|
|
|
@ -81,6 +81,7 @@ static const AVOption v360_options[] = { |
|
|
|
|
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, "in" }, |
|
|
|
|
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "in" }, |
|
|
|
|
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "in" }, |
|
|
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "in" }, |
|
|
|
|
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" }, |
|
|
|
|
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
|
|
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" }, |
|
|
|
@ -108,6 +109,7 @@ static const AVOption v360_options[] = { |
|
|
|
|
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, "out" }, |
|
|
|
|
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "out" }, |
|
|
|
|
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, "out" }, |
|
|
|
|
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, "out" }, |
|
|
|
|
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" }, |
|
|
|
|
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, |
|
|
|
|
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" }, |
|
|
|
@ -1819,6 +1821,112 @@ static int xyz_to_stereographic(const V360Context *s, |
|
|
|
|
return visible; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Prepare data for processing equisolid output format. |
|
|
|
|
* |
|
|
|
|
* @param ctx filter context |
|
|
|
|
* |
|
|
|
|
* @return error code |
|
|
|
|
*/ |
|
|
|
|
static int prepare_equisolid_out(AVFilterContext *ctx) |
|
|
|
|
{ |
|
|
|
|
V360Context *s = ctx->priv; |
|
|
|
|
|
|
|
|
|
s->flat_range[0] = sinf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f); |
|
|
|
|
s->flat_range[1] = sinf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f); |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Calculate 3D coordinates on sphere for corresponding frame position in equisolid format. |
|
|
|
|
* |
|
|
|
|
* @param s filter private context |
|
|
|
|
* @param i horizontal position on frame [0, width) |
|
|
|
|
* @param j vertical position on frame [0, height) |
|
|
|
|
* @param width frame width |
|
|
|
|
* @param height frame height |
|
|
|
|
* @param vec coordinates on sphere |
|
|
|
|
*/ |
|
|
|
|
static int equisolid_to_xyz(const V360Context *s, |
|
|
|
|
int i, int j, int width, int height, |
|
|
|
|
float *vec) |
|
|
|
|
{ |
|
|
|
|
const float x = ((2.f * i + 1.f) / width - 1.f) * s->flat_range[0]; |
|
|
|
|
const float y = ((2.f * j + 1.f) / height - 1.f) * s->flat_range[1]; |
|
|
|
|
const float r = hypotf(x, y); |
|
|
|
|
const float theta = asinf(r) * 2.f; |
|
|
|
|
const float sin_theta = sinf(theta); |
|
|
|
|
|
|
|
|
|
vec[0] = x / r * sin_theta; |
|
|
|
|
vec[1] = y / r * sin_theta; |
|
|
|
|
vec[2] = cosf(theta); |
|
|
|
|
|
|
|
|
|
normalize_vector(vec); |
|
|
|
|
|
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Prepare data for processing equisolid input format. |
|
|
|
|
* |
|
|
|
|
* @param ctx filter context |
|
|
|
|
* |
|
|
|
|
* @return error code |
|
|
|
|
*/ |
|
|
|
|
static int prepare_equisolid_in(AVFilterContext *ctx) |
|
|
|
|
{ |
|
|
|
|
V360Context *s = ctx->priv; |
|
|
|
|
|
|
|
|
|
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f); |
|
|
|
|
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f); |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Calculate frame position in equisolid format for corresponding 3D coordinates on sphere. |
|
|
|
|
* |
|
|
|
|
* @param s filter private context |
|
|
|
|
* @param vec coordinates on sphere |
|
|
|
|
* @param width frame width |
|
|
|
|
* @param height frame height |
|
|
|
|
* @param us horizontal coordinates for interpolation window |
|
|
|
|
* @param vs vertical coordinates for interpolation window |
|
|
|
|
* @param du horizontal relative coordinate |
|
|
|
|
* @param dv vertical relative coordinate |
|
|
|
|
*/ |
|
|
|
|
static int xyz_to_equisolid(const V360Context *s, |
|
|
|
|
const float *vec, int width, int height, |
|
|
|
|
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv) |
|
|
|
|
{ |
|
|
|
|
const float theta = acosf(vec[2]); |
|
|
|
|
const float r = sinf(theta * 0.5f); |
|
|
|
|
const float c = r / hypotf(vec[0], vec[1]); |
|
|
|
|
const float x = vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0]; |
|
|
|
|
const float y = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1]; |
|
|
|
|
|
|
|
|
|
const float uf = (x + 1.f) * width / 2.f; |
|
|
|
|
const float vf = (y + 1.f) * height / 2.f; |
|
|
|
|
|
|
|
|
|
const int ui = floorf(uf); |
|
|
|
|
const int vi = floorf(vf); |
|
|
|
|
|
|
|
|
|
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width; |
|
|
|
|
|
|
|
|
|
*du = visible ? uf - ui : 0.f; |
|
|
|
|
*dv = visible ? vf - vi : 0.f; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++) { |
|
|
|
|
for (int j = 0; j < 4; j++) { |
|
|
|
|
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0; |
|
|
|
|
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return visible; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere. |
|
|
|
|
* |
|
|
|
@ -3644,6 +3752,15 @@ static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int siz |
|
|
|
|
static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov) |
|
|
|
|
{ |
|
|
|
|
switch (format) { |
|
|
|
|
case EQUISOLID: |
|
|
|
|
{ |
|
|
|
|
const float d = 0.5f * hypotf(w, h); |
|
|
|
|
const float l = d / (sinf(d_fov * M_PI / 720.f)); |
|
|
|
|
|
|
|
|
|
*h_fov = 2.f * asinf(w * 0.5f / l) * 360.f / M_PI; |
|
|
|
|
*v_fov = 2.f * asinf(h * 0.5f / l) * 360.f / M_PI; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case STEREOGRAPHIC: |
|
|
|
|
{ |
|
|
|
|
const float d = 0.5f * hypotf(w, h); |
|
|
|
@ -4014,6 +4131,12 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
wf = w * 2.f; |
|
|
|
|
hf = h; |
|
|
|
|
break; |
|
|
|
|
case EQUISOLID: |
|
|
|
|
s->in_transform = xyz_to_equisolid; |
|
|
|
|
err = prepare_equisolid_in(ctx); |
|
|
|
|
wf = w; |
|
|
|
|
hf = h / 2.f; |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n"); |
|
|
|
|
return AVERROR_BUG; |
|
|
|
@ -4150,6 +4273,12 @@ static int config_output(AVFilterLink *outlink) |
|
|
|
|
w = lrintf(wf / 2.f); |
|
|
|
|
h = lrintf(hf); |
|
|
|
|
break; |
|
|
|
|
case EQUISOLID: |
|
|
|
|
s->out_transform = equisolid_to_xyz; |
|
|
|
|
prepare_out = prepare_equisolid_out; |
|
|
|
|
w = lrintf(wf); |
|
|
|
|
h = lrintf(hf * 2.f); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n"); |
|
|
|
|
return AVERROR_BUG; |
|
|
|
|