mirror of https://github.com/FFmpeg/FFmpeg.git
'make fate-dnn-layer-pad' to run the test Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>pull/318/head
parent
df8db34552
commit
3805aae479
4 changed files with 226 additions and 1 deletions
@ -0,0 +1,11 @@ |
||||
DNNTESTPROGS += dnn-layer-pad
|
||||
|
||||
DNNTESTOBJS := $(DNNTESTOBJS:%=$(DNNTESTSDIR)%) $(DNNTESTPROGS:%=$(DNNTESTSDIR)/%-test.o)
|
||||
DNNTESTPROGS := $(DNNTESTPROGS:%=$(DNNTESTSDIR)/%-test$(EXESUF))
|
||||
-include $(wildcard $(DNNTESTOBJS:.o=.d)) |
||||
|
||||
$(DNNTESTPROGS): %$(EXESUF): %.o $(FF_DEP_LIBS) |
||||
$(LD) $(LDFLAGS) $(LDEXEFLAGS) $(LD_O) $(filter %.o,$^) $(FF_EXTRALIBS) $(ELIBS)
|
||||
|
||||
testclean:: |
||||
$(RM) $(addprefix $(DNNTESTSDIR)/,$(CLEANSUFFIXES) *-test$(EXESUF))
|
@ -0,0 +1,203 @@ |
||||
/*
|
||||
* Copyright (c) 2019 Guo Yejun |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <math.h> |
||||
#include "libavfilter/dnn/dnn_backend_native_layer_pad.h" |
||||
|
||||
#define EPSON 0.00001 |
||||
|
||||
static int test_with_mode_symmetric(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') |
||||
data = np.arange(48).reshape(1, 4, 4, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print(list(data.flatten())) |
||||
print(list(output.flatten())) |
||||
print(data.shape) |
||||
print(output.shape) |
||||
*/ |
||||
|
||||
LayerPadParams params; |
||||
float input[1*4*4*3] = { |
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 |
||||
}; |
||||
float expected_output[1*9*9*3] = { |
||||
18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, |
||||
4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, |
||||
4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, |
||||
21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, |
||||
34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, |
||||
44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, |
||||
27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, |
||||
13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 |
||||
}; |
||||
float output[1*9*9*3]; |
||||
memset(output, 0, sizeof(output)); |
||||
|
||||
params.mode = LPMP_SYMMETRIC; |
||||
params.paddings[0][0] = 0; |
||||
params.paddings[0][1] = 0; |
||||
params.paddings[1][0] = 2; |
||||
params.paddings[1][1] = 3; |
||||
params.paddings[2][0] = 3; |
||||
params.paddings[2][1] = 2; |
||||
params.paddings[3][0] = 0; |
||||
params.paddings[3][1] = 0; |
||||
|
||||
dnn_execute_layer_pad(input, output, ¶ms, 1, 4, 4, 3); |
||||
|
||||
for (int i = 0; i < sizeof(output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
return 0; |
||||
|
||||
} |
||||
|
||||
static int test_with_mode_reflect(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) |
||||
y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') |
||||
data = np.arange(36).reshape(3, 2, 2, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print(list(data.flatten())) |
||||
print(list(output.flatten())) |
||||
print(data.shape) |
||||
print(output.shape) |
||||
*/ |
||||
|
||||
LayerPadParams params; |
||||
float input[3*2*2*3] = { |
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 |
||||
}; |
||||
float expected_output[6*2*2*3] = { |
||||
12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, |
||||
12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, |
||||
35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 |
||||
}; |
||||
float output[6*2*2*3]; |
||||
memset(output, 0, sizeof(output)); |
||||
|
||||
params.mode = LPMP_REFLECT; |
||||
params.paddings[0][0] = 1; |
||||
params.paddings[0][1] = 2; |
||||
params.paddings[1][0] = 0; |
||||
params.paddings[1][1] = 0; |
||||
params.paddings[2][0] = 0; |
||||
params.paddings[2][1] = 0; |
||||
params.paddings[3][0] = 0; |
||||
params.paddings[3][1] = 0; |
||||
|
||||
dnn_execute_layer_pad(input, output, ¶ms, 3, 2, 2, 3); |
||||
|
||||
for (int i = 0; i < sizeof(output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
return 0; |
||||
|
||||
} |
||||
|
||||
static int test_with_mode_constant(void) |
||||
{ |
||||
// the input data and expected data are generated with below python code.
|
||||
/*
|
||||
x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) |
||||
y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728) |
||||
data = np.arange(12).reshape(1, 2, 2, 3); |
||||
|
||||
sess=tf.Session() |
||||
sess.run(tf.global_variables_initializer()) |
||||
output = sess.run(y, feed_dict={x: data}) |
||||
|
||||
print(list(data.flatten())) |
||||
print(list(output.flatten())) |
||||
print(data.shape) |
||||
print(output.shape) |
||||
*/ |
||||
|
||||
LayerPadParams params; |
||||
float input[1*2*2*3] = { |
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 |
||||
}; |
||||
float expected_output[1*3*2*6] = { |
||||
728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, |
||||
728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0, |
||||
728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0 |
||||
}; |
||||
float output[1*3*2*6]; |
||||
memset(output, 0, sizeof(output)); |
||||
|
||||
params.mode = LPMP_CONSTANT; |
||||
params.constant_values = 728; |
||||
params.paddings[0][0] = 0; |
||||
params.paddings[0][1] = 0; |
||||
params.paddings[1][0] = 1; |
||||
params.paddings[1][1] = 0; |
||||
params.paddings[2][0] = 0; |
||||
params.paddings[2][1] = 0; |
||||
params.paddings[3][0] = 1; |
||||
params.paddings[3][1] = 2; |
||||
|
||||
dnn_execute_layer_pad(input, output, ¶ms, 1, 2, 2, 3); |
||||
|
||||
for (int i = 0; i < sizeof(output) / sizeof(float); i++) { |
||||
if (fabs(output[i] - expected_output[i]) > EPSON) { |
||||
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); |
||||
return 1; |
||||
} |
||||
} |
||||
|
||||
return 0; |
||||
|
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
if (test_with_mode_symmetric()) |
||||
return 1; |
||||
|
||||
if (test_with_mode_reflect()) |
||||
return 1; |
||||
|
||||
if (test_with_mode_constant()) |
||||
return 1; |
||||
} |
@ -0,0 +1,8 @@ |
||||
FATE_DNN += fate-dnn-layer-pad
|
||||
fate-dnn-layer-pad: $(DNNTESTSDIR)/dnn-layer-pad-test$(EXESUF) |
||||
fate-dnn-layer-pad: CMD = run $(DNNTESTSDIR)/dnn-layer-pad-test$(EXESUF) |
||||
fate-dnn-layer-pad: CMP = null |
||||
|
||||
FATE-yes += $(FATE_DNN)
|
||||
|
||||
fate-dnn: $(FATE_DNN) |
Loading…
Reference in new issue