mirror of https://github.com/FFmpeg/FFmpeg.git
parent
d35000c2dc
commit
53bac1b4bd
1 changed files with 424 additions and 0 deletions
@ -0,0 +1,424 @@ |
|||||||
|
This document is a tutorial/initiation for writing simple filters in |
||||||
|
libavfilter. |
||||||
|
|
||||||
|
Foreword: just like everything else in FFmpeg, libavfilter is monolithic, which |
||||||
|
means that it is highly recommended that you submit your filters to the FFmpeg |
||||||
|
development mailing-list and make sure it is applied. Otherwise, your filter is |
||||||
|
likely to have a very short lifetime due to more a less regular internal API |
||||||
|
changes, and a limited distribution, review, and testing. |
||||||
|
|
||||||
|
Bootstrap |
||||||
|
========= |
||||||
|
|
||||||
|
Let's say you want to write a new simple video filter called "foobar" which |
||||||
|
takes one frame in input, changes the pixels in whatever fashion you fancy, and |
||||||
|
outputs the modified frame. The most simple way of doing this is to take a |
||||||
|
similar filter. We'll pick edgedetect, but any other should do. You can look |
||||||
|
for others using the `./ffmpeg -v 0 -filters|grep ' V->V '` command. |
||||||
|
|
||||||
|
- cp libavfilter/vf_{edgedetect,foobar}.c |
||||||
|
- sed -i s/edgedetect/foobar/g -i libavfilter/vf_foobar.c |
||||||
|
- sed -i s/EdgeDetect/Foobar/g -i libavfilter/vf_foobar.c |
||||||
|
- edit libavfilter/Makefile, and add an entry for "foobar" following the |
||||||
|
pattern of the other filters. |
||||||
|
- edit libavfilter/allfilters.c, and add an entry for "foobar" following the |
||||||
|
pattern of the other filters. |
||||||
|
- ./configure ... |
||||||
|
- make -j<whatever> ffmpeg |
||||||
|
- ./ffmpeg -i tests/lena.pnm -vf foobar foobar.png |
||||||
|
|
||||||
|
If everything went right, you should get a foobar.png with Lena edge-detected. |
||||||
|
|
||||||
|
That's it, your new playground is ready. |
||||||
|
|
||||||
|
Some little details about what's going on: |
||||||
|
libavfilter/allfilters.c:avfilter_register_all() is called at runtime to create |
||||||
|
a list of the available filters, but it's important to know that this file is |
||||||
|
also parsed by the configure script, which in turn will define variables for |
||||||
|
the build system and the C: |
||||||
|
|
||||||
|
--- after running configure --- |
||||||
|
|
||||||
|
$ grep FOOBAR config.mak |
||||||
|
CONFIG_FOOBAR_FILTER=yes |
||||||
|
$ grep FOOBAR config.h |
||||||
|
#define CONFIG_FOOBAR_FILTER 1 |
||||||
|
|
||||||
|
CONFIG_FOOBAR_FILTER=yes from the config.mak is later used to enable the filter in |
||||||
|
libavfilter/Makefile and CONFIG_FOOBAR_FILTER=1 from the config.h will be used |
||||||
|
for registering the filter in libavfilter/allfilters.c. |
||||||
|
|
||||||
|
Filter code layout |
||||||
|
================== |
||||||
|
|
||||||
|
You now need some theory about the general code layout of a filter. Open your |
||||||
|
libavfilter/vf_foobar.c. This section will detail the important parts of the |
||||||
|
code you need to understand before messing with it. |
||||||
|
|
||||||
|
Copyright |
||||||
|
--------- |
||||||
|
|
||||||
|
First chunk is the copyright. Most filters are LGPL, and we are assuming |
||||||
|
vf_foobar is as well. We are also assuming vf_foobar is not an edge detector |
||||||
|
filter, so you can update the boilerplate with your credits. |
||||||
|
|
||||||
|
Doxy |
||||||
|
---- |
||||||
|
|
||||||
|
Next chunk is the Doxygen about the file. See http://ffmpeg.org/doxygen/trunk/. |
||||||
|
Detail here what the filter is, does, and add some references if you feel like |
||||||
|
it. |
||||||
|
|
||||||
|
Context |
||||||
|
------- |
||||||
|
|
||||||
|
Skip the headers and scroll down to the definition of FoobarContext. This is |
||||||
|
your local state context. It is already filled with 0 when you get it so do not |
||||||
|
worry about uninitialized read into this context. This is where you put every |
||||||
|
"global" information you need, typically the variable storing the user options. |
||||||
|
You'll notice the first field "const AVClass *class"; it's the only field you |
||||||
|
need to keep assuming you have a context. There are some magic you don't care |
||||||
|
about around this field, just let it be (in first position) for now. |
||||||
|
|
||||||
|
Options |
||||||
|
------- |
||||||
|
|
||||||
|
Then comes the options array. This is what will define the user accessible |
||||||
|
options. For example, -vf foobar=mode=colormix:high=0.4:low=0.1. Most options |
||||||
|
have the following pattern: |
||||||
|
name, description, offset, type, default value, minimum value, maximum value, flags |
||||||
|
|
||||||
|
- name is the option name, keep it simple, lowercase |
||||||
|
- description are short, in lowercase, without period, and describe what they |
||||||
|
do, for example "set the foo of the bar" |
||||||
|
- offset is the offset of the field in your local context, see the OFFSET() |
||||||
|
macro; the option parser will use that information to fill the fields |
||||||
|
according to the user input |
||||||
|
- type is any of AV_OPT_TYPE_* defined in libavutil/opt.h |
||||||
|
- default value is an union where you pick the appropriate type; "{.dbl=0.3}", |
||||||
|
"{.i64=0x234}", "{.str=NULL}", ... |
||||||
|
- min and max values define the range of available values, inclusive |
||||||
|
- flags are AVOption generic flags. See AV_OPT_FLAG_* definitions |
||||||
|
|
||||||
|
In doubt, just look at the other AVOption definitions all around the codebase, |
||||||
|
there are tons of examples. |
||||||
|
|
||||||
|
Class |
||||||
|
----- |
||||||
|
|
||||||
|
AVFILTER_DEFINE_CLASS(foobar) will define a unique foobar_class with some kind |
||||||
|
of signature referencing the options, etc. which will be referenced in the |
||||||
|
definition of the AVFilter. |
||||||
|
|
||||||
|
Filter definition |
||||||
|
----------------- |
||||||
|
|
||||||
|
At the end of the file, you will find foobar_inputs, foobar_outputs and |
||||||
|
the AVFilter ff_vf_foobar. Don't forget to update the AVFilter.description with |
||||||
|
a description of what the filter does, starting with a capitalized letter and |
||||||
|
ending with a period. You'd better drop the AVFilter.flags entry for now, and |
||||||
|
re-add them later depending on the capabilities of your filter. |
||||||
|
|
||||||
|
Callbacks |
||||||
|
--------- |
||||||
|
|
||||||
|
Let's now study the common callbacks. Before going into details, note that all |
||||||
|
these callbacks are explained in details in libavfilter/avfilter.h, so in |
||||||
|
doubt, refer to the doxy in that file. |
||||||
|
|
||||||
|
init() |
||||||
|
~~~~~~ |
||||||
|
|
||||||
|
First one to be called is init(). It's flagged as cold because not called |
||||||
|
often. Look for "cold" on |
||||||
|
http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html for more |
||||||
|
information. |
||||||
|
|
||||||
|
As the name suggests, init() is where you eventually initialize and allocate |
||||||
|
your buffers, pre-compute your data, etc. Note that at this point, your local |
||||||
|
context already has the user options initialized, but you still haven't any |
||||||
|
clue about the kind of data input you will get, so this function is often |
||||||
|
mainly used to sanitize the user options. |
||||||
|
|
||||||
|
Some init()s will also define the number of inputs or outputs dynamically |
||||||
|
according to the user options. A good example of this is the split filter, but |
||||||
|
we won't cover this here since vf_foobar is just a simple 1:1 filter. |
||||||
|
|
||||||
|
uninit() |
||||||
|
~~~~~~~~ |
||||||
|
|
||||||
|
Similarly, there is the uninit() callback, doing what the name suggest. Free |
||||||
|
everything you allocated here. |
||||||
|
|
||||||
|
query_formats() |
||||||
|
~~~~~~~~~~~~~~~ |
||||||
|
|
||||||
|
This is following the init() and is used for the format negotiation, basically |
||||||
|
where you say what pixel format(s) (gray, rgb 32, yuv 4:2:0, ...) you accept |
||||||
|
for your inputs, and what you can output. All pixel formats are defined in |
||||||
|
libavutil/pixfmt.h. If you don't change the pixel format between the input and |
||||||
|
the output, you just have to define a pixel formats array and call |
||||||
|
ff_set_common_formats(). For more complex negotiation, you can refer to other |
||||||
|
filters such as vf_scale. |
||||||
|
|
||||||
|
config_props() |
||||||
|
~~~~~~~~~~~~~~ |
||||||
|
|
||||||
|
This callback is not necessary, but you will probably have one or more |
||||||
|
config_props() anyway. It's not a callback for the filter itself but for its |
||||||
|
inputs or outputs (they're called "pads" - AVFilterPad - in libavfilter's |
||||||
|
lexicon). |
||||||
|
|
||||||
|
Inside the input config_props(), you are at a point where you know which pixel |
||||||
|
format has been picked after query_formats(), and more information such as the |
||||||
|
video width and height (inlink->{w,h}). So if you need to update your internal |
||||||
|
context state depending on your input you can do it here. In edgedetect you can |
||||||
|
see that this callback is used to allocate buffers depending on these |
||||||
|
information. They will be destroyed in uninit(). |
||||||
|
|
||||||
|
Inside the output config_props(), you can define what you want to change in the |
||||||
|
output. Typically, if your filter is going to double the size of the video, you |
||||||
|
will update outlink->w and outlink->h. |
||||||
|
|
||||||
|
filter_frame() |
||||||
|
~~~~~~~~~~~~~~ |
||||||
|
|
||||||
|
This is the callback you are waiting from the beginning: it is where you |
||||||
|
process the received frames. Along with the frame, you get the input link from |
||||||
|
where the frame comes from. |
||||||
|
|
||||||
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in) { ... } |
||||||
|
|
||||||
|
You can get the filter context through that input link: |
||||||
|
|
||||||
|
AVFilterContext *ctx = inlink->dst; |
||||||
|
|
||||||
|
Then access your internal state context: |
||||||
|
|
||||||
|
FoobarContext *foobar = ctx->priv; |
||||||
|
|
||||||
|
And also the output link where you will send your frame when you are done: |
||||||
|
|
||||||
|
AVFilterLink *outlink = ctx->outputs[0]; |
||||||
|
|
||||||
|
Here, we are picking the first output. You can have several, but in our case we |
||||||
|
only have one since we are in a 1:1 input-output situation. |
||||||
|
|
||||||
|
If you want to define a simple pass-through filter, you can just do: |
||||||
|
|
||||||
|
return ff_filter_frame(outlink, in); |
||||||
|
|
||||||
|
But of course, you probably want to change the data of that frame. |
||||||
|
|
||||||
|
This can be done by accessing frame->data[] and frame->linesize[]. Important |
||||||
|
note here: the width does NOT match the linesize. The linesize is always |
||||||
|
greater or equal to the width. The padding created should not be changed or |
||||||
|
even read. Typically, keep in mind that a previous filter in your chain might |
||||||
|
have altered the frame dimension but not the linesize. Imagine a crop filter |
||||||
|
that halves the video size: the linesizes won't be changed, just the width. |
||||||
|
|
||||||
|
<-------------- linesize ------------------------> |
||||||
|
+-------------------------------+----------------+ ^ |
||||||
|
| | | | |
||||||
|
| | | | |
||||||
|
| picture | padding | | height |
||||||
|
| | | | |
||||||
|
| | | | |
||||||
|
+-------------------------------+----------------+ v |
||||||
|
<----------- width -------------> |
||||||
|
|
||||||
|
Before modifying the "in" frame, you have to make sure it is writable, or get a |
||||||
|
new one. Multiple scenarios are possible here depending on the kind of |
||||||
|
processing you are doing. |
||||||
|
|
||||||
|
Let's say you want to change one pixel depending on multiple pixels (typically |
||||||
|
the surrounding ones) of the input. In that case, you can't do an in-place |
||||||
|
processing of the input so you will need to allocate a new frame, with the same |
||||||
|
properties as the input one, and send that new frame to the next filter: |
||||||
|
|
||||||
|
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
||||||
|
if (!out) { |
||||||
|
av_frame_free(&in); |
||||||
|
return AVERROR(ENOMEM); |
||||||
|
} |
||||||
|
av_frame_copy_props(out, in); |
||||||
|
|
||||||
|
// out->data[...] = foobar(in->data[...]) |
||||||
|
|
||||||
|
av_frame_free(&in); |
||||||
|
return ff_filter_frame(outlink, out); |
||||||
|
|
||||||
|
In-place processing |
||||||
|
~~~~~~~~~~~~~~~~~~~ |
||||||
|
|
||||||
|
If you can just alter the input frame, you probably just want to do that |
||||||
|
instead: |
||||||
|
|
||||||
|
av_frame_make_writable(in); |
||||||
|
// in->data[...] = foobar(in->data[...]) |
||||||
|
return ff_filter_frame(outlink, in); |
||||||
|
|
||||||
|
You may wonder why a frame might not be writable. The answer is that for |
||||||
|
example a previous filter might still own the frame data: imagine a filter |
||||||
|
prior to yours in the filtergraph that needs to cache the frame. You must not |
||||||
|
alter that frame, otherwise it will make that previous filter buggy. This is |
||||||
|
where av_frame_make_writable() helps (it won't have any effect if the frame |
||||||
|
already is writable). |
||||||
|
|
||||||
|
The problem with using av_frame_make_writable() is that in the worst case it |
||||||
|
will copy the whole input frame before you change it all over again with your |
||||||
|
filter: if the frame is not writable, av_frame_make_writable() will allocate |
||||||
|
new buffers, and copy the input frame data. You don't want that, and you can |
||||||
|
avoid it by just allocating a new buffer if necessary, and process from in to |
||||||
|
out in your filter, saving the memcpy. Generally, this is done following this |
||||||
|
scheme: |
||||||
|
|
||||||
|
int direct = 0; |
||||||
|
AVFrame *out; |
||||||
|
|
||||||
|
if (av_frame_is_writable(in)) { |
||||||
|
direct = 1; |
||||||
|
out = in; |
||||||
|
} else { |
||||||
|
out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
||||||
|
if (!out) { |
||||||
|
av_frame_free(&in); |
||||||
|
return AVERROR(ENOMEM); |
||||||
|
} |
||||||
|
av_frame_copy_props(out, in); |
||||||
|
} |
||||||
|
|
||||||
|
// out->data[...] = foobar(in->data[...]) |
||||||
|
|
||||||
|
if (!direct) |
||||||
|
av_frame_free(&in); |
||||||
|
return ff_filter_frame(outlink, out); |
||||||
|
|
||||||
|
Of course, this will only work if you can do in-place processing. To test if |
||||||
|
your filter handles well the permissions, you can use the perms filter. For |
||||||
|
example with: |
||||||
|
|
||||||
|
-vf perms=random,foobar |
||||||
|
|
||||||
|
Make sure no automatic pixel conversion is inserted between perms and foobar, |
||||||
|
otherwise the frames permissions might change again and the test will be |
||||||
|
meaningless: add av_log(0,0,"direct=%d\n",direct) in your code to check that. |
||||||
|
You can avoid the issue with something like: |
||||||
|
|
||||||
|
-vf format=rgb24,perms=random,foobar |
||||||
|
|
||||||
|
...assuming your filter accepts rgb24 of course. This will make sure the |
||||||
|
necessary conversion is inserted before the perms filter. |
||||||
|
|
||||||
|
Timeline |
||||||
|
~~~~~~~~ |
||||||
|
|
||||||
|
Adding timeline support |
||||||
|
(http://ffmpeg.org/ffmpeg-filters.html#Timeline-editing) is often an easy |
||||||
|
feature to add. In the most simple case, you just have to add |
||||||
|
AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC to the AVFilter.flags. You can typically |
||||||
|
do this when your filter does not need to save the previous context frames, or |
||||||
|
basically if your filter just alter whatever goes in and doesn't need |
||||||
|
previous/future information. See for instance commit 86cb986ce that adds |
||||||
|
timeline support to the fieldorder filter. |
||||||
|
|
||||||
|
In some cases, you might need to reset your context somehow. This is handled by |
||||||
|
the AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL flag which is used if the filter |
||||||
|
must not process the frames but still wants to keep track of the frames going |
||||||
|
through (to keep them in cache for when it's enabled again). See for example |
||||||
|
commit 69d72140a that adds timeline support to the phase filter. |
||||||
|
|
||||||
|
Threading |
||||||
|
~~~~~~~~~ |
||||||
|
|
||||||
|
libavfilter does not yet support frame threading, but you can add slice |
||||||
|
threading to your filters. |
||||||
|
|
||||||
|
Let's say the foobar filter has the following frame processing function: |
||||||
|
|
||||||
|
dst = out->data[0]; |
||||||
|
src = in ->data[0]; |
||||||
|
|
||||||
|
for (y = 0; y < inlink->h; y++) { |
||||||
|
for (x = 0; x < inlink->w; x++) |
||||||
|
dst[x] = foobar(src[x]); |
||||||
|
dst += out->linesize[0]; |
||||||
|
src += in ->linesize[0]; |
||||||
|
} |
||||||
|
|
||||||
|
The first thing is to make this function work into slices. The new code will |
||||||
|
look like this: |
||||||
|
|
||||||
|
for (y = slice_start; y < slice_end; y++) { |
||||||
|
for (x = 0; x < inlink->w; x++) |
||||||
|
dst[x] = foobar(src[x]); |
||||||
|
dst += out->linesize[0]; |
||||||
|
src += in ->linesize[0]; |
||||||
|
} |
||||||
|
|
||||||
|
The source and destination pointers, and slice_start/slice_end will be defined |
||||||
|
according to the number of jobs. Generally, it looks like this: |
||||||
|
|
||||||
|
const int slice_start = (in->height * jobnr ) / nb_jobs; |
||||||
|
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; |
||||||
|
uint8_t *dst = out->data[0] + slice_start * out->linesize[0]; |
||||||
|
const uint8_t *src = in->data[0] + slice_start * in->linesize[0]; |
||||||
|
|
||||||
|
This new code will be isolated in a new filter_slice(): |
||||||
|
|
||||||
|
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ... } |
||||||
|
|
||||||
|
Note that we need our input and output frame to define slice_{start,end} and |
||||||
|
dst/src, which are not available in that callback. They will be transmitted |
||||||
|
through the opaque void *arg. You have to define a structure which contains |
||||||
|
everything you need: |
||||||
|
|
||||||
|
typedef struct ThreadData { |
||||||
|
AVFrame *in, *out; |
||||||
|
} ThreadData; |
||||||
|
|
||||||
|
If you need some more information from your local context, put them here. |
||||||
|
|
||||||
|
In you filter_slice function, you access it like that: |
||||||
|
|
||||||
|
const ThreadData *td = arg; |
||||||
|
|
||||||
|
Then in your filter_frame() callback, you need to call the threading |
||||||
|
distributor with something like this: |
||||||
|
|
||||||
|
ThreadData td; |
||||||
|
|
||||||
|
// ... |
||||||
|
|
||||||
|
td.in = in; |
||||||
|
td.out = out; |
||||||
|
ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outlink->h, ctx->graph->nb_threads)); |
||||||
|
|
||||||
|
// ... |
||||||
|
|
||||||
|
return ff_filter_frame(outlink, out); |
||||||
|
|
||||||
|
Last step is to add AVFILTER_FLAG_SLICE_THREADS flag to AVFilter.flags. |
||||||
|
|
||||||
|
For more example of slice threading additions, you can try to run git log -p |
||||||
|
--grep 'slice threading' libavfilter/ |
||||||
|
|
||||||
|
Finalization |
||||||
|
~~~~~~~~~~~~ |
||||||
|
|
||||||
|
When your awesome filter is finished, you have a few more steps before you're |
||||||
|
done: |
||||||
|
|
||||||
|
- write its documentation in doc/filters.texi, and test the output with make |
||||||
|
doc/ffmpeg-filters.html. |
||||||
|
- add a FATE test, generally by adding an entry in |
||||||
|
tests/fate/filter-video.mak, add running make fate-filter-foobar GEN=1 to |
||||||
|
generate the data. |
||||||
|
- add an entry in the Changelog |
||||||
|
- edit libavfilter/version.h and increase LIBAVFILTER_VERSION_MINOR by one |
||||||
|
(and reset LIBAVFILTER_VERSION_MICRO to 100) |
||||||
|
- git add ... && git commit -m "avfilter: add foobar filter." && git format-patch -1 |
||||||
|
|
||||||
|
When all of this is done, you can submit your patch to the ffmpeg-devel |
||||||
|
mailing-list for review. If you need any help, feel free to come on our IRC |
||||||
|
channel, #ffmpeg-devel on irc.freenode.net. |
Loading…
Reference in new issue