classification is done on every detection bounding box in frame's side data, which are the results of object detection (filter dnn_detect). Please refer to commit log of dnn_detect for the material for detection, and see below for classification. - download material for classifcation: wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label - run command as: ./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null - We'll see the detect&classify result as below: [Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes: [Parsed_showinfo_2 @ 0x55b7d25e77c0] source: face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml [Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000. [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: happy, confidence: 6757/10000. [Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000. [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: anger, confidence: 4320/10000. Signed-off-by: Guo, Yejun <yejun.guo@intel.com>pull/362/head
parent
fc26dca64e
commit
41ef57fdb2
5 changed files with 372 additions and 0 deletions
@ -0,0 +1,330 @@ |
||||
/*
|
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
/**
|
||||
* @file |
||||
* implementing an classification filter using deep learning networks. |
||||
*/ |
||||
|
||||
#include "libavformat/avio.h" |
||||
#include "libavutil/opt.h" |
||||
#include "libavutil/pixdesc.h" |
||||
#include "libavutil/avassert.h" |
||||
#include "libavutil/imgutils.h" |
||||
#include "filters.h" |
||||
#include "dnn_filter_common.h" |
||||
#include "formats.h" |
||||
#include "internal.h" |
||||
#include "libavutil/time.h" |
||||
#include "libavutil/avstring.h" |
||||
#include "libavutil/detection_bbox.h" |
||||
|
||||
typedef struct DnnClassifyContext { |
||||
const AVClass *class; |
||||
DnnContext dnnctx; |
||||
float confidence; |
||||
char *labels_filename; |
||||
char *target; |
||||
char **labels; |
||||
int label_count; |
||||
} DnnClassifyContext; |
||||
|
||||
#define OFFSET(x) offsetof(DnnClassifyContext, dnnctx.x) |
||||
#define OFFSET2(x) offsetof(DnnClassifyContext, x) |
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM |
||||
static const AVOption dnn_classify_options[] = { |
||||
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" }, |
||||
#if (CONFIG_LIBOPENVINO == 1) |
||||
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, 0, 0, FLAGS, "backend" }, |
||||
#endif |
||||
DNN_COMMON_OPTIONS |
||||
{ "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS}, |
||||
{ "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, |
||||
{ "target", "which one to be classified", OFFSET2(target), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, |
||||
{ NULL } |
||||
}; |
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_classify); |
||||
|
||||
static int dnn_classify_post_proc(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx) |
||||
{ |
||||
DnnClassifyContext *ctx = filter_ctx->priv; |
||||
float conf_threshold = ctx->confidence; |
||||
AVDetectionBBoxHeader *header; |
||||
AVDetectionBBox *bbox; |
||||
float *classifications; |
||||
uint32_t label_id; |
||||
float confidence; |
||||
AVFrameSideData *sd; |
||||
|
||||
if (output->channels <= 0) { |
||||
return -1; |
||||
} |
||||
|
||||
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES); |
||||
header = (AVDetectionBBoxHeader *)sd->data; |
||||
|
||||
if (bbox_index == 0) { |
||||
av_strlcat(header->source, ", ", sizeof(header->source)); |
||||
av_strlcat(header->source, ctx->dnnctx.model_filename, sizeof(header->source)); |
||||
} |
||||
|
||||
classifications = output->data; |
||||
label_id = 0; |
||||
confidence= classifications[0]; |
||||
for (int i = 1; i < output->channels; i++) { |
||||
if (classifications[i] > confidence) { |
||||
label_id = i; |
||||
confidence= classifications[i]; |
||||
} |
||||
} |
||||
|
||||
if (confidence < conf_threshold) { |
||||
return 0; |
||||
} |
||||
|
||||
bbox = av_get_detection_bbox(header, bbox_index); |
||||
bbox->classify_confidences[bbox->classify_count] = av_make_q((int)(confidence * 10000), 10000); |
||||
|
||||
if (ctx->labels && label_id < ctx->label_count) { |
||||
av_strlcpy(bbox->classify_labels[bbox->classify_count], ctx->labels[label_id], sizeof(bbox->classify_labels[bbox->classify_count])); |
||||
} else { |
||||
snprintf(bbox->classify_labels[bbox->classify_count], sizeof(bbox->classify_labels[bbox->classify_count]), "%d", label_id); |
||||
} |
||||
|
||||
bbox->classify_count++; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static void free_classify_labels(DnnClassifyContext *ctx) |
||||
{ |
||||
for (int i = 0; i < ctx->label_count; i++) { |
||||
av_freep(&ctx->labels[i]); |
||||
} |
||||
ctx->label_count = 0; |
||||
av_freep(&ctx->labels); |
||||
} |
||||
|
||||
static int read_classify_label_file(AVFilterContext *context) |
||||
{ |
||||
int line_len; |
||||
FILE *file; |
||||
DnnClassifyContext *ctx = context->priv; |
||||
|
||||
file = av_fopen_utf8(ctx->labels_filename, "r"); |
||||
if (!file){ |
||||
av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
|
||||
while (!feof(file)) { |
||||
char *label; |
||||
char buf[256]; |
||||
if (!fgets(buf, 256, file)) { |
||||
break; |
||||
} |
||||
|
||||
line_len = strlen(buf); |
||||
while (line_len) { |
||||
int i = line_len - 1; |
||||
if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') { |
||||
buf[i] = '\0'; |
||||
line_len--; |
||||
} else { |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if (line_len == 0) // empty line
|
||||
continue; |
||||
|
||||
if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) { |
||||
av_log(context, AV_LOG_ERROR, "label %s too long\n", buf); |
||||
fclose(file); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
|
||||
label = av_strdup(buf); |
||||
if (!label) { |
||||
av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf); |
||||
fclose(file); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) { |
||||
av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n"); |
||||
fclose(file); |
||||
av_freep(&label); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
} |
||||
|
||||
fclose(file); |
||||
return 0; |
||||
} |
||||
|
||||
static av_cold int dnn_classify_init(AVFilterContext *context) |
||||
{ |
||||
DnnClassifyContext *ctx = context->priv; |
||||
int ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_CLASSIFY, context); |
||||
if (ret < 0) |
||||
return ret; |
||||
ff_dnn_set_classify_post_proc(&ctx->dnnctx, dnn_classify_post_proc); |
||||
|
||||
if (ctx->labels_filename) { |
||||
return read_classify_label_file(context); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
static int dnn_classify_query_formats(AVFilterContext *context) |
||||
{ |
||||
static const enum AVPixelFormat pix_fmts[] = { |
||||
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, |
||||
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32, |
||||
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, |
||||
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, |
||||
AV_PIX_FMT_NV12, |
||||
AV_PIX_FMT_NONE |
||||
}; |
||||
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); |
||||
return ff_set_common_formats(context, fmts_list); |
||||
} |
||||
|
||||
static int dnn_classify_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts) |
||||
{ |
||||
DnnClassifyContext *ctx = outlink->src->priv; |
||||
int ret; |
||||
DNNAsyncStatusType async_state; |
||||
|
||||
ret = ff_dnn_flush(&ctx->dnnctx); |
||||
if (ret != DNN_SUCCESS) { |
||||
return -1; |
||||
} |
||||
|
||||
do { |
||||
AVFrame *in_frame = NULL; |
||||
AVFrame *out_frame = NULL; |
||||
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame); |
||||
if (out_frame) { |
||||
av_assert0(in_frame == out_frame); |
||||
ret = ff_filter_frame(outlink, out_frame); |
||||
if (ret < 0) |
||||
return ret; |
||||
if (out_pts) |
||||
*out_pts = out_frame->pts + pts; |
||||
} |
||||
av_usleep(5000); |
||||
} while (async_state >= DAST_NOT_READY); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static int dnn_classify_activate(AVFilterContext *filter_ctx) |
||||
{ |
||||
AVFilterLink *inlink = filter_ctx->inputs[0]; |
||||
AVFilterLink *outlink = filter_ctx->outputs[0]; |
||||
DnnClassifyContext *ctx = filter_ctx->priv; |
||||
AVFrame *in = NULL; |
||||
int64_t pts; |
||||
int ret, status; |
||||
int got_frame = 0; |
||||
int async_state; |
||||
|
||||
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); |
||||
|
||||
do { |
||||
// drain all input frames
|
||||
ret = ff_inlink_consume_frame(inlink, &in); |
||||
if (ret < 0) |
||||
return ret; |
||||
if (ret > 0) { |
||||
if (ff_dnn_execute_model_classification(&ctx->dnnctx, in, in, ctx->target) != DNN_SUCCESS) { |
||||
return AVERROR(EIO); |
||||
} |
||||
} |
||||
} while (ret > 0); |
||||
|
||||
// drain all processed frames
|
||||
do { |
||||
AVFrame *in_frame = NULL; |
||||
AVFrame *out_frame = NULL; |
||||
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame); |
||||
if (out_frame) { |
||||
av_assert0(in_frame == out_frame); |
||||
ret = ff_filter_frame(outlink, out_frame); |
||||
if (ret < 0) |
||||
return ret; |
||||
got_frame = 1; |
||||
} |
||||
} while (async_state == DAST_SUCCESS); |
||||
|
||||
// if frame got, schedule to next filter
|
||||
if (got_frame) |
||||
return 0; |
||||
|
||||
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { |
||||
if (status == AVERROR_EOF) { |
||||
int64_t out_pts = pts; |
||||
ret = dnn_classify_flush_frame(outlink, pts, &out_pts); |
||||
ff_outlink_set_status(outlink, status, out_pts); |
||||
return ret; |
||||
} |
||||
} |
||||
|
||||
FF_FILTER_FORWARD_WANTED(outlink, inlink); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static av_cold void dnn_classify_uninit(AVFilterContext *context) |
||||
{ |
||||
DnnClassifyContext *ctx = context->priv; |
||||
ff_dnn_uninit(&ctx->dnnctx); |
||||
free_classify_labels(ctx); |
||||
} |
||||
|
||||
static const AVFilterPad dnn_classify_inputs[] = { |
||||
{ |
||||
.name = "default", |
||||
.type = AVMEDIA_TYPE_VIDEO, |
||||
}, |
||||
{ NULL } |
||||
}; |
||||
|
||||
static const AVFilterPad dnn_classify_outputs[] = { |
||||
{ |
||||
.name = "default", |
||||
.type = AVMEDIA_TYPE_VIDEO, |
||||
}, |
||||
{ NULL } |
||||
}; |
||||
|
||||
const AVFilter ff_vf_dnn_classify = { |
||||
.name = "dnn_classify", |
||||
.description = NULL_IF_CONFIG_SMALL("Apply DNN classify filter to the input."), |
||||
.priv_size = sizeof(DnnClassifyContext), |
||||
.init = dnn_classify_init, |
||||
.uninit = dnn_classify_uninit, |
||||
.query_formats = dnn_classify_query_formats, |
||||
.inputs = dnn_classify_inputs, |
||||
.outputs = dnn_classify_outputs, |
||||
.priv_class = &dnn_classify_class, |
||||
.activate = dnn_classify_activate, |
||||
}; |
Loading…
Reference in new issue