(psi); |
|
|
|
|
S = -sinf(psi); |
|
|
|
|
a = c * g[n].re - S * g[n].im; |
|
|
|
|
b = S * g[n].re + c * g[n].im; |
|
|
|
|
g[n].re = a; |
|
|
|
@ -457,9 +457,9 @@ static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo |
|
|
|
|
av_fft_calc(s->ifft[ch], g); |
|
|
|
|
|
|
|
|
|
for (int k = 0; k < M; k++) { |
|
|
|
|
psi = k * k / 2.0 * phi; |
|
|
|
|
c = cos(psi); |
|
|
|
|
S = -sin(psi); |
|
|
|
|
psi = k * k / 2.f * phi; |
|
|
|
|
c = cosf(psi); |
|
|
|
|
S = -sinf(psi); |
|
|
|
|
a = c * g[k].re - S * g[k].im; |
|
|
|
|
b = S * g[k].re + c * g[k].im; |
|
|
|
|
s->fft_data[ch][k].re = a; |
|
|
|
@ -555,15 +555,15 @@ static void color_range(ShowSpectrumContext *s, int ch, |
|
|
|
|
|
|
|
|
|
if (s->color_mode == CHANNEL) { |
|
|
|
|
if (s->nb_display_channels > 1) { |
|
|
|
|
*uf *= 0.5 * sin((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); |
|
|
|
|
*vf *= 0.5 * cos((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); |
|
|
|
|
*uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); |
|
|
|
|
*vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); |
|
|
|
|
} else { |
|
|
|
|
*uf *= 0.5 * sin(M_PI * s->rotation); |
|
|
|
|
*vf *= 0.5 * cos(M_PI * s->rotation + M_PI_2); |
|
|
|
|
*uf *= 0.5f * sinf(M_PI * s->rotation); |
|
|
|
|
*vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2); |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
*uf += *uf * sin(M_PI * s->rotation); |
|
|
|
|
*vf += *vf * cos(M_PI * s->rotation + M_PI_2); |
|
|
|
|
*uf += *uf * sinf(M_PI * s->rotation); |
|
|
|
|
*vf += *vf * cosf(M_PI * s->rotation + M_PI_2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
*uf *= s->saturation; |
|
|
|
@ -854,7 +854,7 @@ static int draw_legend(AVFilterContext *ctx, int samples) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (y = 0; ch == 0 && y < h; y += h / 10) { |
|
|
|
|
float value = 120.0 * log10(1. - y / (float)h); |
|
|
|
|
float value = 120.f * log10f(1.f - y / (float)h); |
|
|
|
|
char *text; |
|
|
|
|
|
|
|
|
|
if (value < -120) |
|
|
|
@ -896,19 +896,19 @@ static float get_value(AVFilterContext *ctx, int ch, int y) |
|
|
|
|
a = av_clipf(a, 0, 1); |
|
|
|
|
break; |
|
|
|
|
case SQRT: |
|
|
|
|
a = av_clipf(sqrt(a), 0, 1); |
|
|
|
|
a = av_clipf(sqrtf(a), 0, 1); |
|
|
|
|
break; |
|
|
|
|
case CBRT: |
|
|
|
|
a = av_clipf(cbrt(a), 0, 1); |
|
|
|
|
a = av_clipf(cbrtf(a), 0, 1); |
|
|
|
|
break; |
|
|
|
|
case FOURTHRT: |
|
|
|
|
a = av_clipf(sqrt(sqrt(a)), 0, 1); |
|
|
|
|
a = av_clipf(sqrtf(sqrtf(a)), 0, 1); |
|
|
|
|
break; |
|
|
|
|
case FIFTHRT: |
|
|
|
|
a = av_clipf(pow(a, 0.20), 0, 1); |
|
|
|
|
a = av_clipf(powf(a, 0.20), 0, 1); |
|
|
|
|
break; |
|
|
|
|
case LOG: |
|
|
|
|
a = 1 + log10(av_clipd(a, 1e-6, 1)) / 6; // zero = -120dBFS
|
|
|
|
|
a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS
|
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
av_assert0(0); |
|
|
|
@ -1128,7 +1128,7 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); |
|
|
|
|
if (s->overlap == 1) |
|
|
|
|
s->overlap = overlap; |
|
|
|
|
s->hop_size = (1. - s->overlap) * s->win_size; |
|
|
|
|
s->hop_size = (1.f - s->overlap) * s->win_size; |
|
|
|
|
if (s->hop_size < 1) { |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); |
|
|
|
|
return AVERROR(EINVAL); |
|
|
|
@ -1137,7 +1137,7 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
for (s->win_scale = 0, i = 0; i < s->win_size; i++) { |
|
|
|
|
s->win_scale += s->window_func_lut[i] * s->window_func_lut[i]; |
|
|
|
|
} |
|
|
|
|
s->win_scale = 1. / sqrt(s->win_scale); |
|
|
|
|
s->win_scale = 1.f / sqrtf(s->win_scale); |
|
|
|
|
|
|
|
|
|
/* prepare the initial picref buffer (black frame) */ |
|
|
|
|
av_frame_free(&s->outpicref); |
|
|
|
@ -1198,8 +1198,8 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
|
|
|
|
|
#define RE(y, ch) s->fft_data[ch][y].re |
|
|
|
|
#define IM(y, ch) s->fft_data[ch][y].im |
|
|
|
|
#define MAGNITUDE(y, ch) hypot(RE(y, ch), IM(y, ch)) |
|
|
|
|
#define PHASE(y, ch) atan2(IM(y, ch), RE(y, ch)) |
|
|
|
|
#define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch)) |
|
|
|
|
#define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch)) |
|
|
|
|
|
|
|
|
|
static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
|
|
|
{ |
|
|
|
@ -1639,7 +1639,7 @@ static int showspectrumpic_request_frame(AVFilterLink *outlink) |
|
|
|
|
if (consumed >= spb) { |
|
|
|
|
int h = s->orientation == VERTICAL ? s->h : s->w; |
|
|
|
|
|
|
|
|
|
scale_magnitudes(s, 1. / (consumed / spf)); |
|
|
|
|
scale_magnitudes(s, 1.f / (consumed / spf)); |
|
|
|
|
plot_spectrum_column(inlink, fin); |
|
|
|
|
consumed = 0; |
|
|
|
|
x++; |
|
|
|
|