|
|
@ -31,13 +31,13 @@ |
|
|
|
|
|
|
|
|
|
|
|
double av_int2dbl(int64_t v){ |
|
|
|
double av_int2dbl(int64_t v){ |
|
|
|
if(v+v > 0xFFEULL<<52) |
|
|
|
if(v+v > 0xFFEULL<<52) |
|
|
|
return 0.0/0.0; |
|
|
|
return NAN; |
|
|
|
return ldexp(((v&((1LL<<52)-1)) + (1LL<<52)) * (v>>63|1), (v>>52&0x7FF)-1075); |
|
|
|
return ldexp(((v&((1LL<<52)-1)) + (1LL<<52)) * (v>>63|1), (v>>52&0x7FF)-1075); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
float av_int2flt(int32_t v){ |
|
|
|
float av_int2flt(int32_t v){ |
|
|
|
if(v+v > 0xFF000000U) |
|
|
|
if(v+v > 0xFF000000U) |
|
|
|
return 0.0/0.0; |
|
|
|
return NAN; |
|
|
|
return ldexp(((v&0x7FFFFF) + (1<<23)) * (v>>31|1), (v>>23&0xFF)-150); |
|
|
|
return ldexp(((v&0x7FFFFF) + (1<<23)) * (v>>31|1), (v>>23&0xFF)-150); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -49,7 +49,7 @@ double av_ext2dbl(const AVExtFloat ext){ |
|
|
|
m = (m<<8) + ext.mantissa[i]; |
|
|
|
m = (m<<8) + ext.mantissa[i]; |
|
|
|
e = (((int)ext.exponent[0]&0x7f)<<8) | ext.exponent[1]; |
|
|
|
e = (((int)ext.exponent[0]&0x7f)<<8) | ext.exponent[1]; |
|
|
|
if (e == 0x7fff && m) |
|
|
|
if (e == 0x7fff && m) |
|
|
|
return 0.0/0.0; |
|
|
|
return NAN; |
|
|
|
e -= 16383 + 63; /* In IEEE 80 bits, the whole (i.e. 1.xxxx)
|
|
|
|
e -= 16383 + 63; /* In IEEE 80 bits, the whole (i.e. 1.xxxx)
|
|
|
|
* mantissa bit is written as opposed to the |
|
|
|
* mantissa bit is written as opposed to the |
|
|
|
* single and double precision formats. */ |
|
|
|
* single and double precision formats. */ |
|
|
@ -88,7 +88,7 @@ AVExtFloat av_dbl2ext(double d){ |
|
|
|
ext.mantissa[i] = m>>(56-(i<<3)); |
|
|
|
ext.mantissa[i] = m>>(56-(i<<3)); |
|
|
|
} else if (f != 0.0) { |
|
|
|
} else if (f != 0.0) { |
|
|
|
ext.exponent[0] = 0x7f; ext.exponent[1] = 0xff; |
|
|
|
ext.exponent[0] = 0x7f; ext.exponent[1] = 0xff; |
|
|
|
if (f != 1/0.0) |
|
|
|
if (f != INFINITY) |
|
|
|
ext.mantissa[0] = ~0; |
|
|
|
ext.mantissa[0] = ~0; |
|
|
|
} |
|
|
|
} |
|
|
|
if (d < 0) |
|
|
|
if (d < 0) |
|
|
|