removed global vars so that multiple swscalers can be used

experimental upscaling mode (-sws 3)
general convolution filters support (unfinished)
bugfix for bicubic upscaling
assertion checking if defined MP_DEBUG
checking of the input/output size instead of segfault if its very large

Originally committed as revision 4277 to svn://svn.mplayerhq.hu/mplayer/trunk/postproc
pull/126/head
Michael Niedermayer 23 years ago
parent cbf5fa71c9
commit 28bf81c90d
  1. 762
      postproc/swscale.c
  2. 90
      postproc/swscale.h
  3. 789
      postproc/swscale_template.c

@ -5,6 +5,11 @@
// current version mostly by Michael Niedermayer (michaelni@gmx.at)
// the parts written by michael are under GNU GPL
/*
supported Input formats: YV12 (grayscale soon too)
supported output formats: YV12, BGR15, BGR16, BGR24, BGR32 (grayscale soon too)
*/
#include <inttypes.h>
#include <string.h>
#include <math.h>
@ -16,6 +21,7 @@
#endif
#include "swscale.h"
#include "../cpudetect.h"
#include "../libvo/img_format.h"
#undef MOVNTQ
#undef PAVGB
@ -23,14 +29,20 @@
//#undef HAVE_MMX
//#undef ARCH_X86
#define DITHER1XBPP
int fullUVIpol=0;
//disables the unscaled height version
int allwaysIpol=0;
#define RET 0xC3 //near return opcode
//#define ASSERT(x) if(!(x)) { printf("ASSERT " #x " failed\n"); *((int*)0)=0; }
#ifdef MP_DEBUG
#define ASSERT(x) if(!(x)) { printf("ASSERT " #x " failed\n"); *((int*)0)=0; }
#else
#define ASSERT(x) ;
#endif
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif
extern int verbose; // defined in mplayer.c
/*
@ -50,7 +62,6 @@ change the distance of the u & v buffer
Move static / global vars into a struct so multiple scalers can be used
write special vertical cubic upscale version
Optimize C code (yv12 / minmax)
dstStride[3]
*/
#define ABS(a) ((a) > 0 ? (a) : (-(a)))
@ -101,39 +112,9 @@ static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
static uint64_t __attribute__((aligned(8))) temp0;
// FIXME remove
static uint64_t __attribute__((aligned(8))) asm_yalpha1;
static uint64_t __attribute__((aligned(8))) asm_uvalpha1;
static int16_t __attribute__((aligned(8))) *lumPixBuf[2000];
static int16_t __attribute__((aligned(8))) *chrPixBuf[2000];
static int16_t __attribute__((aligned(8))) hLumFilter[8000];
static int16_t __attribute__((aligned(8))) hLumFilterPos[2000];
static int16_t __attribute__((aligned(8))) hChrFilter[8000];
static int16_t __attribute__((aligned(8))) hChrFilterPos[2000];
static int16_t __attribute__((aligned(8))) vLumFilter[8000];
static int16_t __attribute__((aligned(8))) vLumFilterPos[2000];
static int16_t __attribute__((aligned(8))) vChrFilter[8000];
static int16_t __attribute__((aligned(8))) vChrFilterPos[2000];
// Contain simply the values from v(Lum|Chr)Filter just nicely packed for mmx
//FIXME these are very likely too small / 8000 caused problems with 480x480
static int16_t __attribute__((aligned(8))) lumMmxFilter[16000];
static int16_t __attribute__((aligned(8))) chrMmxFilter[16000];
#else
static int16_t *lumPixBuf[2000];
static int16_t *chrPixBuf[2000];
static int16_t hLumFilter[8000];
static int16_t hLumFilterPos[2000];
static int16_t hChrFilter[8000];
static int16_t hChrFilterPos[2000];
static int16_t vLumFilter[8000];
static int16_t vLumFilterPos[2000];
static int16_t vChrFilter[8000];
static int16_t vChrFilterPos[2000];
//FIXME just dummy vars
static int16_t lumMmxFilter[1];
static int16_t chrMmxFilter[1];
#endif
// clipping helper table for C implementations:
@ -159,28 +140,22 @@ static int clip_yuvtab_0c92[768];
static int clip_yuvtab_1a1e[768];
static int clip_yuvtab_40cf[768];
static int hLumFilterSize=0;
static int hChrFilterSize=0;
static int vLumFilterSize=0;
static int vChrFilterSize=0;
static int vLumBufSize=0;
static int vChrBufSize=0;
//global sws_flags from the command line
int sws_flags=0;
#ifdef CAN_COMPILE_X86_ASM
static uint8_t funnyYCode[10000];
static uint8_t funnyUVCode[10000];
#endif
/* cpuCaps combined from cpudetect and whats actually compiled in
(if there is no support for something compiled in it wont appear here) */
static CpuCaps cpuCaps;
static int canMMX2BeUsed=0;
void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[])=NULL;
#ifdef CAN_COMPILE_X86_ASM
void in_asm_used_var_warning_killer()
{
volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+
bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+temp0+asm_yalpha1+ asm_uvalpha1+
M24A+M24B+M24C+w02 + funnyYCode[0]+ funnyUVCode[0]+b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0];
bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+asm_yalpha1+ asm_uvalpha1+
M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0];
if(i) i=0;
}
#endif
@ -220,9 +195,9 @@ static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilt
static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, int dstW, int dstbpp)
uint8_t *dest, int dstW, int dstFormat)
{
if(dstbpp==32)
if(dstFormat==IMGFMT_BGR32)
{
int i;
for(i=0; i<(dstW>>1); i++){
@ -260,7 +235,7 @@ static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilt
dest[8*i+6]=clip_table[((Y2 + Cr) >>13)];
}
}
else if(dstbpp==24)
else if(dstFormat==IMGFMT_BGR24)
{
int i;
for(i=0; i<(dstW>>1); i++){
@ -299,7 +274,7 @@ static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilt
dest+=6;
}
}
else if(dstbpp==16)
else if(dstFormat==IMGFMT_BGR16)
{
int i;
for(i=0; i<(dstW>>1); i++){
@ -339,7 +314,7 @@ static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilt
clip_table16r[(Y2 + Cr) >>13];
}
}
else if(dstbpp==15)
else if(dstFormat==IMGFMT_BGR15)
{
int i;
for(i=0; i<(dstW>>1); i++){
@ -467,42 +442,320 @@ static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilt
// minor note: the HAVE_xyz is messed up after that line so dont use it
// *** bilinear scaling and yuv->rgb or yuv->yuv conversion of yv12 slices:
// *** Note: it's called multiple times while decoding a frame, first time y==0
// switching the cpu type during a sliced drawing can have bad effects, like sig11
void SwScale_YV12slice(unsigned char* srcptr[],int stride[], int srcSliceY ,
int srcSliceH, uint8_t* dstptr[], int dststride, int dstbpp,
// old global scaler, dont use for new code
// will use sws_flags from the command line
void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY ,
int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp,
int srcW, int srcH, int dstW, int dstH){
#ifdef RUNTIME_CPUDETECT
#ifdef CAN_COMPILE_X86_ASM
// ordered per speed fasterst first
if(gCpuCaps.hasMMX2)
SwScale_YV12slice_MMX2(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
else if(gCpuCaps.has3DNow)
SwScale_YV12slice_3DNow(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
else if(gCpuCaps.hasMMX)
SwScale_YV12slice_MMX(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
else
SwScale_YV12slice_C(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
#else
SwScale_YV12slice_C(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
#endif
#else //RUNTIME_CPUDETECT
#ifdef HAVE_MMX2
SwScale_YV12slice_MMX2(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
#elif defined (HAVE_3DNOW)
SwScale_YV12slice_3DNow(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
#elif defined (HAVE_MMX)
SwScale_YV12slice_MMX(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
#else
SwScale_YV12slice_C(srcptr, stride, srcSliceY, srcSliceH, dstptr, dststride, dstbpp, srcW, srcH, dstW, dstH);
static SwsContext *context=NULL;
int dstFormat;
int flags=0;
static int firstTime=1;
int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1};
if(firstTime)
{
flags= SWS_PRINT_INFO;
firstTime=0;
}
switch(dstbpp)
{
case 8 : dstFormat= IMGFMT_Y8; break;
case 12: dstFormat= IMGFMT_YV12; break;
case 15: dstFormat= IMGFMT_BGR15; break;
case 16: dstFormat= IMGFMT_BGR16; break;
case 24: dstFormat= IMGFMT_BGR24; break;
case 32: dstFormat= IMGFMT_BGR32; break;
default: return;
}
switch(sws_flags)
{
case 0: flags|= SWS_FAST_BILINEAR; break;
case 1: flags|= SWS_BILINEAR; break;
case 2: flags|= SWS_BICUBIC; break;
case 3: flags|= SWS_X; break;
default:flags|= SWS_BILINEAR; break;
}
if(!context) context=getSwsContext(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat, flags, NULL, NULL);
swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3);
}
static inline void initFilter(int16_t *dstFilter, int16_t *filterPos, int *filterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags)
{
int i;
double filter[10000];
#ifdef ARCH_X86
if(gCpuCaps.hasMMX)
asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
#endif
#endif //!RUNTIME_CPUDETECT
if(ABS(xInc - 0x10000) <10) // unscaled
{
int i;
*filterSize= (1 +(filterAlign-1)) & (~(filterAlign-1)); // 1 or 4 normaly
for(i=0; i<dstW*(*filterSize); i++) filter[i]=0;
for(i=0; i<dstW; i++)
{
filter[i*(*filterSize)]=1;
filterPos[i]=i;
}
}
else if(xInc <= (1<<16) || (flags&SWS_FAST_BILINEAR)) // upscale
{
int i;
int xDstInSrc;
if (flags&SWS_BICUBIC) *filterSize= 4;
else if(flags&SWS_X ) *filterSize= 4;
else *filterSize= 2;
// printf("%d %d %d\n", filterSize, srcW, dstW);
*filterSize= (*filterSize +(filterAlign-1)) & (~(filterAlign-1));
xDstInSrc= xInc/2 - 0x8000;
for(i=0; i<dstW; i++)
{
int xx= (xDstInSrc>>16) - (*filterSize>>1) + 1;
int j;
filterPos[i]= xx;
if((flags & SWS_BICUBIC) || (flags & SWS_X))
{
double d= ABS(((xx+1)<<16) - xDstInSrc)/(double)(1<<16);
double y1,y2,y3,y4;
double A= -0.6;
if(flags & SWS_BICUBIC){
// Equation is from VirtualDub
y1 = ( + A*d - 2.0*A*d*d + A*d*d*d);
y2 = (+ 1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
y3 = ( - A*d + (2.0*A+3.0)*d*d - (A+2.0)*d*d*d);
y4 = ( + A*d*d - A*d*d*d);
}else{
// cubic interpolation (derived it myself)
y1 = ( -2.0*d + 3.0*d*d - 1.0*d*d*d)/6.0;
y2 = (6.0 -3.0*d - 6.0*d*d + 3.0*d*d*d)/6.0;
y3 = ( +6.0*d + 3.0*d*d - 3.0*d*d*d)/6.0;
y4 = ( -1.0*d + 1.0*d*d*d)/6.0;
}
// printf("%d %d %d \n", coeff, (int)d, xDstInSrc);
filter[i*(*filterSize) + 0]= y1;
filter[i*(*filterSize) + 1]= y2;
filter[i*(*filterSize) + 2]= y3;
filter[i*(*filterSize) + 3]= y4;
// printf("%1.3f %1.3f %1.3f %1.3f %1.3f\n",d , y1, y2, y3, y4);
}
else
{
for(j=0; j<*filterSize; j++)
{
double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
double coeff= 1.0 - d;
if(coeff<0) coeff=0;
// printf("%d %d %d \n", coeff, (int)d, xDstInSrc);
filter[i*(*filterSize) + j]= coeff;
xx++;
}
}
xDstInSrc+= xInc;
}
}
else // downscale
{
int xDstInSrc;
if(flags&SWS_BICUBIC) *filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW);
else if(flags&SWS_X) *filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW);
else *filterSize= (int)ceil(1 + 2.0*srcW / (double)dstW);
// printf("%d %d %d\n", *filterSize, srcW, dstW);
*filterSize= (*filterSize +(filterAlign-1)) & (~(filterAlign-1));
xDstInSrc= xInc/2 - 0x8000;
for(i=0; i<dstW; i++)
{
int xx= (int)((double)xDstInSrc/(double)(1<<16) - ((*filterSize)-1)*0.5 + 0.5);
int j;
filterPos[i]= xx;
for(j=0; j<*filterSize; j++)
{
double d= ABS((xx<<16) - xDstInSrc)/(double)xInc;
double coeff;
if((flags & SWS_BICUBIC) || (flags & SWS_X))
{
double A= -0.75;
// d*=2;
// Equation is from VirtualDub
if(d<1.0)
coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
else if(d<2.0)
coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
else
coeff=0.0;
}
/* else if(flags & SWS_X)
{
}*/
else
{
coeff= 1.0 - d;
if(coeff<0) coeff=0;
}
// printf("%1.3f %d %d \n", coeff, (int)d, xDstInSrc);
filter[i*(*filterSize) + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
}
//fix borders
for(i=0; i<dstW; i++)
{
int j;
if(filterPos[i] < 0)
{
// Move filter coeffs left to compensate for filterPos
for(j=1; j<*filterSize; j++)
{
int left= MAX(j + filterPos[i], 0);
filter[i*(*filterSize) + left] += filter[i*(*filterSize) + j];
filter[i*(*filterSize) + j]=0;
}
filterPos[i]= 0;
}
if(filterPos[i] + (*filterSize) > srcW)
{
int shift= filterPos[i] + (*filterSize) - srcW;
// Move filter coeffs right to compensate for filterPos
for(j=(*filterSize)-2; j>=0; j--)
{
int right= MIN(j + shift, (*filterSize)-1);
filter[i*(*filterSize) +right] += filter[i*(*filterSize) +j];
filter[i*(*filterSize) +j]=0;
}
filterPos[i]= srcW - (*filterSize);
}
}
//FIXME try to align filterpos if possible / try to shift filterpos to put zeros at the end
// and skip these than later
//Normalize
for(i=0; i<dstW; i++)
{
int j;
double sum=0;
double scale= one;
for(j=0; j<*filterSize; j++)
{
sum+= filter[i*(*filterSize) + j];
}
scale/= sum;
for(j=0; j<*filterSize; j++)
{
dstFilter[i*(*filterSize) + j]= (int)(filter[i*(*filterSize) + j]*scale);
}
}
}
#ifdef ARCH_X86
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode)
{
uint8_t *fragment;
int imm8OfPShufW1;
int imm8OfPShufW2;
int fragmentLength;
int xpos, i;
// create an optimized horizontal scaling routine
//code fragment
asm volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%esi), %%mm0 \n\t" //FIXME Alignment
"movq %%mm0, %%mm1 \n\t"
"psrlq $8, %%mm0 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"movq %%mm2, %%mm3 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"addw %%bx, %%cx \n\t" //2*xalpha += (4*lumXInc)&0xFFFF
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"adcl %%edx, %%esi \n\t" //xx+= (4*lumXInc)>>16 + carry
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psrlw $9, %%mm3 \n\t"
"psubw %%mm1, %%mm0 \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"paddw %%mm6, %%mm2 \n\t" // 2*alpha += xpos&0xFFFF
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%edi, %%eax) \n\t"
"addl $8, %%eax \n\t"
// End
"9: \n\t"
// "int $3\n\t"
"leal 0b, %0 \n\t"
"leal 1b, %1 \n\t"
"leal 2b, %2 \n\t"
"decl %1 \n\t"
"decl %2 \n\t"
"subl %0, %1 \n\t"
"subl %0, %2 \n\t"
"leal 9b, %3 \n\t"
"subl %0, %3 \n\t"
:"=r" (fragment), "=r" (imm8OfPShufW1), "=r" (imm8OfPShufW2),
"=r" (fragmentLength)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
for(i=0; i<dstW/8; i++)
{
int xx=xpos>>16;
if((i&3) == 0)
{
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
memcpy(funnyCode + fragmentLength*i/4, fragment, fragmentLength);
funnyCode[fragmentLength*i/4 + imm8OfPShufW1]=
funnyCode[fragmentLength*i/4 + imm8OfPShufW2]=
a | (b<<2) | (c<<4) | (d<<6);
// if we dont need to read 8 bytes than dont :), reduces the chance of
// crossing a cache line
if(d<3) funnyCode[fragmentLength*i/4 + 1]= 0x6E;
funnyCode[fragmentLength*(i+4)/4]= RET;
}
xpos+=xInc;
}
}
#endif // ARCH_X86
//FIXME remove
void SwScale_Init(){
}
static void globalInit(){
// generating tables:
int i;
for(i=0; i<768; i++){
@ -526,5 +779,346 @@ void SwScale_Init(){
clip_table15r[i]= (v<<7)&0x7C00;
}
cpuCaps= gCpuCaps;
#ifdef RUNTIME_CPUDETECT
#ifdef CAN_COMPILE_X86_ASM
// ordered per speed fasterst first
if(gCpuCaps.hasMMX2)
swScale= swScale_MMX2;
else if(gCpuCaps.has3DNow)
swScale= swScale_3DNOW;
else if(gCpuCaps.hasMMX)
swScale= swScale_MMX;
else
swScale= swScale_C;
#else
swScale= swScale_C;
cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
#endif
#else //RUNTIME_CPUDETECT
#ifdef HAVE_MMX2
swScale= swScale_MMX2;
cpuCaps.has3DNow = 0;
#elif defined (HAVE_3DNOW)
swScale= swScale_3DNOW;
cpuCaps.hasMMX2 = 0;
#elif defined (HAVE_MMX)
swScale= swScale_MMX;
cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0;
#else
swScale= swScale_C;
cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
#endif
#endif //!RUNTIME_CPUDETECT
}
SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter){
const int widthAlign= dstFormat==IMGFMT_YV12 ? 16 : 8;
SwsContext *c;
int i;
//const int bytespp= (dstbpp+1)/8; //(12->1, 15&16->2, 24->3, 32->4)
//const int over= dstFormat==IMGFMT_YV12 ? (((dstW+15)&(~15))) - dststride
// : (((dstW+7)&(~7)))*bytespp - dststride;
if(swScale==NULL) globalInit();
/* sanity check */
if(srcW<1 || srcH<1 || dstW<1 || dstH<1) return NULL;
if(srcW>=SWS_MAX_SIZE || dstW>=SWS_MAX_SIZE || srcH>=SWS_MAX_SIZE || dstH>=SWS_MAX_SIZE)
{
fprintf(stderr, "size is too large, increase SWS_MAX_SIZE\n");
return NULL;
}
/* FIXME
if(dstStride[0]%widthAlign !=0 )
{
if(flags & SWS_PRINT_INFO)
fprintf(stderr, "SwScaler: Warning: dstStride is not a multiple of %d!\n"
"SwScaler: ->cannot do aligned memory acesses anymore\n",
widthAlign);
}
*/
c= memalign(64, sizeof(SwsContext));
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->lumXInc= ((srcW<<16) + (1<<15))/dstW;
c->lumYInc= ((srcH<<16) + (1<<15))/dstH;
c->flags= flags;
c->dstFormat= dstFormat;
c->srcFormat= srcFormat;
if(cpuCaps.hasMMX2)
{
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
{
if(flags&SWS_PRINT_INFO)
fprintf(stderr, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
}
}
else
c->canMMX2BeUsed=0;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but noone shuld notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if(flags&SWS_FAST_BILINEAR)
{
if(c->canMMX2BeUsed) c->lumXInc+= 20;
//we dont use the x86asm scaler if mmx is available
else if(cpuCaps.hasMMX) c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
}
/* set chrXInc & chrDstW */
if((flags&SWS_FULL_UV_IPOL) && dstFormat!=IMGFMT_YV12)
c->chrXInc= c->lumXInc>>1, c->chrDstW= dstW;
else
c->chrXInc= c->lumXInc, c->chrDstW= (dstW+1)>>1;
/* set chrYInc & chrDstH */
if(dstFormat==IMGFMT_YV12) c->chrYInc= c->lumYInc, c->chrDstH= (dstH+1)>>1;
else c->chrYInc= c->lumYInc>>1, c->chrDstH= dstH;
/* precalculate horizontal scaler filter coefficients */
{
const int filterAlign= cpuCaps.hasMMX ? 4 : 1;
initFilter(c->hLumFilter, c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14, flags);
initFilter(c->hChrFilter, c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
(srcW+1)>>1, c->chrDstW, filterAlign, 1<<14, flags);
#ifdef ARCH_X86
// cant downscale !!!
if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
{
initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode);
}
#endif
} // Init Horizontal stuff
/* precalculate vertical scaler filter coefficients */
initFilter(c->vLumFilter, c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
srcH , dstH, 1, (1<<12)-4, flags);
initFilter(c->vChrFilter, c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
(srcH+1)>>1, c->chrDstH, 1, (1<<12)-4, flags);
// Calculate Buffer Sizes so that they wont run out while handling these damn slices
c->vLumBufSize= c->vLumFilterSize;
c->vChrBufSize= c->vChrFilterSize;
for(i=0; i<dstH; i++)
{
int chrI= i*c->chrDstH / dstH;
int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<1));
nextSlice&= ~1; // Slices start at even boundaries
if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>1))
c->vChrBufSize= (nextSlice>>1) - c->vChrFilterPos[chrI];
}
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
// allocate several megabytes to handle all possible cases)
for(i=0; i<c->vLumBufSize; i++)
c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
for(i=0; i<c->vChrBufSize; i++)
c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
//try to avoid drawing green stuff between the right end and the stride end
for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
ASSERT(c->chrDstH <= dstH)
ASSERT(c->vLumFilterSize* dstH*4 <= SWS_MAX_SIZE*20)
ASSERT(c->vChrFilterSize*c->chrDstH*4 <= SWS_MAX_SIZE*20)
// pack filter data for mmx code
if(cpuCaps.hasMMX)
{
for(i=0; i<c->vLumFilterSize*dstH; i++)
c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]=
c->vLumFilter[i];
for(i=0; i<c->vChrFilterSize*c->chrDstH; i++)
c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]=
c->vChrFilter[i];
}
if(flags&SWS_PRINT_INFO)
{
#ifdef DITHER1XBPP
char *dither= cpuCaps.hasMMX ? " dithered" : "";
#endif
if(flags&SWS_FAST_BILINEAR)
fprintf(stderr, "\nSwScaler: FAST_BILINEAR scaler ");
else if(flags&SWS_BILINEAR)
fprintf(stderr, "\nSwScaler: BILINEAR scaler ");
else if(flags&SWS_BICUBIC)
fprintf(stderr, "\nSwScaler: BICUBIC scaler ");
else
fprintf(stderr, "\nSwScaler: ehh flags invalid?! ");
if(dstFormat==IMGFMT_BGR15)
fprintf(stderr, "with%s BGR15 output ", dither);
else if(dstFormat==IMGFMT_BGR16)
fprintf(stderr, "with%s BGR16 output ", dither);
else if(dstFormat==IMGFMT_BGR24)
fprintf(stderr, "with BGR24 output ");
else if(dstFormat==IMGFMT_BGR32)
fprintf(stderr, "with BGR32 output ");
else if(dstFormat==IMGFMT_YV12)
fprintf(stderr, "with YV12 output ");
else
fprintf(stderr, "without output ");
if(cpuCaps.hasMMX2)
fprintf(stderr, "using MMX2\n");
else if(cpuCaps.has3DNow)
fprintf(stderr, "using 3DNOW\n");
else if(cpuCaps.hasMMX)
fprintf(stderr, "using MMX\n");
else
fprintf(stderr, "using C\n");
}
if((flags & SWS_PRINT_INFO) && verbose)
{
if(cpuCaps.hasMMX)
{
if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
printf("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
else
{
if(c->hLumFilterSize==4)
printf("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
else if(c->hLumFilterSize==8)
printf("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
else
printf("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
if(c->hChrFilterSize==4)
printf("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
else if(c->hChrFilterSize==8)
printf("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
else
printf("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
}
}
else
{
#ifdef ARCH_X86
printf("SwScaler: using X86-Asm scaler for horizontal scaling\n");
#else
if(flags & SWS_FAST_BILINEAR)
printf("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
else
printf("SwScaler: using C scaler for horizontal scaling\n");
#endif
}
if(dstFormat==IMGFMT_YV12)
{
if(c->vLumFilterSize==1)
printf("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C");
else
printf("SwScaler: using n-tap %s scaler for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C");
}
else
{
if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
printf("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
"SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C");
else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
printf("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
else
printf("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
}
if(dstFormat==IMGFMT_BGR24)
printf("SwScaler: using %s YV12->BGR24 Converter\n",
cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C"));
else
printf("SwScaler: using %s YV12->BGR Converter\n", cpuCaps.hasMMX ? "MMX" : "C");//FIXME print format
printf("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
}
return c;
}
/**
* returns a normalized gaussian curve used to filter stuff
* quality=3 is high quality, lowwer is lowwer quality
*/
double *getGaussian(double variance, double quality){
const int length= (int)(variance*quality + 0.5) | 1;
int i;
double *coeff= memalign(sizeof(double), length*sizeof(double));
double middle= (length-1)*0.5;
for(i=0; i<length; i++)
{
double dist= i-middle;
coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
}
normalize(coeff, length, 1.0);
return coeff;
}
void normalize(double *coeff, int length, double height){
int i;
double sum=0;
double inv;
for(i=0; i<length; i++)
sum+= coeff[i];
inv= height/sum;
for(i=0; i<length; i++)
coeff[i]*= height;
}
double *conv(double *a, int aLength, double *b, int bLength){
int length= aLength + bLength - 1;
double *coeff= memalign(sizeof(double), length*sizeof(double));
int i, j;
for(i=0; i<length; i++) coeff[i]= 0.0;
for(i=0; i<aLength; i++)
{
for(j=0; j<bLength; j++)
{
coeff[i+j]+= a[i]*b[j];
}
}
return coeff;
}
/*
double *sum(double *a, int aLength, double *b, int bLength){
int length= MAX(aLength, bLength);
double *coeff= memalign(sizeof(double), length*sizeof(double));
int i;
for(i=0; i<length; i++) coeff[i]= 0.0;
for(i=0; i<aLength; i++) coeff[i]+= a[i];
}
*/

@ -1,14 +1,90 @@
#define SWS_FAST_BILINEAR 0
#define SWS_BILINEAR 1
#define SWS_BICUBIC 2
/* values for the flags, the stuff on the command line is different */
#define SWS_FAST_BILINEAR 1
#define SWS_BILINEAR 2
#define SWS_BICUBIC 4
#define SWS_X 8
#define SWS_FULL_UV_IPOL 0x100
#define SWS_PRINT_INFO 0x1000
#define SWS_MAX_SIZE 2000
/* this struct should be aligned on at least 32-byte boundary */
typedef struct{
int srcW, srcH, dstW, dstH;
int chrDstW, chrDstH;
int lumXInc, chrXInc;
int lumYInc, chrYInc;
int dstFormat, srcFormat;
int16_t __attribute__((aligned(8))) *lumPixBuf[SWS_MAX_SIZE];
int16_t __attribute__((aligned(8))) *chrPixBuf[SWS_MAX_SIZE];
int16_t __attribute__((aligned(8))) hLumFilter[SWS_MAX_SIZE*5];
int16_t __attribute__((aligned(8))) hLumFilterPos[SWS_MAX_SIZE];
int16_t __attribute__((aligned(8))) hChrFilter[SWS_MAX_SIZE*5];
int16_t __attribute__((aligned(8))) hChrFilterPos[SWS_MAX_SIZE];
int16_t __attribute__((aligned(8))) vLumFilter[SWS_MAX_SIZE*5];
int16_t __attribute__((aligned(8))) vLumFilterPos[SWS_MAX_SIZE];
int16_t __attribute__((aligned(8))) vChrFilter[SWS_MAX_SIZE*5];
int16_t __attribute__((aligned(8))) vChrFilterPos[SWS_MAX_SIZE];
// Contain simply the values from v(Lum|Chr)Filter just nicely packed for mmx
int16_t __attribute__((aligned(8))) lumMmxFilter[SWS_MAX_SIZE*20];
int16_t __attribute__((aligned(8))) chrMmxFilter[SWS_MAX_SIZE*20];
int hLumFilterSize;
int hChrFilterSize;
int vLumFilterSize;
int vChrFilterSize;
int vLumBufSize;
int vChrBufSize;
uint8_t __attribute__((aligned(32))) funnyYCode[10000];
uint8_t __attribute__((aligned(32))) funnyUVCode[10000];
int canMMX2BeUsed;
int lastInLumBuf;
int lastInChrBuf;
int lumBufIndex;
int chrBufIndex;
int dstY;
int flags;
} SwsContext;
//FIXME check init (where 0)
typedef struct {
double *lumH;
double *lumV;
double *chrH;
double *chrV;
int length;
} SwsFilter;
// *** bilinear scaling and yuv->rgb & yuv->yuv conversion of yv12 slices:
// *** Note: it's called multiple times while decoding a frame, first time y==0
// *** Designed to upscale, but may work for downscale too.
// dstbpp == 12 -> yv12 output
void SwScale_YV12slice(unsigned char* srcptr[],int stride[], int srcSliceY,
int srcSliceH, uint8_t* dstptr[], int dststride, int dstbpp,
// will use sws_flags
void SwScale_YV12slice(unsigned char* src[],int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp,
int srcW, int srcH, int dstW, int dstH);
// generating tables
// Obsolete, will be removed soon
void SwScale_Init();
void freeSwsContext(SwsContext swsContext);
SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter);
extern void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[]);
double *getGaussian(double variance, double quality);
void normalize(double *coeff, int length, double height);
double *conv(double *a, int aLength, double *b, int bLength);

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save