|
|
|
@ -762,6 +762,15 @@ static int decode_channel_transform(WMAProDecodeCtx* s) |
|
|
|
|
*/ |
|
|
|
|
static int decode_coeffs(WMAProDecodeCtx *s, int c) |
|
|
|
|
{ |
|
|
|
|
/* Integers 0..15 as single-precision floats. The table saves a
|
|
|
|
|
costly int to float conversion, and storing the values as |
|
|
|
|
integers allows fast sign-flipping. */ |
|
|
|
|
static const int fval_tab[16] = { |
|
|
|
|
0x00000000, 0x3f800000, 0x40000000, 0x40400000, |
|
|
|
|
0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, |
|
|
|
|
0x41000000, 0x41100000, 0x41200000, 0x41300000, |
|
|
|
|
0x41400000, 0x41500000, 0x41600000, 0x41700000, |
|
|
|
|
}; |
|
|
|
|
int vlctable; |
|
|
|
|
VLC* vlc; |
|
|
|
|
WMAProChannelCtx* ci = &s->channel[c]; |
|
|
|
@ -797,29 +806,32 @@ static int decode_coeffs(WMAProDecodeCtx *s, int c) |
|
|
|
|
for (i = 0; i < 4; i += 2) { |
|
|
|
|
idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); |
|
|
|
|
if (idx == HUFF_VEC2_SIZE - 1) { |
|
|
|
|
vals[i] = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
|
|
|
|
if (vals[i] == HUFF_VEC1_SIZE - 1) |
|
|
|
|
vals[i] += ff_wma_get_large_val(&s->gb); |
|
|
|
|
vals[i+1] = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
|
|
|
|
if (vals[i+1] == HUFF_VEC1_SIZE - 1) |
|
|
|
|
vals[i+1] += ff_wma_get_large_val(&s->gb); |
|
|
|
|
int v0, v1; |
|
|
|
|
v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
|
|
|
|
if (v0 == HUFF_VEC1_SIZE - 1) |
|
|
|
|
v0 += ff_wma_get_large_val(&s->gb); |
|
|
|
|
v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
|
|
|
|
if (v1 == HUFF_VEC1_SIZE - 1) |
|
|
|
|
v1 += ff_wma_get_large_val(&s->gb); |
|
|
|
|
((float*)vals)[i ] = v0; |
|
|
|
|
((float*)vals)[i+1] = v1; |
|
|
|
|
} else { |
|
|
|
|
vals[i] = symbol_to_vec2[idx] >> 4; |
|
|
|
|
vals[i+1] = symbol_to_vec2[idx] & 0xF; |
|
|
|
|
vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ]; |
|
|
|
|
vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
vals[0] = symbol_to_vec4[idx] >> 12; |
|
|
|
|
vals[1] = (symbol_to_vec4[idx] >> 8) & 0xF; |
|
|
|
|
vals[2] = (symbol_to_vec4[idx] >> 4) & 0xF; |
|
|
|
|
vals[3] = symbol_to_vec4[idx] & 0xF; |
|
|
|
|
vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; |
|
|
|
|
vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; |
|
|
|
|
vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; |
|
|
|
|
vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/** decode sign */ |
|
|
|
|
for (i = 0; i < 4; i++) { |
|
|
|
|
if (vals[i]) { |
|
|
|
|
int sign = get_bits1(&s->gb) - 1; |
|
|
|
|
ci->coeffs[cur_coeff] = (vals[i] ^ sign) - sign; |
|
|
|
|
*(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31; |
|
|
|
|
num_zeros = 0; |
|
|
|
|
} else { |
|
|
|
|
ci->coeffs[cur_coeff] = 0; |
|
|
|
|