@ -253,9 +253,9 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
ov_shape_free ( & input_shape ) ;
ov_shape_free ( & input_shape ) ;
return ov2_map_error ( status , NULL ) ;
return ov2_map_error ( status , NULL ) ;
}
}
input . height = dims [ 1 ] ;
for ( int i = 0 ; i < input_shape . rank ; i + + )
input . width = dims [ 2 ] ;
input . dims [ i ] = dims [ i ] ;
input . channels = dims [ 3 ] ;
input . layout = DL_NHWC ;
input . dt = precision_to_datatype ( precision ) ;
input . dt = precision_to_datatype ( precision ) ;
# else
# else
status = ie_infer_request_get_blob ( request - > infer_request , task - > input_name , & input_blob ) ;
status = ie_infer_request_get_blob ( request - > infer_request , task - > input_name , & input_blob ) ;
@ -278,9 +278,9 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
av_log ( ctx , AV_LOG_ERROR , " Failed to get input blob buffer \n " ) ;
av_log ( ctx , AV_LOG_ERROR , " Failed to get input blob buffer \n " ) ;
return DNN_GENERIC_ERROR ;
return DNN_GENERIC_ERROR ;
}
}
input . height = dims . dims [ 2 ] ;
for ( int i = 0 ; i < input_shape . rank ; i + + )
input . width = dims . dims [ 3 ] ;
input . dims [ i ] = dims [ i ] ;
input . channels = dims . dims [ 1 ] ;
input . layout = DL_NCHW ;
input . data = blob_buffer . buffer ;
input . data = blob_buffer . buffer ;
input . dt = precision_to_datatype ( precision ) ;
input . dt = precision_to_datatype ( precision ) ;
# endif
# endif
@ -339,8 +339,8 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
av_assert0 ( ! " should not reach here " ) ;
av_assert0 ( ! " should not reach here " ) ;
break ;
break ;
}
}
input . data = ( uint8_t * ) input . data
input . data = ( uint8_t * ) input . data +
+ input . width * input . height * input . channels * get_datatype_size ( input . dt ) ;
input . dims [ 1 ] * input . dims [ 2 ] * input . dims [ 3 ] * get_datatype_size ( input . dt ) ;
}
}
# if HAVE_OPENVINO2
# if HAVE_OPENVINO2
ov_tensor_free ( tensor ) ;
ov_tensor_free ( tensor ) ;
@ -403,10 +403,11 @@ static void infer_completion_callback(void *args)
goto end ;
goto end ;
}
}
outputs [ i ] . dt = precision_to_datatype ( precision ) ;
outputs [ i ] . dt = precision_to_datatype ( precision ) ;
outputs [ i ] . layout = DL_NCHW ;
outputs [ i ] . channels = output_shape . rank > 2 ? dims [ output_shape . rank - 3 ] : 1 ;
outputs [ i ] . dims [ 0 ] = 1 ;
outputs [ i ] . height = output_shape . rank > 1 ? dims [ output_shape . rank - 2 ] : 1 ;
outputs [ i ] . dims [ 1 ] = output_shape . rank > 2 ? dims [ output_shape . rank - 3 ] : 1 ;
outputs [ i ] . width = output_shape . rank > 0 ? dims [ output_shape . rank - 1 ] : 1 ;
outputs [ i ] . dims [ 2 ] = output_shape . rank > 1 ? dims [ output_shape . rank - 2 ] : 1 ;
outputs [ i ] . dims [ 3 ] = output_shape . rank > 0 ? dims [ output_shape . rank - 1 ] : 1 ;
av_assert0 ( request - > lltask_count < = dims [ 0 ] ) ;
av_assert0 ( request - > lltask_count < = dims [ 0 ] ) ;
outputs [ i ] . layout = ctx - > options . layout ;
outputs [ i ] . layout = ctx - > options . layout ;
outputs [ i ] . scale = ctx - > options . scale ;
outputs [ i ] . scale = ctx - > options . scale ;
@ -445,9 +446,9 @@ static void infer_completion_callback(void *args)
return ;
return ;
}
}
output . data = blob_buffer . buffer ;
output . data = blob_buffer . buffer ;
output . channels = dims . dims [ 1 ] ;
output . layout = DL_NCHW ;
output . height = dims . dims [ 2 ] ;
for ( int i = 0 ; i < 4 ; i + + )
output . width = dims . dims [ 3 ] ;
output . dims [ i ] = dims . dims [ i ] ;
av_assert0 ( request - > lltask_count < = dims . dims [ 0 ] ) ;
av_assert0 ( request - > lltask_count < = dims . dims [ 0 ] ) ;
output . dt = precision_to_datatype ( precision ) ;
output . dt = precision_to_datatype ( precision ) ;
output . layout = ctx - > options . layout ;
output . layout = ctx - > options . layout ;
@ -469,8 +470,10 @@ static void infer_completion_callback(void *args)
ff_proc_from_dnn_to_frame ( task - > out_frame , outputs , ctx ) ;
ff_proc_from_dnn_to_frame ( task - > out_frame , outputs , ctx ) ;
}
}
} else {
} else {
task - > out_frame - > width = outputs [ 0 ] . width ;
task - > out_frame - > width =
task - > out_frame - > height = outputs [ 0 ] . height ;
outputs [ 0 ] . dims [ dnn_get_width_idx_by_layout ( outputs [ 0 ] . layout ) ] ;
task - > out_frame - > height =
outputs [ 0 ] . dims [ dnn_get_height_idx_by_layout ( outputs [ 0 ] . layout ) ] ;
}
}
break ;
break ;
case DFT_ANALYTICS_DETECT :
case DFT_ANALYTICS_DETECT :
@ -501,7 +504,8 @@ static void infer_completion_callback(void *args)
av_freep ( & request - > lltasks [ i ] ) ;
av_freep ( & request - > lltasks [ i ] ) ;
for ( int i = 0 ; i < ov_model - > nb_outputs ; i + + )
for ( int i = 0 ; i < ov_model - > nb_outputs ; i + + )
outputs [ i ] . data = ( uint8_t * ) outputs [ i ] . data +
outputs [ i ] . data = ( uint8_t * ) outputs [ i ] . data +
outputs [ i ] . width * outputs [ i ] . height * outputs [ i ] . channels * get_datatype_size ( outputs [ i ] . dt ) ;
outputs [ i ] . dims [ 1 ] * outputs [ i ] . dims [ 2 ] * outputs [ i ] . dims [ 3 ] *
get_datatype_size ( outputs [ i ] . dt ) ;
}
}
end :
end :
# if HAVE_OPENVINO2
# if HAVE_OPENVINO2
@ -1085,7 +1089,6 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
# if HAVE_OPENVINO2
# if HAVE_OPENVINO2
ov_shape_t input_shape = { 0 } ;
ov_shape_t input_shape = { 0 } ;
ov_element_type_e precision ;
ov_element_type_e precision ;
int64_t * dims ;
ov_status_e status ;
ov_status_e status ;
if ( input_name )
if ( input_name )
status = ov_model_const_input_by_name ( ov_model - > ov_model , input_name , & ov_model - > input_port ) ;
status = ov_model_const_input_by_name ( ov_model - > ov_model , input_name , & ov_model - > input_port ) ;
@ -1105,16 +1108,18 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
av_log ( ctx , AV_LOG_ERROR , " Failed to get input port shape. \n " ) ;
av_log ( ctx , AV_LOG_ERROR , " Failed to get input port shape. \n " ) ;
return ov2_map_error ( status , NULL ) ;
return ov2_map_error ( status , NULL ) ;
}
}
dims = input_shape . dims ;
for ( int i = 0 ; i < 4 ; i + + )
if ( dims [ 1 ] < = 3 ) { // NCHW
input - > dims [ i ] = input_shape . dims [ i ] ;
input - > channels = dims [ 1 ] ;
if ( input_resizable ) {
input - > height = input_resizable ? - 1 : dims [ 2 ] ;
input - > dims [ dnn_get_width_idx_by_layout ( input - > layout ) ] = - 1 ;
input - > width = input_resizable ? - 1 : dims [ 3 ] ;
input - > dims [ dnn_get_height_idx_by_layout ( input - > layout ) ] = - 1 ;
} else { // NHWC
input - > height = input_resizable ? - 1 : dims [ 1 ] ;
input - > width = input_resizable ? - 1 : dims [ 2 ] ;
input - > channels = dims [ 3 ] ;
}
}
if ( input_shape . dims [ 1 ] < = 3 ) // NCHW
input - > layout = DL_NCHW ;
else // NHWC
input - > layout = DL_NHWC ;
input - > dt = precision_to_datatype ( precision ) ;
input - > dt = precision_to_datatype ( precision ) ;
ov_shape_free ( & input_shape ) ;
ov_shape_free ( & input_shape ) ;
return 0 ;
return 0 ;
@ -1144,15 +1149,18 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
return DNN_GENERIC_ERROR ;
return DNN_GENERIC_ERROR ;
}
}
if ( dims [ 1 ] < = 3 ) { // NCHW
for ( int i = 0 ; i < 4 ; i + + )
input - > channels = dims [ 1 ] ;
input - > dims [ i ] = input_shape . dims [ i ] ;
input - > height = input_resizable ? - 1 : dims [ 2 ] ;
if ( input_resizable ) {
input - > width = input_resizable ? - 1 : dims [ 3 ] ;
input - > dims [ dnn_get_width_idx_by_layout ( input - > layout ) ] = - 1 ;
} else { // NHWC
input - > dims [ dnn_get_height_idx_by_layout ( input - > layout ) ] = - 1 ;
input - > height = input_resizable ? - 1 : dims [ 1 ] ;
input - > width = input_resizable ? - 1 : dims [ 2 ] ;
input - > channels = dims [ 3 ] ;
}
}
if ( input_shape . dims [ 1 ] < = 3 ) // NCHW
input - > layout = DL_NCHW ;
else // NHWC
input - > layout = DL_NHWC ;
input - > dt = precision_to_datatype ( precision ) ;
input - > dt = precision_to_datatype ( precision ) ;
return 0 ;
return 0 ;
}
}