af_hdcd: hdcd_scan() and hdcd_integrate() handle stereo and single channel

New versions of hdcd_scan() and hdcd_integrate() that also do the
work of hdcd_scan_stereo() and hdcd_integrate_stereo().

Some code split into previously separate functions to remove
duplication is now merged back into each function in the single
place where it is used.

Signed-off-by: Burt P <pburt0@gmail.com>
pull/237/merge
Burt P 8 years ago
parent 80d89c1960
commit 4f94f01414
  1. 303
      libavfilter/af_hdcd.c

@ -1031,267 +1031,134 @@ static void hdcd_reset(hdcd_state *state, unsigned rate, unsigned cdt_ms)
state->_ana_snb = 0;
}
/** update the user info/counters */
static void hdcd_update_info(hdcd_state *state)
static int hdcd_integrate(HDCDContext *ctx, hdcd_state *states, int channels, int *flag, const int32_t *samples, int count, int stride)
{
if (state->control & 16) state->count_peak_extend++;
if (state->control & 32) state->count_transient_filter++;
state->gain_counts[state->control & 15]++;
state->max_gain = FFMAX(state->max_gain, (state->control & 15));
}
typedef enum {
HDCD_CODE_NONE=0,
HDCD_CODE_A,
HDCD_CODE_A_ALMOST,
HDCD_CODE_B,
HDCD_CODE_B_CHECKFAIL,
HDCD_CODE_EXPECT_A,
HDCD_CODE_EXPECT_B,
} hdcd_code_result;
static hdcd_code_result hdcd_code(const uint32_t bits, unsigned char *code)
{
if ((bits & 0x0fa00500) == 0x0fa00500) {
/* A: 8-bit code 0x7e0fa005[..] */
if ((bits & 0xc8) == 0) {
/* [..pt gggg]
* 0x0fa005[..] -> 0b[00.. 0...], gain part doubled */
*code = (bits & 255) + (bits & 7);
return HDCD_CODE_A;
} else
return HDCD_CODE_A_ALMOST; /* one of bits 3, 6, or 7 was not 0 */
} else if ((bits & 0xa0060000) == 0xa0060000) {
/* B: 8-bit code, 8-bit XOR check, 0x7e0fa006[....] */
if (((bits ^ (~bits >> 8 & 255)) & 0xffff00ff) == 0xa0060000) {
/* check: [..pt gggg ~(..pt gggg)]
* 0xa006[....] -> 0b[.... .... .... .... ] */
*code = bits >> 8 & 255;
return HDCD_CODE_B;
} else
return HDCD_CODE_B_CHECKFAIL; /* XOR check failed */
}
if (bits == 0x7e0fa005)
return HDCD_CODE_EXPECT_A;
else if (bits == 0x7e0fa006)
return HDCD_CODE_EXPECT_B;
return HDCD_CODE_NONE;
}
static int hdcd_integrate(HDCDContext *ctx, hdcd_state *state, int *flag, const int32_t *samples, int count, int stride)
{
uint32_t bits = 0;
int result = FFMIN(state->readahead, count);
int i;
uint32_t bits[HDCD_MAX_CHANNELS];
int result = count;
int i, j, f;
*flag = 0;
for (i = result - 1; i >= 0; i--) {
bits |= (*samples & 1) << i; /* might be better as a conditional? */
samples += stride;
}
memset(bits, 0, sizeof(bits));
if (stride < channels) stride = channels;
state->window = (state->window << result) | bits;
state->readahead -= result;
if (state->readahead > 0)
return result;
for (i = 0; i < channels; i++)
result = FFMIN(states[i].readahead, result);
bits = (state->window ^ state->window >> 5 ^ state->window >> 23);
if (state->arg) {
switch (hdcd_code(bits, &state->control)) {
case HDCD_CODE_A:
*flag = 1;
state->code_counterA++;
break;
case HDCD_CODE_B:
*flag = 1;
state->code_counterB++;
break;
case HDCD_CODE_A_ALMOST:
state->code_counterA_almost++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Control A almost: 0x%02x near %d\n", bits & 0xff, ctx->sample_count);
break;
case HDCD_CODE_B_CHECKFAIL:
state->code_counterB_checkfails++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Control B check failed: 0x%04x (0x%02x vs 0x%02x) near %d\n", bits & 0xffff, (bits & 0xff00) >> 8, ~bits & 0xff, ctx->sample_count);
break;
case HDCD_CODE_NONE:
state->code_counterC_unmatched++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Unmatched code: 0x%08x near %d\n", bits, ctx->sample_count);
default:
av_log(ctx->fctx, AV_LOG_INFO,
"hdcd error: Unexpected return value from hdcd_code()\n");
av_assert0(0); /* die */
}
if (*flag) hdcd_update_info(state);
state->arg = 0;
for (j = result - 1; j >= 0; j--) {
for (i = 0; i < channels; i++)
bits[i] |= (*(samples++) & 1) << j;
samples += stride - channels;
}
if (bits == 0x7e0fa005 || bits == 0x7e0fa006) {
/* 0x7e0fa00[.]-> [0b0101 or 0b0110] */
state->readahead = (bits & 3) * 8;
state->arg = 1;
state->code_counterC++;
} else {
if (bits)
state->readahead = readaheadtab[bits & 0xff];
else
state->readahead = 31; /* ffwd over digisilence */
}
return result;
}
static int hdcd_integrate_stereo(HDCDContext *ctx, int *flag, const int32_t *samples, int count)
{
uint32_t bits[2] = {0, 0};
int result;
int i;
*flag = 0;
/* result = min(count, s0ra, s1ra) */
result = FFMIN(ctx->state[0].readahead, count);
result = FFMIN(ctx->state[1].readahead, result);
for (i = result - 1; i >= 0; i--) {
bits[0] |= (*(samples++) & 1) << i;
bits[1] |= (*(samples++) & 1) << i;
}
for (i = 0; i < 2; i++) {
ctx->state[i].window = (ctx->state[i].window << result) | bits[i];
ctx->state[i].readahead -= result;
if (ctx->state[i].readahead == 0) {
uint32_t wbits = (ctx->state[i].window ^ ctx->state[i].window >> 5 ^ ctx->state[i].window >> 23);
if (ctx->state[i].arg) {
switch (hdcd_code(wbits, &ctx->state[i].control)) {
case HDCD_CODE_A:
*flag |= i+1;
ctx->state[i].code_counterA++;
break;
case HDCD_CODE_B:
*flag |= i+1;
ctx->state[i].code_counterB++;
break;
case HDCD_CODE_A_ALMOST:
ctx->state[i].code_counterA_almost++;
for (i = 0; i < channels; i++) {
states[i].window = (states[i].window << result) | bits[i];
states[i].readahead -= result;
if (states[i].readahead == 0) {
uint32_t wbits = (uint32_t)(states[i].window ^ states[i].window >> 5 ^ states[i].window >> 23);
if (states[i].arg) {
f = 0;
if ((wbits & 0x0fa00500) == 0x0fa00500) {
/* A: 8-bit code 0x7e0fa005[..] */
if ((wbits & 0xc8) == 0) {
/* [..pt gggg]
* 0x0fa005[..] -> 0b[00.. 0...], gain part doubled (shifted left 1) */
states[i].control = (wbits & 255) + (wbits & 7);
f = 1;
states[i].code_counterA++;
} else {
/* one of bits 3, 6, or 7 was not 0 */
states[i].code_counterA_almost++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Control A almost: 0x%02x near %d\n", wbits & 0xff, ctx->sample_count);
break;
case HDCD_CODE_B_CHECKFAIL:
ctx->state[i].code_counterB_checkfails++;
}
} else if ((wbits & 0xa0060000) == 0xa0060000) {
/* B: 8-bit code, 8-bit XOR check, 0x7e0fa006[....] */
if (((wbits ^ (~wbits >> 8 & 255)) & 0xffff00ff) == 0xa0060000) {
/* check: [..pt gggg ~(..pt gggg)]
* 0xa006[....] -> 0b[.... .... .... .... ] */
states[i].control = wbits >> 8 & 255;
f = 1;
states[i].code_counterB++;
} else {
/* XOR check failed */
states[i].code_counterB_checkfails++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Control B check failed: 0x%04x (0x%02x vs 0x%02x) near %d\n", wbits & 0xffff, (wbits & 0xff00) >> 8, ~wbits & 0xff, ctx->sample_count);
break;
case HDCD_CODE_NONE:
ctx->state[i].code_counterC_unmatched++;
av_log(ctx->fctx, AV_LOG_VERBOSE,
"hdcd error: Unmatched code: 0x%08x near %d\n", wbits, ctx->sample_count);
default:
av_log(ctx->fctx, AV_LOG_INFO,
"hdcd error: Unexpected return value from hdcd_code()\n");
av_assert0(0); /* die */
}
}
if (f) {
*flag |= (1<<i);
/* update counters */
if (states[i].control & 16) states[i].count_peak_extend++;
if (states[i].control & 32) states[i].count_transient_filter++;
states[i].gain_counts[states[i].control & 15]++;
states[i].max_gain = FFMAX(states[i].max_gain, (states[i].control & 15));
}
if (*flag&(i+1)) hdcd_update_info(&ctx->state[i]);
ctx->state[i].arg = 0;
states[i].arg = 0;
}
if (wbits == 0x7e0fa005 || wbits == 0x7e0fa006) {
/* 0x7e0fa00[.]-> [0b0101 or 0b0110] */
ctx->state[i].readahead = (wbits & 3) * 8;
ctx->state[i].arg = 1;
ctx->state[i].code_counterC++;
states[i].readahead = (wbits & 3) * 8;
states[i].arg = 1;
states[i].code_counterC++;
} else {
if (wbits)
ctx->state[i].readahead = readaheadtab[wbits & 0xff];
states[i].readahead = readaheadtab[wbits & 0xff];
else
ctx->state[i].readahead = 31; /* ffwd over digisilence */
states[i].readahead = 31; /* ffwd over digisilence */
}
}
}
return result;
}
static void hdcd_sustain_reset(hdcd_state *state)
{
state->sustain = state->sustain_reset;
/* if this is the first reset then change
* from never set, to never expired */
if (state->count_sustain_expired == -1)
state->count_sustain_expired = 0;
}
static int hdcd_scan(HDCDContext *ctx, hdcd_state *state, const int32_t *samples, int max, int stride)
{
int result;
int cdt_active = 0;
/* code detect timer */
if (state->sustain > 0) {
cdt_active = 1;
if (state->sustain <= max) {
state->control = 0;
max = state->sustain;
}
state->sustain -= max;
}
result = 0;
while (result < max) {
int flag;
int consumed = hdcd_integrate(ctx, state, &flag, samples, max - result, stride);
result += consumed;
if (flag > 0) {
/* reset timer if code detected in channel */
hdcd_sustain_reset(state);
break;
}
samples += consumed * stride;
}
/* code detect timer expired */
if (cdt_active && state->sustain == 0)
state->count_sustain_expired++;
return result;
}
static int hdcd_scan_stereo(HDCDContext *ctx, const int32_t *samples, int max)
static int hdcd_scan(HDCDContext *ctx, hdcd_state *states, int channels, const int32_t *samples, int max, int stride)
{
int result;
int i;
int cdt_active[2] = {0, 0};
int cdt_active[HDCD_MAX_CHANNELS];
memset(cdt_active, 0, sizeof(cdt_active));
if (stride < channels) stride = channels;
/* code detect timers for each channel */
for(i=0; i<2; i++) {
if (ctx->state[i].sustain > 0) {
for(i = 0; i < channels; i++) {
if (states[i].sustain > 0) {
cdt_active[i] = 1;
if (ctx->state[i].sustain <= max) {
ctx->state[i].control = 0;
max = ctx->state[i].sustain;
if (states[i].sustain <= (unsigned)max) {
states[i].control = 0;
max = states[i].sustain;
}
ctx->state[i].sustain -= max;
states[i].sustain -= max;
}
}
result = 0;
while (result < max) {
int flag;
int consumed = hdcd_integrate_stereo(ctx, &flag, samples, max - result);
int consumed = hdcd_integrate(ctx, states, channels, &flag, samples, max - result, stride);
result += consumed;
if (flag) {
/* reset timer if code detected in a channel */
if (flag & 1) hdcd_sustain_reset(&ctx->state[0]);
if (flag & 2) hdcd_sustain_reset(&ctx->state[1]);
for(i = 0; i < channels; i++) {
if (flag & (1<<i)) {
states[i].sustain = states[i].sustain_reset;
/* if this is the first reset then change
* from never set, to never expired */
if (states[i].count_sustain_expired == -1)
states[i].count_sustain_expired = 0;
}
}
break;
}
samples += consumed * 2;
samples += consumed * stride;
}
for(i=0; i<2; i++) {
for(i = 0; i < channels; i++) {
/* code detect timer expired */
if (cdt_active[i] && ctx->state[i].sustain == 0)
ctx->state[i].count_sustain_expired++;
if (cdt_active[i] && states[i].sustain == 0)
states[i].count_sustain_expired++;
}
return result;
@ -1496,7 +1363,7 @@ static void hdcd_process(HDCDContext *ctx, hdcd_state *state, int32_t *samples,
int run;
av_assert0(samples + lead * stride + stride * (count - lead) <= samples_end);
run = hdcd_scan(ctx, state, samples + lead * stride, count - lead, stride) + lead;
run = hdcd_scan(ctx, state, 1, samples + lead * stride, count - lead, 0) + lead;
envelope_run = run - 1;
av_assert0(samples + envelope_run * stride <= samples_end);
@ -1540,7 +1407,7 @@ static void hdcd_process_stereo(HDCDContext *ctx, int32_t *samples, int count)
int envelope_run, run;
av_assert0(samples + lead * stride + stride * (count - lead) <= samples_end);
run = hdcd_scan_stereo(ctx, samples + lead * stride, count - lead) + lead;
run = hdcd_scan(ctx, ctx->state, 2, samples + lead * stride, count - lead, 0) + lead;
envelope_run = run - 1;
av_assert0(samples + envelope_run * stride <= samples_end);

Loading…
Cancel
Save