|
|
|
@ -48,6 +48,7 @@ enum Projections { |
|
|
|
|
CUBEMAP_6_1, |
|
|
|
|
EQUIANGULAR, |
|
|
|
|
FLAT, |
|
|
|
|
DUAL_FISHEYE, |
|
|
|
|
NB_PROJECTIONS, |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
@ -136,6 +137,7 @@ static const AVOption v360_options[] = { |
|
|
|
|
{ "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" }, |
|
|
|
|
{ "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" }, |
|
|
|
|
{ "eac", "equi-angular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" }, |
|
|
|
|
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" }, |
|
|
|
|
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" }, |
|
|
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
|
|
{ "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" }, |
|
|
|
@ -1593,6 +1595,58 @@ static void flat_to_xyz(const V360Context *s, |
|
|
|
|
vec[2] = l_z / norm; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere. |
|
|
|
|
* |
|
|
|
|
* @param s filter context |
|
|
|
|
* @param vec coordinates on sphere |
|
|
|
|
* @param width frame width |
|
|
|
|
* @param height frame height |
|
|
|
|
* @param us horizontal coordinates for interpolation window |
|
|
|
|
* @param vs vertical coordinates for interpolation window |
|
|
|
|
* @param du horizontal relative coordinate |
|
|
|
|
* @param dv vertical relative coordinate |
|
|
|
|
*/ |
|
|
|
|
static void xyz_to_dfisheye(const V360Context *s, |
|
|
|
|
const float *vec, int width, int height, |
|
|
|
|
uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv) |
|
|
|
|
{ |
|
|
|
|
const float scale = 1.f - s->in_pad; |
|
|
|
|
|
|
|
|
|
const float ew = width / 2.f; |
|
|
|
|
const float eh = height; |
|
|
|
|
|
|
|
|
|
const float phi = atan2f(-vec[1], -vec[0]); |
|
|
|
|
const float theta = acosf(fabsf(vec[2])) / M_PI; |
|
|
|
|
|
|
|
|
|
float uf = (theta * cosf(phi) * scale + 0.5f) * ew; |
|
|
|
|
float vf = (theta * sinf(phi) * scale + 0.5f) * eh; |
|
|
|
|
|
|
|
|
|
int ui, vi; |
|
|
|
|
int u_shift; |
|
|
|
|
int i, j; |
|
|
|
|
|
|
|
|
|
if (vec[2] >= 0) { |
|
|
|
|
u_shift = 0; |
|
|
|
|
} else { |
|
|
|
|
u_shift = ceilf(ew); |
|
|
|
|
uf = ew - uf; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ui = floorf(uf); |
|
|
|
|
vi = floorf(vf); |
|
|
|
|
|
|
|
|
|
*du = uf - ui; |
|
|
|
|
*dv = vf - vi; |
|
|
|
|
|
|
|
|
|
for (i = -1; i < 3; i++) { |
|
|
|
|
for (j = -1; j < 3; j++) { |
|
|
|
|
us[i + 1][j + 1] = av_clip(u_shift + ui + j, 0, width - 1); |
|
|
|
|
vs[i + 1][j + 1] = av_clip( vi + i, 0, height - 1); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Calculate rotation matrix for yaw/pitch/roll angles. |
|
|
|
|
*/ |
|
|
|
@ -1730,6 +1784,12 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
case FLAT: |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as input.\n"); |
|
|
|
|
return AVERROR(EINVAL); |
|
|
|
|
case DUAL_FISHEYE: |
|
|
|
|
in_transform = xyz_to_dfisheye; |
|
|
|
|
err = 0; |
|
|
|
|
wf = inlink->w; |
|
|
|
|
hf = inlink->h; |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n"); |
|
|
|
|
return AVERROR_BUG; |
|
|
|
@ -1770,6 +1830,9 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
w = roundf(wf * s->flat_range[0] / s->flat_range[1] / 2.f); |
|
|
|
|
h = roundf(hf); |
|
|
|
|
break; |
|
|
|
|
case DUAL_FISHEYE: |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Dual fisheye format is not accepted as output.\n"); |
|
|
|
|
return AVERROR(EINVAL); |
|
|
|
|
default: |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n"); |
|
|
|
|
return AVERROR_BUG; |
|
|
|
|