diff --git a/Changelog b/Changelog index 3533bdc682..ffb8b824f8 100644 --- a/Changelog +++ b/Changelog @@ -17,6 +17,7 @@ version : - remove the libnut muxer/demuxer wrappers - remove the libschroedinger encoder/decoder wrappers - surround audio filter +- sofalizer filter switched to libmysofa version 3.3: - CrystalHD decoder moved to new decode API diff --git a/configure b/configure index 9688b35fa1..e3941f9dfd 100755 --- a/configure +++ b/configure @@ -277,7 +277,7 @@ External library support: --disable-lzma disable lzma [autodetect] --enable-decklink enable Blackmagic DeckLink I/O support [no] --enable-mediacodec enable Android MediaCodec support [no] - --enable-netcdf enable NetCDF, needed for sofalizer filter [no] + --enable-libmysofa enable libmysofa, needed for sofalizer filter [no] --enable-openal enable OpenAL 1.1 capture support [no] --enable-opencl enable OpenCL code --enable-opengl enable OpenGL rendering [no] @@ -1550,6 +1550,7 @@ EXTERNAL_LIBRARY_LIST=" libkvazaar libmodplug libmp3lame + libmysofa libopencv libopenh264 libopenjpeg @@ -1576,7 +1577,6 @@ EXTERNAL_LIBRARY_LIST=" libzmq libzvbi mediacodec - netcdf openal opencl opengl @@ -3156,7 +3156,7 @@ showspectrumpic_filter_deps="avcodec" showspectrumpic_filter_select="fft" signature_filter_deps="gpl avcodec avformat" smartblur_filter_deps="gpl swscale" -sofalizer_filter_deps="netcdf avcodec" +sofalizer_filter_deps="libmysofa avcodec" sofalizer_filter_select="fft" spectrumsynth_filter_deps="avcodec" spectrumsynth_filter_select="fft" @@ -5822,6 +5822,7 @@ enabled libmfx && { use_pkg_config libmfx "mfx/mfxvideo.h" MFXInit || { require libmfx "mfx/mfxvideo.h" MFXInit -llibmfx && warn "using libmfx without pkg-config"; } } enabled libmodplug && require_pkg_config libmodplug libmodplug/modplug.h ModPlug_Load enabled libmp3lame && require "libmp3lame >= 3.98.3" lame/lame.h lame_set_VBR_quality -lmp3lame +enabled libmysofa && require libmysofa "mysofa.h" mysofa_load -lmysofa enabled libnpp && require libnpp npp.h nppGetLibVersion -lnppi -lnppc enabled libopencore_amrnb && require libopencore_amrnb opencore-amrnb/interf_dec.h Decoder_Interface_init -lopencore-amrnb enabled libopencore_amrwb && require libopencore_amrwb opencore-amrwb/dec_if.h D_IF_init -lopencore-amrwb @@ -5919,7 +5920,6 @@ enabled mmal && { check_lib mmal interface/mmal/mmal.h mmal_port_co check_lib mmal interface/mmal/mmal.h mmal_port_connect -lmmal_core -lmmal_util -lmmal_vc_client -lbcm_host; } || die "ERROR: mmal not found" && check_func_headers interface/mmal/mmal.h "MMAL_PARAMETER_VIDEO_MAX_NUM_CALLBACKS"; } -enabled netcdf && require_pkg_config netcdf netcdf.h nc_inq_libvers enabled openal && { { for al_extralibs in "${OPENAL_LIBS}" "-lopenal" "-lOpenAL32"; do check_lib openal 'AL/al.h' alGetError "${al_extralibs}" && break; done } || die "ERROR: openal not found"; } && diff --git a/doc/filters.texi b/doc/filters.texi index ba9247d29e..9cc356b4df 100644 --- a/doc/filters.texi +++ b/doc/filters.texi @@ -3571,7 +3571,7 @@ SOFAlizer is developed at the Acoustics Research Institute (ARI) of the Austrian Academy of Sciences. To enable compilation of this filter you need to configure FFmpeg with -@code{--enable-netcdf}. +@code{--enable-libmysofa}. The filter accepts the following options: diff --git a/libavfilter/af_sofalizer.c b/libavfilter/af_sofalizer.c index ef723ee2c4..d9098d7679 100644 --- a/libavfilter/af_sofalizer.c +++ b/libavfilter/af_sofalizer.c @@ -26,7 +26,7 @@ *****************************************************************************/ #include -#include +#include #include "libavcodec/avfft.h" #include "libavutil/avstring.h" @@ -41,18 +41,12 @@ #define TIME_DOMAIN 0 #define FREQUENCY_DOMAIN 1 -typedef struct NCSofa { /* contains data of one SOFA file */ - int ncid; /* netCDF ID of the opened SOFA file */ +typedef struct MySofa { /* contains data of one SOFA file */ + struct MYSOFA_EASY *easy; int n_samples; /* length of one impulse response (IR) */ - int m_dim; /* number of measurement positions */ - int *data_delay; /* broadband delay of each IR */ - /* all measurement positions for each receiver (i.e. ear): */ - float *sp_a; /* azimuth angles */ - float *sp_e; /* elevation angles */ - float *sp_r; /* radii */ - /* data at each measurement position for each receiver: */ - float *data_ir; /* IRs (time-domain) */ -} NCSofa; + float *lir, *rir; /* IRs (time-domain) */ + int max_delay; +} MySofa; typedef struct VirtualSpeaker { uint8_t set; @@ -64,7 +58,7 @@ typedef struct SOFAlizerContext { const AVClass *class; char *filename; /* name of SOFA file */ - NCSofa sofa; /* contains data of the SOFA file */ + MySofa sofa; /* contains data of the SOFA file */ int sample_rate; /* sample rate from SOFA file */ float *speaker_azim; /* azimuth of the virtual loudspeakers */ @@ -107,271 +101,33 @@ typedef struct SOFAlizerContext { AVFloatDSPContext *fdsp; } SOFAlizerContext; -static int close_sofa(struct NCSofa *sofa) +static int close_sofa(struct MySofa *sofa) { - av_freep(&sofa->data_delay); - av_freep(&sofa->sp_a); - av_freep(&sofa->sp_e); - av_freep(&sofa->sp_r); - av_freep(&sofa->data_ir); - nc_close(sofa->ncid); - sofa->ncid = 0; + mysofa_close(sofa->easy); + sofa->easy = NULL; return 0; } -static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) +static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate) { struct SOFAlizerContext *s = ctx->priv; - /* variables associated with content of SOFA file: */ - int ncid, n_dims, n_vars, n_gatts, n_unlim_dim_id, status; - char data_delay_dim_name[NC_MAX_NAME]; - float *sp_a, *sp_e, *sp_r, *data_ir; - char *sofa_conventions; - char dim_name[NC_MAX_NAME]; /* names of netCDF dimensions */ - size_t *dim_length; /* lengths of netCDF dimensions */ - char *text; - unsigned int sample_rate; - int data_delay_dim_id[2]; - int samplingrate_id; - int data_delay_id; - int n_samples; - int m_dim_id = -1; - int n_dim_id = -1; - int data_ir_id; - size_t att_len; - int m_dim; - int *data_delay; - int sp_id; - int i, ret; - - s->sofa.ncid = 0; - status = nc_open(filename, NC_NOWRITE, &ncid); /* open SOFA file read-only */ - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename); - return AVERROR(EINVAL); - } - - /* get number of dimensions, vars, global attributes and Id of unlimited dimensions: */ - nc_inq(ncid, &n_dims, &n_vars, &n_gatts, &n_unlim_dim_id); - - /* -- get number of measurements ("M") and length of one IR ("N") -- */ - dim_length = av_malloc_array(n_dims, sizeof(*dim_length)); - if (!dim_length) { - nc_close(ncid); - return AVERROR(ENOMEM); - } - - for (i = 0; i < n_dims; i++) { /* go through all dimensions of file */ - nc_inq_dim(ncid, i, (char *)&dim_name, &dim_length[i]); /* get dimensions */ - if (!strncmp("M", (const char *)&dim_name, 1)) /* get ID of dimension "M" */ - m_dim_id = i; - if (!strncmp("N", (const char *)&dim_name, 1)) /* get ID of dimension "N" */ - n_dim_id = i; - } - - if ((m_dim_id == -1) || (n_dim_id == -1)) { /* dimension "M" or "N" couldn't be found */ - av_log(ctx, AV_LOG_ERROR, "Can't find required dimensions in SOFA file.\n"); - av_freep(&dim_length); - nc_close(ncid); - return AVERROR(EINVAL); - } - - n_samples = dim_length[n_dim_id]; /* get length of one IR */ - m_dim = dim_length[m_dim_id]; /* get number of measurements */ - - av_freep(&dim_length); - - /* -- check file type -- */ - /* get length of attritube "Conventions" */ - status = nc_inq_attlen(ncid, NC_GLOBAL, "Conventions", &att_len); - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"Conventions\".\n"); - nc_close(ncid); - return AVERROR_INVALIDDATA; - } - - /* check whether file is SOFA file */ - text = av_malloc(att_len + 1); - if (!text) { - nc_close(ncid); - return AVERROR(ENOMEM); - } + struct MYSOFA_HRTF *mysofa; + int ret; - nc_get_att_text(ncid, NC_GLOBAL, "Conventions", text); - *(text + att_len) = 0; - if (strncmp("SOFA", text, 4)) { - av_log(ctx, AV_LOG_ERROR, "Not a SOFA file!\n"); - av_freep(&text); - nc_close(ncid); + mysofa = mysofa_load(filename, &ret); + if (ret || !mysofa) { + av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename); return AVERROR(EINVAL); } - av_freep(&text); - - status = nc_inq_attlen(ncid, NC_GLOBAL, "License", &att_len); - if (status == NC_NOERR) { - text = av_malloc(att_len + 1); - if (text) { - nc_get_att_text(ncid, NC_GLOBAL, "License", text); - *(text + att_len) = 0; - av_log(ctx, AV_LOG_INFO, "SOFA file License: %s\n", text); - av_freep(&text); - } - } - - status = nc_inq_attlen(ncid, NC_GLOBAL, "SourceDescription", &att_len); - if (status == NC_NOERR) { - text = av_malloc(att_len + 1); - if (text) { - nc_get_att_text(ncid, NC_GLOBAL, "SourceDescription", text); - *(text + att_len) = 0; - av_log(ctx, AV_LOG_INFO, "SOFA file SourceDescription: %s\n", text); - av_freep(&text); - } - } - - status = nc_inq_attlen(ncid, NC_GLOBAL, "Comment", &att_len); - if (status == NC_NOERR) { - text = av_malloc(att_len + 1); - if (text) { - nc_get_att_text(ncid, NC_GLOBAL, "Comment", text); - *(text + att_len) = 0; - av_log(ctx, AV_LOG_INFO, "SOFA file Comment: %s\n", text); - av_freep(&text); - } - } - - status = nc_inq_attlen(ncid, NC_GLOBAL, "SOFAConventions", &att_len); - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"SOFAConventions\".\n"); - nc_close(ncid); - return AVERROR_INVALIDDATA; - } - sofa_conventions = av_malloc(att_len + 1); - if (!sofa_conventions) { - nc_close(ncid); - return AVERROR(ENOMEM); - } - - nc_get_att_text(ncid, NC_GLOBAL, "SOFAConventions", sofa_conventions); - *(sofa_conventions + att_len) = 0; - if (strncmp("SimpleFreeFieldHRIR", sofa_conventions, att_len)) { - av_log(ctx, AV_LOG_ERROR, "Not a SimpleFreeFieldHRIR file!\n"); - av_freep(&sofa_conventions); - nc_close(ncid); + if (mysofa->DataSamplingRate.elements != 1) return AVERROR(EINVAL); - } - av_freep(&sofa_conventions); - - /* -- get sampling rate of HRTFs -- */ - /* read ID, then value */ - status = nc_inq_varid(ncid, "Data.SamplingRate", &samplingrate_id); - status += nc_get_var_uint(ncid, samplingrate_id, &sample_rate); - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.SamplingRate.\n"); - nc_close(ncid); - return AVERROR(EINVAL); - } - *samplingrate = sample_rate; /* remember sampling rate */ - - /* -- allocate memory for one value for each measurement position: -- */ - sp_a = s->sofa.sp_a = av_malloc_array(m_dim, sizeof(float)); - sp_e = s->sofa.sp_e = av_malloc_array(m_dim, sizeof(float)); - sp_r = s->sofa.sp_r = av_malloc_array(m_dim, sizeof(float)); - /* delay and IR values required for each ear and measurement position: */ - data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int)); - data_ir = s->sofa.data_ir = av_calloc(m_dim * FFALIGN(n_samples, 16), sizeof(float) * 2); - - if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir) { - /* if memory could not be allocated */ - close_sofa(&s->sofa); - return AVERROR(ENOMEM); - } - - /* get impulse responses (HRTFs): */ - /* get corresponding ID */ - status = nc_inq_varid(ncid, "Data.IR", &data_ir_id); - status += nc_get_var_float(ncid, data_ir_id, data_ir); /* read and store IRs */ - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.IR!\n"); - ret = AVERROR(EINVAL); - goto error; - } - - /* get source positions of the HRTFs in the SOFA file: */ - status = nc_inq_varid(ncid, "SourcePosition", &sp_id); /* get corresponding ID */ - status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 0 } , - (size_t[2]){ m_dim, 1}, sp_a); /* read & store azimuth angles */ - status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 1 } , - (size_t[2]){ m_dim, 1}, sp_e); /* read & store elevation angles */ - status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 2 } , - (size_t[2]){ m_dim, 1}, sp_r); /* read & store radii */ - if (status != NC_NOERR) { /* if any source position variable coudn't be read */ - av_log(ctx, AV_LOG_ERROR, "Couldn't read SourcePosition.\n"); - ret = AVERROR(EINVAL); - goto error; - } - - /* read Data.Delay, check for errors and fit it to data_delay */ - status = nc_inq_varid(ncid, "Data.Delay", &data_delay_id); - status += nc_inq_vardimid(ncid, data_delay_id, &data_delay_dim_id[0]); - status += nc_inq_dimname(ncid, data_delay_dim_id[0], data_delay_dim_name); - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay.\n"); - ret = AVERROR(EINVAL); - goto error; - } - - /* Data.Delay dimension check */ - /* dimension of Data.Delay is [I R]: */ - if (!strncmp(data_delay_dim_name, "I", 2)) { - /* check 2 characters to assure string is 0-terminated after "I" */ - int delay[2]; /* delays get from SOFA file: */ - int *data_delay_r; - - av_log(ctx, AV_LOG_DEBUG, "Data.Delay has dimension [I R]\n"); - status = nc_get_var_int(ncid, data_delay_id, &delay[0]); - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n"); - ret = AVERROR(EINVAL); - goto error; - } - data_delay_r = data_delay + m_dim; - for (i = 0; i < m_dim; i++) { /* extend given dimension [I R] to [M R] */ - /* assign constant delay value for all measurements to data_delay fields */ - data_delay[i] = delay[0]; - data_delay_r[i] = delay[1]; - } - /* dimension of Data.Delay is [M R] */ - } else if (!strncmp(data_delay_dim_name, "M", 2)) { - av_log(ctx, AV_LOG_ERROR, "Data.Delay in dimension [M R]\n"); - /* get delays from SOFA file: */ - status = nc_get_var_int(ncid, data_delay_id, data_delay); - if (status != NC_NOERR) { - av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n"); - ret = AVERROR(EINVAL); - goto error; - } - } else { /* dimension of Data.Delay is neither [I R] nor [M R] */ - av_log(ctx, AV_LOG_ERROR, "Data.Delay does not have the required dimensions [I R] or [M R].\n"); - ret = AVERROR(EINVAL); - goto error; - } - - /* save information in SOFA struct: */ - s->sofa.m_dim = m_dim; /* no. measurement positions */ - s->sofa.n_samples = n_samples; /* length on one IR */ - s->sofa.ncid = ncid; /* netCDF ID of SOFA file */ - nc_close(ncid); /* close SOFA file */ - - av_log(ctx, AV_LOG_DEBUG, "m_dim: %d n_samples %d\n", m_dim, n_samples); + *samplingrate = mysofa->DataSamplingRate.values[0]; + s->sofa.n_samples = mysofa->N; + mysofa_free(mysofa); return 0; - -error: - close_sofa(&s->sofa); - return ret; } static int parse_channel_name(char **arg, int *rchannel, char *buf) @@ -507,83 +263,6 @@ static int get_speaker_pos(AVFilterContext *ctx, } -static int max_delay(struct NCSofa *sofa) -{ - int i, max = 0; - - for (i = 0; i < sofa->m_dim * 2; i++) { - /* search maximum delay in given SOFA file */ - max = FFMAX(max, sofa->data_delay[i]); - } - - return max; -} - -static int find_m(SOFAlizerContext *s, int azim, int elev, float radius) -{ - /* get source positions and M of currently selected SOFA file */ - float *sp_a = s->sofa.sp_a; /* azimuth angle */ - float *sp_e = s->sofa.sp_e; /* elevation angle */ - float *sp_r = s->sofa.sp_r; /* radius */ - int m_dim = s->sofa.m_dim; /* no. measurements */ - int best_id = 0; /* index m currently closest to desired source pos. */ - float delta = 1000; /* offset between desired and currently best pos. */ - float current; - int i; - - for (i = 0; i < m_dim; i++) { - /* search through all measurements in currently selected SOFA file */ - /* distance of current to desired source position: */ - current = fabs(sp_a[i] - azim) + - fabs(sp_e[i] - elev) + - fabs(sp_r[i] - radius); - if (current <= delta) { - /* if current distance is smaller than smallest distance so far */ - delta = current; - best_id = i; /* remember index */ - } - } - - return best_id; -} - -static int compensate_volume(AVFilterContext *ctx) -{ - struct SOFAlizerContext *s = ctx->priv; - float compensate; - float energy = 0; - float *ir; - int m; - - if (s->sofa.ncid) { - /* find IR at front center position in the SOFA file (IR closest to 0°,0°,1m) */ - struct NCSofa *sofa = &s->sofa; - m = find_m(s, 0, 0, 1); - /* get energy of that IR and compensate volume */ - ir = sofa->data_ir + 2 * m * sofa->n_samples; - if (sofa->n_samples & 31) { - energy = avpriv_scalarproduct_float_c(ir, ir, sofa->n_samples); - } else { - energy = s->fdsp->scalarproduct_float(ir, ir, sofa->n_samples); - } - compensate = 256 / (sofa->n_samples * sqrt(energy)); - av_log(ctx, AV_LOG_DEBUG, "Compensate-factor: %f\n", compensate); - ir = sofa->data_ir; - /* apply volume compensation to IRs */ - if (sofa->n_samples & 31) { - int i; - for (i = 0; i < sofa->n_samples * sofa->m_dim * 2; i++) { - ir[i] = ir[i] * compensate; - } - } else { - s->fdsp->vector_fmul_scalar(ir, ir, compensate, sofa->n_samples * sofa->m_dim * 2); - emms_c(); - } - } - - return 0; -} - typedef struct ThreadData { AVFrame *in, *out; int *write; @@ -629,10 +308,10 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n for (i = 0; i < in->nb_samples; i++) { const float *temp_ir = ir; /* using same set of IRs for each sample */ - *dst = 0; + dst[0] = 0; for (l = 0; l < in_channels; l++) { /* write current input sample to ringbuffer (for each channel) */ - *(buffer[l] + wr) = src[l]; + buffer[l][wr] = src[l]; } /* loop goes through all channels to be convolved */ @@ -643,31 +322,31 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n /* LFE is an input channel but requires no convolution */ /* apply gain to LFE signal and add to output buffer */ *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe; - temp_ir += FFALIGN(n_samples, 16); + temp_ir += FFALIGN(n_samples, 32); continue; } /* current read position in ringbuffer: input sample write position * - delay for l-th ch. + diff. betw. IR length and buffer length * (mod buffer length) */ - read = (wr - *(delay + l) - (n_samples - 1) + buffer_length) & modulo; + read = (wr - delay[l] - (n_samples - 1) + buffer_length) & modulo; if (read + n_samples < buffer_length) { - memcpy(temp_src, bptr + read, n_samples * sizeof(*temp_src)); + memmove(temp_src, bptr + read, n_samples * sizeof(*temp_src)); } else { int len = FFMIN(n_samples - (read % n_samples), buffer_length - read); - memcpy(temp_src, bptr + read, len * sizeof(*temp_src)); - memcpy(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src)); + memmove(temp_src, bptr + read, len * sizeof(*temp_src)); + memmove(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src)); } /* multiply signal and IR, and add up the results */ dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples); - temp_ir += FFALIGN(n_samples, 16); + temp_ir += FFALIGN(n_samples, 32); } /* clippings counter */ - if (fabs(*dst) > 1) + if (fabs(dst[0]) > 1) *n_clippings += 1; /* move output buffer pointer by +2 to get to next sample of processed channel: */ @@ -875,14 +554,14 @@ static int query_formats(AVFilterContext *ctx) return ff_set_common_samplerates(ctx, formats); } -static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) +static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int sample_rate) { struct SOFAlizerContext *s = ctx->priv; - const int n_samples = s->sofa.n_samples; + int n_samples; int n_conv = s->n_conv; /* no. channels to convolve */ - int n_fft = s->n_fft; - int delay_l[16]; /* broadband delay for each IR */ - int delay_r[16]; + int n_fft; + float delay_l; /* broadband delay for each IR */ + float delay_r; int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */ float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */ FFTComplex *data_hrtf_l = NULL; @@ -892,68 +571,166 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) float *data_ir_l = NULL; float *data_ir_r = NULL; int offset = 0; /* used for faster pointer arithmetics in for-loop */ - int m[16]; /* measurement index m of IR closest to required source positions */ int i, j, azim_orig = azim, elev_orig = elev; + int filter_length, ret = 0; + int n_current; + int n_max = 0; - if (!s->sofa.ncid) { /* if an invalid SOFA file has been selected */ + s->sofa.easy = mysofa_open(s->filename, sample_rate, &filter_length, &ret); + if (!s->sofa.easy || ret) { /* if an invalid SOFA file has been selected */ av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n"); return AVERROR_INVALIDDATA; } + n_samples = s->sofa.n_samples; + + s->data_ir[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); + s->data_ir[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv); + s->delay[0] = av_calloc(s->n_conv, sizeof(int)); + s->delay[1] = av_calloc(s->n_conv, sizeof(int)); + + if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[0] || !s->delay[1]) { + ret = AVERROR(ENOMEM); + goto fail; + } + + /* get temporary IR for L and R channel */ + data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_l)); + data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_r)); + if (!data_ir_r || !data_ir_l) { + ret = AVERROR(ENOMEM); + goto fail; + } + if (s->type == TIME_DOMAIN) { - s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float)); - s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float)); - - /* get temporary IR for L and R channel */ - data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 16), sizeof(*data_ir_l)); - data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 16), sizeof(*data_ir_r)); - if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) { - av_free(data_ir_l); - av_free(data_ir_r); - return AVERROR(ENOMEM); + s->temp_src[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); + s->temp_src[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float)); + if (!s->temp_src[0] || !s->temp_src[1]) { + ret = AVERROR(ENOMEM); + goto fail; + } + } + + s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim)); + s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev)); + if (!s->speaker_azim || !s->speaker_elev) { + ret = AVERROR(ENOMEM); + goto fail; + } + + /* get speaker positions */ + if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) { + av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n"); + goto fail; + } + + for (i = 0; i < s->n_conv; i++) { + float coordinates[3]; + + /* load and store IRs and corresponding delays */ + azim = (int)(s->speaker_azim[i] + azim_orig) % 360; + elev = (int)(s->speaker_elev[i] + elev_orig) % 90; + + coordinates[0] = azim; + coordinates[1] = elev; + coordinates[2] = radius; + + mysofa_s2c(coordinates); + + /* get id of IR closest to desired position */ + mysofa_getfilter_float(s->sofa.easy, coordinates[0], coordinates[1], coordinates[2], + data_ir_l + FFALIGN(n_samples, 32) * i, + data_ir_r + FFALIGN(n_samples, 32) * i, + &delay_l, &delay_r); + + s->delay[0][i] = delay_l * sample_rate; + s->delay[1][i] = delay_r * sample_rate; + + s->sofa.max_delay = FFMAX3(s->sofa.max_delay, s->delay[0][i], s->delay[1][i]); + } + + /* get size of ringbuffer (longest IR plus max. delay) */ + /* then choose next power of 2 for performance optimization */ + n_current = s->sofa.n_samples + s->sofa.max_delay; + /* length of longest IR plus max. delay */ + n_max = FFMAX(n_max, n_current); + + /* buffer length is longest IR plus max. delay -> next power of 2 + (32 - count leading zeros gives required exponent) */ + s->buffer_length = 1 << (32 - ff_clz(n_max)); + s->n_fft = n_fft = 1 << (32 - ff_clz(n_max + sample_rate)); + + if (s->type == FREQUENCY_DOMAIN) { + av_fft_end(s->fft[0]); + av_fft_end(s->fft[1]); + s->fft[0] = av_fft_init(log2(s->n_fft), 0); + s->fft[1] = av_fft_init(log2(s->n_fft), 0); + av_fft_end(s->ifft[0]); + av_fft_end(s->ifft[1]); + s->ifft[0] = av_fft_init(log2(s->n_fft), 1); + s->ifft[1] = av_fft_init(log2(s->n_fft), 1); + + if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) { + av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft); + ret = AVERROR(ENOMEM); + goto fail; } + } + + if (s->type == TIME_DOMAIN) { + s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); + s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); } else { /* get temporary HRTF memory for L and R channel */ data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv); data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv); if (!data_hrtf_r || !data_hrtf_l) { - av_free(data_hrtf_l); - av_free(data_hrtf_r); - return AVERROR(ENOMEM); + ret = AVERROR(ENOMEM); + goto fail; + } + + s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float)); + s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float)); + s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); + s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); + if (!s->temp_fft[0] || !s->temp_fft[1]) { + ret = AVERROR(ENOMEM); + goto fail; + } + } + + if (!s->ringbuffer[0] || !s->ringbuffer[1]) { + ret = AVERROR(ENOMEM); + goto fail; + } + + if (s->type == FREQUENCY_DOMAIN) { + fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l)); + fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r)); + if (!fft_in_l || !fft_in_r) { + ret = AVERROR(ENOMEM); + goto fail; } } for (i = 0; i < s->n_conv; i++) { - /* load and store IRs and corresponding delays */ - azim = (int)(s->speaker_azim[i] + azim_orig) % 360; - elev = (int)(s->speaker_elev[i] + elev_orig) % 90; - /* get id of IR closest to desired position */ - m[i] = find_m(s, azim, elev, radius); + float *lir, *rir; - /* load the delays associated with the current IRs */ - delay_l[i] = *(s->sofa.data_delay + 2 * m[i]); - delay_r[i] = *(s->sofa.data_delay + 2 * m[i] + 1); + offset = i * FFALIGN(n_samples, 32); /* no. samples already written */ + + lir = data_ir_l + offset; + rir = data_ir_r + offset; if (s->type == TIME_DOMAIN) { - offset = i * FFALIGN(n_samples, 16); /* no. samples already written */ for (j = 0; j < n_samples; j++) { /* load reversed IRs of the specified source position * sample-by-sample for left and right ear; and apply gain */ - *(data_ir_l + offset + j) = /* left channel */ - *(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin; - *(data_ir_r + offset + j) = /* right channel */ - *(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j + n_samples) * gain_lin; + s->data_ir[0][offset + j] = lir[n_samples - 1 - j] * gain_lin; + s->data_ir[1][offset + j] = rir[n_samples - 1 - j] * gain_lin; } } else { - fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l)); - fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r)); - if (!fft_in_l || !fft_in_r) { - av_free(data_hrtf_l); - av_free(data_hrtf_r); - av_free(fft_in_l); - av_free(fft_in_r); - return AVERROR(ENOMEM); - } + memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); + memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); offset = i * n_fft; /* no. samples already written */ for (j = 0; j < n_samples; j++) { @@ -961,10 +738,8 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) * sample-by-sample and apply gain, * L channel is loaded to real part, R channel to imag part, * IRs ared shifted by L and R delay */ - fft_in_l[delay_l[i] + j].re = /* left channel */ - *(s->sofa.data_ir + 2 * m[i] * n_samples + j) * gain_lin; - fft_in_r[delay_r[i] + j].re = /* right channel */ - *(s->sofa.data_ir + (2 * m[i] + 1) * n_samples + j) * gain_lin; + fft_in_l[s->delay[0][i] + j].re = lir[j] * gain_lin; + fft_in_r[s->delay[1][i] + j].re = rir[j] * gain_lin; } /* actually transform to frequency domain (IRs -> HRTFs) */ @@ -975,45 +750,33 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius) av_fft_calc(s->fft[0], fft_in_r); memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r)); } - - av_log(ctx, AV_LOG_DEBUG, "Index: %d, Azimuth: %f, Elevation: %f, Radius: %f of SOFA file.\n", - m[i], *(s->sofa.sp_a + m[i]), *(s->sofa.sp_e + m[i]), *(s->sofa.sp_r + m[i])); } - if (s->type == TIME_DOMAIN) { - /* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */ - memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * FFALIGN(n_samples, 16)); - memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * FFALIGN(n_samples, 16)); - - av_freep(&data_ir_l); /* free temporary IR memory */ - av_freep(&data_ir_r); - } else { + if (s->type == FREQUENCY_DOMAIN) { s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex)); s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex)); if (!s->data_hrtf[0] || !s->data_hrtf[1]) { - av_freep(&data_hrtf_l); - av_freep(&data_hrtf_r); - av_freep(&fft_in_l); - av_freep(&fft_in_r); - return AVERROR(ENOMEM); /* memory allocation failed */ + ret = AVERROR(ENOMEM); + goto fail; } memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */ sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */ memcpy(s->data_hrtf[1], data_hrtf_r, sizeof(FFTComplex) * n_conv * n_fft); + } - av_freep(&data_hrtf_l); /* free temporary HRTF memory */ - av_freep(&data_hrtf_r); +fail: + av_freep(&data_hrtf_l); /* free temporary HRTF memory */ + av_freep(&data_hrtf_r); - av_freep(&fft_in_l); /* free temporary FFT memory */ - av_freep(&fft_in_r); - } + av_freep(&data_ir_l); /* free temprary IR memory */ + av_freep(&data_ir_r); - memcpy(s->delay[0], &delay_l[0], sizeof(int) * s->n_conv); - memcpy(s->delay[1], &delay_r[0], sizeof(int) * s->n_conv); + av_freep(&fft_in_l); /* free temporary FFT memory */ + av_freep(&fft_in_r); - return 0; + return ret; } static av_cold int init(AVFilterContext *ctx) @@ -1026,12 +789,8 @@ static av_cold int init(AVFilterContext *ctx) return AVERROR(EINVAL); } - /* load SOFA file, */ - /* initialize file IDs to 0 before attempting to load SOFA files, - * this assures that in case of error, only the memory of already - * loaded files is free'd */ - s->sofa.ncid = 0; - ret = load_sofa(ctx, s->filename, &s->sample_rate); + /* preload SOFA file, */ + ret = preload_sofa(ctx, s->filename, &s->sample_rate); if (ret) { /* file loading error */ av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename); @@ -1055,10 +814,6 @@ static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; SOFAlizerContext *s = ctx->priv; - int nb_input_channels = inlink->channels; /* no. input channels */ - int n_max_ir = 0; - int n_current; - int n_max = 0; int ret; if (s->type == FREQUENCY_DOMAIN) { @@ -1070,85 +825,14 @@ static int config_input(AVFilterLink *inlink) /* gain -3 dB per channel, -6 dB to get LFE on a similar level */ s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6 + s->lfe_gain) / 20 * M_LN10); - s->n_conv = nb_input_channels; - - /* get size of ringbuffer (longest IR plus max. delay) */ - /* then choose next power of 2 for performance optimization */ - n_current = s->sofa.n_samples + max_delay(&s->sofa); - if (n_current > n_max) { - /* length of longest IR plus max. delay (in all SOFA files) */ - n_max = n_current; - /* length of longest IR (without delay, in all SOFA files) */ - n_max_ir = s->sofa.n_samples; - } - /* buffer length is longest IR plus max. delay -> next power of 2 - (32 - count leading zeros gives required exponent) */ - s->buffer_length = 1 << (32 - ff_clz(n_max)); - s->n_fft = 1 << (32 - ff_clz(n_max + inlink->sample_rate)); - - if (s->type == FREQUENCY_DOMAIN) { - av_fft_end(s->fft[0]); - av_fft_end(s->fft[1]); - s->fft[0] = av_fft_init(log2(s->n_fft), 0); - s->fft[1] = av_fft_init(log2(s->n_fft), 0); - av_fft_end(s->ifft[0]); - av_fft_end(s->ifft[1]); - s->ifft[0] = av_fft_init(log2(s->n_fft), 1); - s->ifft[1] = av_fft_init(log2(s->n_fft), 1); - - if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) { - av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft); - return AVERROR(ENOMEM); - } - } - - /* Allocate memory for the impulse responses, delays and the ringbuffers */ - /* size: (longest IR) * (number of channels to convolute) */ - s->data_ir[0] = av_calloc(FFALIGN(n_max_ir, 16), sizeof(float) * s->n_conv); - s->data_ir[1] = av_calloc(FFALIGN(n_max_ir, 16), sizeof(float) * s->n_conv); - /* length: number of channels to convolute */ - s->delay[0] = av_malloc_array(s->n_conv, sizeof(float)); - s->delay[1] = av_malloc_array(s->n_conv, sizeof(float)); - /* length: (buffer length) * (number of input channels), - * OR: buffer length (if frequency domain processing) - * calloc zero-initializes the buffer */ - - if (s->type == TIME_DOMAIN) { - s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); - s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); - } else { - s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float)); - s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float)); - s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); - s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex)); - if (!s->temp_fft[0] || !s->temp_fft[1]) - return AVERROR(ENOMEM); - } - - /* length: number of channels to convolute */ - s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim)); - s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev)); - - /* memory allocation failed: */ - if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[1] || - !s->delay[0] || !s->ringbuffer[0] || !s->ringbuffer[1] || - !s->speaker_azim || !s->speaker_elev) - return AVERROR(ENOMEM); - - compensate_volume(ctx); - - /* get speaker positions */ - if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) { - av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n"); - return ret; - } + s->n_conv = inlink->channels; /* load IRs to data_ir[0] and data_ir[1] for required directions */ - if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius)) < 0) + if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius, inlink->sample_rate)) < 0) return ret; av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n", - inlink->sample_rate, s->n_conv, nb_input_channels, s->buffer_length); + inlink->sample_rate, s->n_conv, inlink->channels, s->buffer_length); return 0; } @@ -1157,13 +841,7 @@ static av_cold void uninit(AVFilterContext *ctx) { SOFAlizerContext *s = ctx->priv; - if (s->sofa.ncid) { - av_freep(&s->sofa.sp_a); - av_freep(&s->sofa.sp_e); - av_freep(&s->sofa.sp_r); - av_freep(&s->sofa.data_delay); - av_freep(&s->sofa.data_ir); - } + close_sofa(&s->sofa); av_fft_end(s->ifft[0]); av_fft_end(s->ifft[1]); av_fft_end(s->fft[0]);