|
|
|
@ -28,12 +28,16 @@ |
|
|
|
|
#include <math.h> |
|
|
|
|
#include <netcdf.h> |
|
|
|
|
|
|
|
|
|
#include "libavcodec/avfft.h" |
|
|
|
|
#include "libavutil/float_dsp.h" |
|
|
|
|
#include "libavutil/opt.h" |
|
|
|
|
#include "avfilter.h" |
|
|
|
|
#include "internal.h" |
|
|
|
|
#include "audio.h" |
|
|
|
|
|
|
|
|
|
#define TIME_DOMAIN 0 |
|
|
|
|
#define FREQUENCY_DOMAIN 1 |
|
|
|
|
|
|
|
|
|
typedef struct NCSofa { /* contains data of one SOFA file */ |
|
|
|
|
int ncid; /* netCDF ID of the opened SOFA file */ |
|
|
|
|
int n_samples; /* length of one impulse response (IR) */ |
|
|
|
@ -67,6 +71,7 @@ typedef struct SOFAlizerContext { |
|
|
|
|
int write[2]; /* current write position to ringbuffer */ |
|
|
|
|
int buffer_length; /* is: longest IR plus max. delay in all SOFA files */ |
|
|
|
|
/* then choose next power of 2 */ |
|
|
|
|
int n_fft; /* number of samples in one FFT block */ |
|
|
|
|
|
|
|
|
|
/* netCDF variables */ |
|
|
|
|
int *delay[2]; /* broadband delay for each channel/IR to be convolved */ |
|
|
|
@ -74,12 +79,17 @@ typedef struct SOFAlizerContext { |
|
|
|
|
float *data_ir[2]; /* IRs for all channels to be convolved */ |
|
|
|
|
/* (this excludes the LFE) */ |
|
|
|
|
float *temp_src[2]; |
|
|
|
|
FFTComplex *temp_fft[2]; |
|
|
|
|
|
|
|
|
|
/* control variables */ |
|
|
|
|
float gain; /* filter gain (in dB) */ |
|
|
|
|
float rotation; /* rotation of virtual loudspeakers (in degrees) */ |
|
|
|
|
float elevation; /* elevation of virtual loudspeakers (in deg.) */ |
|
|
|
|
float radius; /* distance virtual loudspeakers to listener (in metres) */ |
|
|
|
|
int type; /* processing type */ |
|
|
|
|
|
|
|
|
|
FFTContext *fft[2], *ifft[2]; |
|
|
|
|
FFTComplex *data_hrtf[2]; |
|
|
|
|
|
|
|
|
|
AVFloatDSPContext *fdsp; |
|
|
|
|
} SOFAlizerContext; |
|
|
|
@ -259,11 +269,8 @@ static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) |
|
|
|
|
/* delay and IR values required for each ear and measurement position: */ |
|
|
|
|
data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int)); |
|
|
|
|
data_ir = s->sofa.data_ir = av_malloc_array(m_dim * n_samples, sizeof(float) * 2); |
|
|
|
|
s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float)); |
|
|
|
|
s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float)); |
|
|
|
|
|
|
|
|
|
if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir || |
|
|
|
|
!s->temp_src[0] || !s->temp_src[1]) { |
|
|
|
|
if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir) { |
|
|
|
|
/* if memory could not be allocated */ |
|
|
|
|
close_sofa(&s->sofa); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
@ -590,6 +597,7 @@ typedef struct ThreadData { |
|
|
|
|
int *n_clippings; |
|
|
|
|
float **ringbuffer; |
|
|
|
|
float **temp_src; |
|
|
|
|
FFTComplex **temp_fft; |
|
|
|
|
} ThreadData; |
|
|
|
|
|
|
|
|
|
static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
|
|
@ -678,6 +686,120 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
|
|
|
{ |
|
|
|
|
SOFAlizerContext *s = ctx->priv; |
|
|
|
|
ThreadData *td = arg; |
|
|
|
|
AVFrame *in = td->in, *out = td->out; |
|
|
|
|
int offset = jobnr; |
|
|
|
|
int *write = &td->write[jobnr]; |
|
|
|
|
FFTComplex *hrtf = s->data_hrtf[jobnr]; /* get pointers to current HRTF data */ |
|
|
|
|
int *n_clippings = &td->n_clippings[jobnr]; |
|
|
|
|
float *ringbuffer = td->ringbuffer[jobnr]; |
|
|
|
|
const int n_samples = s->sofa.n_samples; /* length of one IR */ |
|
|
|
|
const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */ |
|
|
|
|
float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */ |
|
|
|
|
const int in_channels = s->n_conv; /* number of input channels */ |
|
|
|
|
/* ring buffer length is: longest IR plus max. delay -> next power of 2 */ |
|
|
|
|
const int buffer_length = s->buffer_length; |
|
|
|
|
/* -1 for AND instead of MODULO (applied to powers of 2): */ |
|
|
|
|
const uint32_t modulo = (uint32_t)buffer_length - 1; |
|
|
|
|
FFTComplex *fft_in = s->temp_fft[jobnr]; /* temporary array for FFT input/output data */ |
|
|
|
|
FFTContext *ifft = s->ifft[jobnr]; |
|
|
|
|
FFTContext *fft = s->fft[jobnr]; |
|
|
|
|
const int n_conv = s->n_conv; |
|
|
|
|
const int n_fft = s->n_fft; |
|
|
|
|
int wr = *write; |
|
|
|
|
int n_read; |
|
|
|
|
int i, j; |
|
|
|
|
|
|
|
|
|
dst += offset; |
|
|
|
|
|
|
|
|
|
/* find minimum between number of samples and output buffer length:
|
|
|
|
|
* (important, if one IR is longer than the output buffer) */ |
|
|
|
|
n_read = FFMIN(s->sofa.n_samples, in->nb_samples); |
|
|
|
|
for (j = 0; j < n_read; j++) { |
|
|
|
|
/* initialize output buf with saved signal from overflow buf */ |
|
|
|
|
dst[2 * j] = ringbuffer[wr]; |
|
|
|
|
ringbuffer[wr] = 0.0; /* re-set read samples to zero */ |
|
|
|
|
/* update ringbuffer read/write position */ |
|
|
|
|
wr = (wr + 1) & modulo; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* initialize rest of output buffer with 0 */ |
|
|
|
|
for (j = n_read; j < in->nb_samples; j++) { |
|
|
|
|
dst[2 * j] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i = 0; i < n_conv; i++) { |
|
|
|
|
if (i == s->lfe_channel) { /* LFE */ |
|
|
|
|
for (j = 0; j < in->nb_samples; j++) { |
|
|
|
|
/* apply gain to LFE signal and add to output buffer */ |
|
|
|
|
dst[2 * j] += src[i + j * in_channels] * s->gain_lfe; |
|
|
|
|
} |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* outer loop: go through all input channels to be convolved */ |
|
|
|
|
offset = i * n_fft; /* no. samples already processed */ |
|
|
|
|
|
|
|
|
|
/* fill FFT input with 0 (we want to zero-pad) */ |
|
|
|
|
memset(fft_in, 0, sizeof(FFTComplex) * n_fft); |
|
|
|
|
|
|
|
|
|
for (j = 0; j < in->nb_samples; j++) { |
|
|
|
|
/* prepare input for FFT */ |
|
|
|
|
/* write all samples of current input channel to FFT input array */ |
|
|
|
|
fft_in[j].re = src[j * in_channels + i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* transform input signal of current channel to frequency domain */ |
|
|
|
|
av_fft_permute(fft, fft_in); |
|
|
|
|
av_fft_calc(fft, fft_in); |
|
|
|
|
for (j = 0; j < n_fft; j++) { |
|
|
|
|
const float re = fft_in[j].re; |
|
|
|
|
const float im = fft_in[j].im; |
|
|
|
|
|
|
|
|
|
/* complex multiplication of input signal and HRTFs */ |
|
|
|
|
/* output channel (real): */ |
|
|
|
|
fft_in[j].re = re * (hrtf + offset + j)->re - im * (hrtf + offset + j)->im; |
|
|
|
|
/* output channel (imag): */ |
|
|
|
|
fft_in[j].im = re * (hrtf + offset + j)->im + im * (hrtf + offset + j)->re; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* transform output signal of current channel back to time domain */ |
|
|
|
|
av_fft_permute(ifft, fft_in); |
|
|
|
|
av_fft_calc(ifft, fft_in); |
|
|
|
|
|
|
|
|
|
for (j = 0; j < in->nb_samples; j++) { |
|
|
|
|
/* write output signal of current channel to output buffer */ |
|
|
|
|
dst[2 * j] += fft_in[j].re / (float)n_fft; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (j = 0; j < n_samples - 1; j++) { /* overflow length is IR length - 1 */ |
|
|
|
|
/* write the rest of output signal to overflow buffer */ |
|
|
|
|
int write_pos = (wr + j) & modulo; |
|
|
|
|
|
|
|
|
|
*(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re / (float)n_fft; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* go through all samples of current output buffer: count clippings */ |
|
|
|
|
for (i = 0; i < out->nb_samples; i++) { |
|
|
|
|
/* clippings counter */ |
|
|
|
|
if (fabs(*dst) > 1) { /* if current output sample > 1 */ |
|
|
|
|
*n_clippings = *n_clippings + 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* move output buffer pointer by +2 to get to next sample of processed channel: */ |
|
|
|
|
dst += 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* remember read/write position in ringbuffer for next call */ |
|
|
|
|
*write = wr; |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
|
|
|
|
{ |
|
|
|
|
AVFilterContext *ctx = inlink->dst; |
|
|
|
@ -697,8 +819,13 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
|
|
|
|
td.in = in; td.out = out; td.write = s->write; |
|
|
|
|
td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings; |
|
|
|
|
td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src; |
|
|
|
|
td.temp_fft = s->temp_fft; |
|
|
|
|
|
|
|
|
|
ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2); |
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2); |
|
|
|
|
} else { |
|
|
|
|
ctx->internal->execute(ctx, sofalizer_fast_convolute, &td, NULL, 2); |
|
|
|
|
} |
|
|
|
|
emms_c(); |
|
|
|
|
|
|
|
|
|
/* display error message if clipping occured */ |
|
|
|
@ -776,10 +903,15 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) |
|
|
|
|
struct SOFAlizerContext *s = ctx->priv; |
|
|
|
|
const int n_samples = s->sofa.n_samples; |
|
|
|
|
int n_conv = s->n_conv; /* no. channels to convolve */ |
|
|
|
|
int n_fft = s->n_fft; |
|
|
|
|
int delay_l[10]; /* broadband delay for each IR */ |
|
|
|
|
int delay_r[10]; |
|
|
|
|
int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */ |
|
|
|
|
float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */ |
|
|
|
|
FFTComplex *data_hrtf_l = NULL; |
|
|
|
|
FFTComplex *data_hrtf_r = NULL; |
|
|
|
|
FFTComplex *fft_in_l = NULL; |
|
|
|
|
FFTComplex *fft_in_r = NULL; |
|
|
|
|
float *data_ir_l = NULL; |
|
|
|
|
float *data_ir_r = NULL; |
|
|
|
|
int offset = 0; /* used for faster pointer arithmetics in for-loop */ |
|
|
|
@ -791,13 +923,27 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) |
|
|
|
|
return AVERROR_INVALIDDATA; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* get temporary IR for L and R channel */ |
|
|
|
|
data_ir_l = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_l)); |
|
|
|
|
data_ir_r = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_r)); |
|
|
|
|
if (!data_ir_r || !data_ir_l) { |
|
|
|
|
av_free(data_ir_l); |
|
|
|
|
av_free(data_ir_r); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float)); |
|
|
|
|
s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float)); |
|
|
|
|
|
|
|
|
|
/* get temporary IR for L and R channel */ |
|
|
|
|
data_ir_l = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_l)); |
|
|
|
|
data_ir_r = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_r)); |
|
|
|
|
if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) { |
|
|
|
|
av_free(data_ir_l); |
|
|
|
|
av_free(data_ir_r); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
/* get temporary HRTF memory for L and R channel */ |
|
|
|
|
data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv); |
|
|
|
|
data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv); |
|
|
|
|
if (!data_hrtf_r || !data_hrtf_l) { |
|
|
|
|
av_free(data_hrtf_l); |
|
|
|
|
av_free(data_hrtf_r); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i = 0; i < s->n_conv; i++) { |
|
|
|
@ -811,26 +957,81 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) |
|
|
|
|
delay_l[i] = *(s->sofa.data_delay + 2 * m[i]); |
|
|
|
|
delay_r[i] = *(s->sofa.data_delay + 2 * m[i] + 1); |
|
|
|
|
|
|
|
|
|
offset = i * n_samples; /* no. samples already written */ |
|
|
|
|
for (j = 0; j < n_samples; j++) { |
|
|
|
|
/* load reversed IRs of the specified source position
|
|
|
|
|
* sample-by-sample for left and right ear; and apply gain */ |
|
|
|
|
*(data_ir_l + offset + j) = /* left channel */ |
|
|
|
|
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin; |
|
|
|
|
*(data_ir_r + offset + j) = /* right channel */ |
|
|
|
|
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j + n_samples) * gain_lin; |
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
offset = i * n_samples; /* no. samples already written */ |
|
|
|
|
for (j = 0; j < n_samples; j++) { |
|
|
|
|
/* load reversed IRs of the specified source position
|
|
|
|
|
* sample-by-sample for left and right ear; and apply gain */ |
|
|
|
|
*(data_ir_l + offset + j) = /* left channel */ |
|
|
|
|
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin; |
|
|
|
|
*(data_ir_r + offset + j) = /* right channel */ |
|
|
|
|
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j + n_samples) * gain_lin; |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l)); |
|
|
|
|
fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r)); |
|
|
|
|
if (!fft_in_l || !fft_in_r) { |
|
|
|
|
av_free(data_hrtf_l); |
|
|
|
|
av_free(data_hrtf_r); |
|
|
|
|
av_free(fft_in_l); |
|
|
|
|
av_free(fft_in_r); |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
offset = i * n_fft; /* no. samples already written */ |
|
|
|
|
for (j = 0; j < n_samples; j++) { |
|
|
|
|
/* load non-reversed IRs of the specified source position
|
|
|
|
|
* sample-by-sample and apply gain, |
|
|
|
|
* L channel is loaded to real part, R channel to imag part, |
|
|
|
|
* IRs ared shifted by L and R delay */ |
|
|
|
|
fft_in_l[delay_l[i] + j].re = /* left channel */ |
|
|
|
|
*(s->sofa.data_ir + 2 * m[i] * n_samples + j) * gain_lin; |
|
|
|
|
fft_in_r[delay_r[i] + j].re = /* right channel */ |
|
|
|
|
*(s->sofa.data_ir + (2 * m[i] + 1) * n_samples + j) * gain_lin; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* actually transform to frequency domain (IRs -> HRTFs) */ |
|
|
|
|
av_fft_permute(s->fft[0], fft_in_l); |
|
|
|
|
av_fft_calc(s->fft[0], fft_in_l); |
|
|
|
|
memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l)); |
|
|
|
|
av_fft_permute(s->fft[0], fft_in_r); |
|
|
|
|
av_fft_calc(s->fft[0], fft_in_r); |
|
|
|
|
memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "Index: %d, Azimuth: %f, Elevation: %f, Radius: %f of SOFA file.\n", |
|
|
|
|
m[i], *(s->sofa.sp_a + m[i]), *(s->sofa.sp_e + m[i]), *(s->sofa.sp_r + m[i])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */ |
|
|
|
|
memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * n_samples); |
|
|
|
|
memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * n_samples); |
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
/* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */ |
|
|
|
|
memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * n_samples); |
|
|
|
|
memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * n_samples); |
|
|
|
|
|
|
|
|
|
av_freep(&data_ir_l); /* free temporary IR memory */ |
|
|
|
|
av_freep(&data_ir_r); |
|
|
|
|
} else { |
|
|
|
|
s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex)); |
|
|
|
|
s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex)); |
|
|
|
|
if (!s->data_hrtf[0] || !s->data_hrtf[1]) { |
|
|
|
|
av_freep(&data_hrtf_l); |
|
|
|
|
av_freep(&data_hrtf_r); |
|
|
|
|
av_freep(&fft_in_l); |
|
|
|
|
av_freep(&fft_in_r); |
|
|
|
|
return AVERROR(ENOMEM); /* memory allocation failed */ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */ |
|
|
|
|
sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */ |
|
|
|
|
memcpy(s->data_hrtf[1], data_hrtf_r, |
|
|
|
|
sizeof(FFTComplex) * n_conv * n_fft); |
|
|
|
|
|
|
|
|
|
av_free(data_ir_l); /* free temporary IR memory */ |
|
|
|
|
av_free(data_ir_r); |
|
|
|
|
av_freep(&data_hrtf_l); /* free temporary HRTF memory */ |
|
|
|
|
av_freep(&data_hrtf_r); |
|
|
|
|
|
|
|
|
|
av_freep(&fft_in_l); /* free temporary FFT memory */ |
|
|
|
|
av_freep(&fft_in_r); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
memcpy(s->delay[0], &delay_l[0], sizeof(int) * s->n_conv); |
|
|
|
|
memcpy(s->delay[1], &delay_r[0], sizeof(int) * s->n_conv); |
|
|
|
@ -890,6 +1091,12 @@ static int config_input(AVFilterLink *inlink) |
|
|
|
|
int n_max = 0; |
|
|
|
|
int ret; |
|
|
|
|
|
|
|
|
|
if (s->type == FREQUENCY_DOMAIN) { |
|
|
|
|
inlink->partial_buf_size = |
|
|
|
|
inlink->min_samples = |
|
|
|
|
inlink->max_samples = inlink->sample_rate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* gain -3 dB per channel, -6 dB to get LFE on a similar level */ |
|
|
|
|
s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6) / 20 * M_LN10); |
|
|
|
|
|
|
|
|
@ -907,6 +1114,18 @@ static int config_input(AVFilterLink *inlink) |
|
|
|
|
/* buffer length is longest IR plus max. delay -> next power of 2
|
|
|
|
|
(32 - count leading zeros gives required exponent) */ |
|
|
|
|
s->buffer_length = exp2(32 - clz((uint32_t)n_max)); |
|
|
|
|
s->n_fft = exp2(32 - clz((uint32_t)(n_max + inlink->sample_rate))); |
|
|
|
|
|
|
|
|
|
if (s->type == FREQUENCY_DOMAIN) { |
|
|
|
|
av_fft_end(s->fft[0]); |
|
|
|
|
av_fft_end(s->fft[1]); |
|
|
|
|
s->fft[0] = av_fft_init(log2(s->n_fft), 0); |
|
|
|
|
s->fft[1] = av_fft_init(log2(s->n_fft), 0); |
|
|
|
|
av_fft_end(s->ifft[0]); |
|
|
|
|
av_fft_end(s->ifft[1]); |
|
|
|
|
s->ifft[0] = av_fft_init(log2(s->n_fft), 1); |
|
|
|
|
s->ifft[1] = av_fft_init(log2(s->n_fft), 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* Allocate memory for the impulse responses, delays and the ringbuffers */ |
|
|
|
|
/* size: (longest IR) * (number of channels to convolute) */ |
|
|
|
@ -918,8 +1137,19 @@ static int config_input(AVFilterLink *inlink) |
|
|
|
|
/* length: (buffer length) * (number of input channels),
|
|
|
|
|
* OR: buffer length (if frequency domain processing) |
|
|
|
|
* calloc zero-initializes the buffer */ |
|
|
|
|
s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); |
|
|
|
|
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); |
|
|
|
|
|
|
|
|
|
if (s->type == TIME_DOMAIN) { |
|
|
|
|
s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); |
|
|
|
|
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); |
|
|
|
|
} else { |
|
|
|
|
s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float)); |
|
|
|
|
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float)); |
|
|
|
|
s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
|
|
|
|
s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); |
|
|
|
|
if (!s->temp_fft[0] || !s->temp_fft[1]) |
|
|
|
|
return AVERROR(ENOMEM); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* length: number of channels to convolute */ |
|
|
|
|
s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim)); |
|
|
|
|
s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev)); |
|
|
|
@ -937,8 +1167,8 @@ static int config_input(AVFilterLink *inlink) |
|
|
|
|
av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n"); |
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* load IRs to data_ir[0] and data_ir[1] for required directions */ |
|
|
|
|
/* only load IRs if time-domain convolution is used. */ |
|
|
|
|
if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius)) < 0) |
|
|
|
|
return ret; |
|
|
|
|
|
|
|
|
@ -959,6 +1189,10 @@ static av_cold void uninit(AVFilterContext *ctx) |
|
|
|
|
av_freep(&s->sofa.data_delay); |
|
|
|
|
av_freep(&s->sofa.data_ir); |
|
|
|
|
} |
|
|
|
|
av_fft_end(s->ifft[0]); |
|
|
|
|
av_fft_end(s->ifft[1]); |
|
|
|
|
av_fft_end(s->fft[0]); |
|
|
|
|
av_fft_end(s->fft[1]); |
|
|
|
|
av_freep(&s->delay[0]); |
|
|
|
|
av_freep(&s->delay[1]); |
|
|
|
|
av_freep(&s->data_ir[0]); |
|
|
|
@ -969,6 +1203,10 @@ static av_cold void uninit(AVFilterContext *ctx) |
|
|
|
|
av_freep(&s->speaker_elev); |
|
|
|
|
av_freep(&s->temp_src[0]); |
|
|
|
|
av_freep(&s->temp_src[1]); |
|
|
|
|
av_freep(&s->temp_fft[0]); |
|
|
|
|
av_freep(&s->temp_fft[1]); |
|
|
|
|
av_freep(&s->data_hrtf[0]); |
|
|
|
|
av_freep(&s->data_hrtf[1]); |
|
|
|
|
av_freep(&s->fdsp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -981,6 +1219,9 @@ static const AVOption sofalizer_options[] = { |
|
|
|
|
{ "rotation", "set rotation" , OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -360, 360, .flags = FLAGS }, |
|
|
|
|
{ "elevation", "set elevation", OFFSET(elevation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -90, 90, .flags = FLAGS }, |
|
|
|
|
{ "radius", "set radius", OFFSET(radius), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 3, .flags = FLAGS }, |
|
|
|
|
{ "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" }, |
|
|
|
|
{ "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" }, |
|
|
|
|
{ "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" }, |
|
|
|
|
{ NULL } |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|