dnn: change dnn interface to replace DNNData* with AVFrame*

Currently, every filter needs to provide code to transfer data from
AVFrame* to model input (DNNData*), and also from model output
(DNNData*) to AVFrame*. Actually, such transfer can be implemented
within DNN module, and so filter can focus on its own business logic.

DNN module also exports the function pointer pre_proc and post_proc
in struct DNNModel, just in case that a filter has its special logic
to transfer data between AVFrame* and DNNData*. The default implementation
within DNN module is used if the filter does not set pre/post_proc.
pull/352/head
Guo, Yejun 4 years ago
parent 6918e240d7
commit 2003e32f62
  1. 2
      configure
  2. 1
      libavfilter/dnn/Makefile
  3. 53
      libavfilter/dnn/dnn_backend_native.c
  4. 3
      libavfilter/dnn/dnn_backend_native.h
  5. 71
      libavfilter/dnn/dnn_backend_openvino.c
  6. 2
      libavfilter/dnn/dnn_backend_openvino.h
  7. 90
      libavfilter/dnn/dnn_backend_tf.c
  8. 2
      libavfilter/dnn/dnn_backend_tf.h
  9. 135
      libavfilter/dnn/dnn_io_proc.c
  10. 36
      libavfilter/dnn/dnn_io_proc.h
  11. 17
      libavfilter/dnn_interface.h
  12. 59
      libavfilter/vf_derain.c
  13. 240
      libavfilter/vf_dnn_processing.c
  14. 160
      libavfilter/vf_sr.c

2
configure vendored

@ -2628,6 +2628,7 @@ cbs_vp9_select="cbs"
dct_select="rdft"
dirac_parse_select="golomb"
dnn_suggest="libtensorflow libopenvino"
dnn_deps="swscale"
error_resilience_select="me_cmp"
faandct_deps="faan"
faandct_select="fdctdsp"
@ -3532,7 +3533,6 @@ derain_filter_select="dnn"
deshake_filter_select="pixelutils"
deshake_opencl_filter_deps="opencl"
dilation_opencl_filter_deps="opencl"
dnn_processing_filter_deps="swscale"
dnn_processing_filter_select="dnn"
drawtext_filter_deps="libfreetype"
drawtext_filter_suggest="libfontconfig libfribidi"

@ -1,4 +1,5 @@
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o
OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o

@ -27,6 +27,7 @@
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layers.h"
#include "dnn_io_proc.h"
#define OFFSET(x) offsetof(NativeContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
@ -69,11 +70,12 @@ static DNNReturnType get_input_native(void *model, DNNData *input, const char *i
return DNN_ERROR;
}
static DNNReturnType set_input_native(void *model, DNNData *input, const char *input_name)
static DNNReturnType set_input_native(void *model, AVFrame *frame, const char *input_name)
{
NativeModel *native_model = (NativeModel *)model;
NativeContext *ctx = &native_model->ctx;
DnnOperand *oprd = NULL;
DNNData input;
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
@ -97,10 +99,8 @@ static DNNReturnType set_input_native(void *model, DNNData *input, const char *i
return DNN_ERROR;
}
oprd->dims[0] = 1;
oprd->dims[1] = input->height;
oprd->dims[2] = input->width;
oprd->dims[3] = input->channels;
oprd->dims[1] = frame->height;
oprd->dims[2] = frame->width;
av_freep(&oprd->data);
oprd->length = calculate_operand_data_length(oprd);
@ -114,7 +114,16 @@ static DNNReturnType set_input_native(void *model, DNNData *input, const char *i
return DNN_ERROR;
}
input->data = oprd->data;
input.height = oprd->dims[1];
input.width = oprd->dims[2];
input.channels = oprd->dims[3];
input.data = oprd->data;
input.dt = oprd->data_type;
if (native_model->model->pre_proc != NULL) {
native_model->model->pre_proc(frame, &input, native_model->model->userdata);
} else {
proc_from_frame_to_dnn(frame, &input, ctx);
}
return DNN_SUCCESS;
}
@ -185,6 +194,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename, const char *optio
if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0)
goto fail;
model->model = (void *)native_model;
native_model->model = model;
#if !HAVE_PTHREAD_CANCEL
if (native_model->ctx.options.conv2d_threads > 1){
@ -275,11 +285,19 @@ fail:
return NULL;
}
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output)
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame)
{
NativeModel *native_model = (NativeModel *)model->model;
NativeContext *ctx = &native_model->ctx;
int32_t layer;
DNNData output;
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
@ -317,11 +335,22 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
return DNN_ERROR;
}
outputs[i].data = oprd->data;
outputs[i].height = oprd->dims[1];
outputs[i].width = oprd->dims[2];
outputs[i].channels = oprd->dims[3];
outputs[i].dt = oprd->data_type;
output.data = oprd->data;
output.height = oprd->dims[1];
output.width = oprd->dims[2];
output.channels = oprd->dims[3];
output.dt = oprd->data_type;
if (out_frame->width != output.width || out_frame->height != output.height) {
out_frame->width = output.width;
out_frame->height = output.height;
} else {
if (native_model->model->post_proc != NULL) {
native_model->model->post_proc(out_frame, &output, native_model->model->userdata);
} else {
proc_from_dnn_to_frame(out_frame, &output, ctx);
}
}
}
return DNN_SUCCESS;

@ -119,6 +119,7 @@ typedef struct NativeContext {
// Represents simple feed-forward convolutional network.
typedef struct NativeModel{
NativeContext ctx;
DNNModel *model;
Layer *layers;
int32_t layers_num;
DnnOperand *operands;
@ -127,7 +128,7 @@ typedef struct NativeModel{
DNNModel *ff_dnn_load_model_native(const char *model_filename, const char *options, void *userdata);
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
void ff_dnn_free_model_native(DNNModel **model);

@ -24,6 +24,7 @@
*/
#include "dnn_backend_openvino.h"
#include "dnn_io_proc.h"
#include "libavformat/avio.h"
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
@ -42,6 +43,7 @@ typedef struct OVContext {
typedef struct OVModel{
OVContext ctx;
DNNModel *model;
ie_core_t *core;
ie_network_t *network;
ie_executable_network_t *exe_network;
@ -131,7 +133,7 @@ static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input
return DNN_ERROR;
}
static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input_name)
static DNNReturnType set_input_ov(void *model, AVFrame *frame, const char *input_name)
{
OVModel *ov_model = (OVModel *)model;
OVContext *ctx = &ov_model->ctx;
@ -139,10 +141,7 @@ static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input
dimensions_t dims;
precision_e precision;
ie_blob_buffer_t blob_buffer;
status = ie_exec_network_create_infer_request(ov_model->exe_network, &ov_model->infer_request);
if (status != OK)
goto err;
DNNData input;
status = ie_infer_request_get_blob(ov_model->infer_request, input_name, &ov_model->input_blob);
if (status != OK)
@ -153,23 +152,26 @@ static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input
if (status != OK)
goto err;
av_assert0(input->channels == dims.dims[1]);
av_assert0(input->height == dims.dims[2]);
av_assert0(input->width == dims.dims[3]);
av_assert0(input->dt == precision_to_datatype(precision));
status = ie_blob_get_buffer(ov_model->input_blob, &blob_buffer);
if (status != OK)
goto err;
input->data = blob_buffer.buffer;
input.height = dims.dims[2];
input.width = dims.dims[3];
input.channels = dims.dims[1];
input.data = blob_buffer.buffer;
input.dt = precision_to_datatype(precision);
if (ov_model->model->pre_proc != NULL) {
ov_model->model->pre_proc(frame, &input, ov_model->model->userdata);
} else {
proc_from_frame_to_dnn(frame, &input, ctx);
}
return DNN_SUCCESS;
err:
if (ov_model->input_blob)
ie_blob_free(&ov_model->input_blob);
if (ov_model->infer_request)
ie_infer_request_free(&ov_model->infer_request);
av_log(ctx, AV_LOG_ERROR, "Failed to create inference instance or get input data/dims/precision/memory\n");
return DNN_ERROR;
}
@ -184,7 +186,7 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
ie_config_t config = {NULL, NULL, NULL};
ie_available_devices_t a_dev;
model = av_malloc(sizeof(DNNModel));
model = av_mallocz(sizeof(DNNModel));
if (!model){
return NULL;
}
@ -192,6 +194,7 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
ov_model = av_mallocz(sizeof(OVModel));
if (!ov_model)
goto err;
ov_model->model = model;
ov_model->ctx.class = &dnn_openvino_class;
ctx = &ov_model->ctx;
@ -226,6 +229,10 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
goto err;
}
status = ie_exec_network_create_infer_request(ov_model->exe_network, &ov_model->infer_request);
if (status != OK)
goto err;
model->model = (void *)ov_model;
model->set_input = &set_input_ov;
model->get_input = &get_input_ov;
@ -238,6 +245,8 @@ err:
if (model)
av_freep(&model);
if (ov_model) {
if (ov_model->infer_request)
ie_infer_request_free(&ov_model->infer_request);
if (ov_model->exe_network)
ie_exec_network_free(&ov_model->exe_network);
if (ov_model->network)
@ -249,7 +258,7 @@ err:
return NULL;
}
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output)
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame)
{
char *model_output_name = NULL;
char *all_output_names = NULL;
@ -258,8 +267,18 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, c
ie_blob_buffer_t blob_buffer;
OVModel *ov_model = (OVModel *)model->model;
OVContext *ctx = &ov_model->ctx;
IEStatusCode status = ie_infer_request_infer(ov_model->infer_request);
IEStatusCode status;
size_t model_output_count = 0;
DNNData output;
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
status = ie_infer_request_infer(ov_model->infer_request);
if (status != OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
return DNN_ERROR;
@ -296,11 +315,21 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, c
return DNN_ERROR;
}
outputs[i].channels = dims.dims[1];
outputs[i].height = dims.dims[2];
outputs[i].width = dims.dims[3];
outputs[i].dt = precision_to_datatype(precision);
outputs[i].data = blob_buffer.buffer;
output.channels = dims.dims[1];
output.height = dims.dims[2];
output.width = dims.dims[3];
output.dt = precision_to_datatype(precision);
output.data = blob_buffer.buffer;
if (out_frame->width != output.width || out_frame->height != output.height) {
out_frame->width = output.width;
out_frame->height = output.height;
} else {
if (ov_model->model->post_proc != NULL) {
ov_model->model->post_proc(out_frame, &output, ov_model->model->userdata);
} else {
proc_from_dnn_to_frame(out_frame, &output, ctx);
}
}
}
return DNN_SUCCESS;

@ -31,7 +31,7 @@
DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options, void *userdata);
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
void ff_dnn_free_model_ov(DNNModel **model);

@ -31,6 +31,7 @@
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_maximum.h"
#include "dnn_io_proc.h"
#include <tensorflow/c/c_api.h>
@ -40,13 +41,12 @@ typedef struct TFContext {
typedef struct TFModel{
TFContext ctx;
DNNModel *model;
TF_Graph *graph;
TF_Session *session;
TF_Status *status;
TF_Output input;
TF_Tensor *input_tensor;
TF_Tensor **output_tensors;
uint32_t nb_output;
} TFModel;
static const AVClass dnn_tensorflow_class = {
@ -152,13 +152,19 @@ static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input
return DNN_SUCCESS;
}
static DNNReturnType set_input_tf(void *model, DNNData *input, const char *input_name)
static DNNReturnType set_input_tf(void *model, AVFrame *frame, const char *input_name)
{
TFModel *tf_model = (TFModel *)model;
TFContext *ctx = &tf_model->ctx;
DNNData input;
TF_SessionOptions *sess_opts;
const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
if (get_input_tf(model, &input, input_name) != DNN_SUCCESS)
return DNN_ERROR;
input.height = frame->height;
input.width = frame->width;
// Input operation
tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, input_name);
if (!tf_model->input.oper){
@ -169,12 +175,18 @@ static DNNReturnType set_input_tf(void *model, DNNData *input, const char *input
if (tf_model->input_tensor){
TF_DeleteTensor(tf_model->input_tensor);
}
tf_model->input_tensor = allocate_input_tensor(input);
tf_model->input_tensor = allocate_input_tensor(&input);
if (!tf_model->input_tensor){
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
return DNN_ERROR;
}
input->data = (float *)TF_TensorData(tf_model->input_tensor);
input.data = (float *)TF_TensorData(tf_model->input_tensor);
if (tf_model->model->pre_proc != NULL) {
tf_model->model->pre_proc(frame, &input, tf_model->model->userdata);
} else {
proc_from_frame_to_dnn(frame, &input, ctx);
}
// session
if (tf_model->session){
@ -591,7 +603,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options,
DNNModel *model = NULL;
TFModel *tf_model = NULL;
model = av_malloc(sizeof(DNNModel));
model = av_mallocz(sizeof(DNNModel));
if (!model){
return NULL;
}
@ -602,6 +614,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options,
return NULL;
}
tf_model->ctx.class = &dnn_tensorflow_class;
tf_model->model = model;
if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
@ -621,11 +634,20 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options,
return model;
}
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output)
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame)
{
TF_Output *tf_outputs;
TFModel *tf_model = (TFModel *)model->model;
TFContext *ctx = &tf_model->ctx;
DNNData output;
TF_Tensor **output_tensors;
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs));
if (tf_outputs == NULL) {
@ -633,18 +655,8 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, c
return DNN_ERROR;
}
if (tf_model->output_tensors) {
for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
if (tf_model->output_tensors[i]) {
TF_DeleteTensor(tf_model->output_tensors[i]);
tf_model->output_tensors[i] = NULL;
}
}
}
av_freep(&tf_model->output_tensors);
tf_model->nb_output = nb_output;
tf_model->output_tensors = av_mallocz_array(nb_output, sizeof(*tf_model->output_tensors));
if (!tf_model->output_tensors) {
output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors));
if (!output_tensors) {
av_freep(&tf_outputs);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \
return DNN_ERROR;
@ -654,6 +666,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, c
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]);
if (!tf_outputs[i].oper) {
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \
return DNN_ERROR;
}
@ -662,22 +675,40 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, c
TF_SessionRun(tf_model->session, NULL,
&tf_model->input, &tf_model->input_tensor, 1,
tf_outputs, tf_model->output_tensors, nb_output,
tf_outputs, output_tensors, nb_output,
NULL, 0, NULL, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK) {
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
}
for (uint32_t i = 0; i < nb_output; ++i) {
outputs[i].height = TF_Dim(tf_model->output_tensors[i], 1);
outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2);
outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3);
outputs[i].data = TF_TensorData(tf_model->output_tensors[i]);
outputs[i].dt = TF_TensorType(tf_model->output_tensors[i]);
output.height = TF_Dim(output_tensors[i], 1);
output.width = TF_Dim(output_tensors[i], 2);
output.channels = TF_Dim(output_tensors[i], 3);
output.data = TF_TensorData(output_tensors[i]);
output.dt = TF_TensorType(output_tensors[i]);
if (out_frame->width != output.width || out_frame->height != output.height) {
out_frame->width = output.width;
out_frame->height = output.height;
} else {
if (tf_model->model->post_proc != NULL) {
tf_model->model->post_proc(out_frame, &output, tf_model->model->userdata);
} else {
proc_from_dnn_to_frame(out_frame, &output, ctx);
}
}
}
for (uint32_t i = 0; i < nb_output; ++i) {
if (output_tensors[i]) {
TF_DeleteTensor(output_tensors[i]);
}
}
av_freep(&output_tensors);
av_freep(&tf_outputs);
return DNN_SUCCESS;
}
@ -701,15 +732,6 @@ void ff_dnn_free_model_tf(DNNModel **model)
if (tf_model->input_tensor){
TF_DeleteTensor(tf_model->input_tensor);
}
if (tf_model->output_tensors) {
for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
if (tf_model->output_tensors[i]) {
TF_DeleteTensor(tf_model->output_tensors[i]);
tf_model->output_tensors[i] = NULL;
}
}
}
av_freep(&tf_model->output_tensors);
av_freep(&tf_model);
av_freep(model);
}

@ -31,7 +31,7 @@
DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options, void *userdata);
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
void ff_dnn_free_model_tf(DNNModel **model);

@ -0,0 +1,135 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dnn_io_proc.h"
#include "libavutil/imgutils.h"
#include "libswscale/swscale.h"
DNNReturnType proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
{
struct SwsContext *sws_ctx;
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
if (output->dt != DNN_FLOAT) {
av_log(log_ctx, AV_LOG_ERROR, "do not support data type rather than DNN_FLOAT\n");
return DNN_ERROR;
}
switch (frame->format) {
case AV_PIX_FMT_RGB24:
case AV_PIX_FMT_BGR24:
sws_ctx = sws_getContext(frame->width * 3,
frame->height,
AV_PIX_FMT_GRAYF32,
frame->width * 3,
frame->height,
AV_PIX_FMT_GRAY8,
0, NULL, NULL, NULL);
sws_scale(sws_ctx, (const uint8_t *[4]){(const uint8_t *)output->data, 0, 0, 0},
(const int[4]){frame->width * 3 * sizeof(float), 0, 0, 0}, 0, frame->height,
(uint8_t * const*)frame->data, frame->linesize);
sws_freeContext(sws_ctx);
return DNN_SUCCESS;
case AV_PIX_FMT_GRAYF32:
av_image_copy_plane(frame->data[0], frame->linesize[0],
output->data, bytewidth,
bytewidth, frame->height);
return DNN_SUCCESS;
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_GRAY8:
sws_ctx = sws_getContext(frame->width,
frame->height,
AV_PIX_FMT_GRAYF32,
frame->width,
frame->height,
AV_PIX_FMT_GRAY8,
0, NULL, NULL, NULL);
sws_scale(sws_ctx, (const uint8_t *[4]){(const uint8_t *)output->data, 0, 0, 0},
(const int[4]){frame->width * sizeof(float), 0, 0, 0}, 0, frame->height,
(uint8_t * const*)frame->data, frame->linesize);
sws_freeContext(sws_ctx);
return DNN_SUCCESS;
default:
av_log(log_ctx, AV_LOG_ERROR, "do not support frame format %d\n", frame->format);
return DNN_ERROR;
}
return DNN_SUCCESS;
}
DNNReturnType proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
{
struct SwsContext *sws_ctx;
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
if (input->dt != DNN_FLOAT) {
av_log(log_ctx, AV_LOG_ERROR, "do not support data type rather than DNN_FLOAT\n");
return DNN_ERROR;
}
switch (frame->format) {
case AV_PIX_FMT_RGB24:
case AV_PIX_FMT_BGR24:
sws_ctx = sws_getContext(frame->width * 3,
frame->height,
AV_PIX_FMT_GRAY8,
frame->width * 3,
frame->height,
AV_PIX_FMT_GRAYF32,
0, NULL, NULL, NULL);
sws_scale(sws_ctx, (const uint8_t **)frame->data,
frame->linesize, 0, frame->height,
(uint8_t * const*)(&input->data),
(const int [4]){frame->width * 3 * sizeof(float), 0, 0, 0});
sws_freeContext(sws_ctx);
break;
case AV_PIX_FMT_GRAYF32:
av_image_copy_plane(input->data, bytewidth,
frame->data[0], frame->linesize[0],
bytewidth, frame->height);
break;
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_GRAY8:
sws_ctx = sws_getContext(frame->width,
frame->height,
AV_PIX_FMT_GRAY8,
frame->width,
frame->height,
AV_PIX_FMT_GRAYF32,
0, NULL, NULL, NULL);
sws_scale(sws_ctx, (const uint8_t **)frame->data,
frame->linesize, 0, frame->height,
(uint8_t * const*)(&input->data),
(const int [4]){frame->width * sizeof(float), 0, 0, 0});
sws_freeContext(sws_ctx);
break;
default:
av_log(log_ctx, AV_LOG_ERROR, "do not support frame format %d\n", frame->format);
return DNN_ERROR;
}
return DNN_SUCCESS;
}

@ -0,0 +1,36 @@
/*
* Copyright (c) 2020
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN input&output process between AVFrame and DNNData.
*/
#ifndef AVFILTER_DNN_DNN_IO_PROC_H
#define AVFILTER_DNN_DNN_IO_PROC_H
#include "../dnn_interface.h"
#include "libavutil/frame.h"
DNNReturnType proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx);
DNNReturnType proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx);
#endif

@ -27,6 +27,7 @@
#define AVFILTER_DNN_INTERFACE_H
#include <stdint.h>
#include "libavutil/frame.h"
typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType;
@ -50,17 +51,23 @@ typedef struct DNNModel{
// Gets model input information
// Just reuse struct DNNData here, actually the DNNData.data field is not needed.
DNNReturnType (*get_input)(void *model, DNNData *input, const char *input_name);
// Sets model input and output.
// Should be called at least once before model execution.
DNNReturnType (*set_input)(void *model, DNNData *input, const char *input_name);
// Sets model input.
// Should be called every time before model execution.
DNNReturnType (*set_input)(void *model, AVFrame *frame, const char *input_name);
// set the pre process to transfer data from AVFrame to DNNData
// the default implementation within DNN is used if it is not provided by the filter
int (*pre_proc)(AVFrame *frame_in, DNNData *model_input, void *user_data);
// set the post process to transfer data from DNNData to AVFrame
// the default implementation within DNN is used if it is not provided by the filter
int (*post_proc)(AVFrame *frame_out, DNNData *model_output, void *user_data);
} DNNModel;
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
typedef struct DNNModule{
// Loads model and parameters from given file. Returns NULL if it is not possible.
DNNModel *(*load_model)(const char *model_filename, const char *options, void *userdata);
// Executes model with specified input and output. Returns DNN_ERROR otherwise.
DNNReturnType (*execute_model)(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
// Executes model with specified output. Returns DNN_ERROR otherwise.
DNNReturnType (*execute_model)(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
// Frees memory allocated for model.
void (*free_model)(DNNModel **model);
} DNNModule;

@ -39,11 +39,8 @@ typedef struct DRContext {
DNNBackendType backend_type;
DNNModule *dnn_module;
DNNModel *model;
DNNData input;
DNNData output;
} DRContext;
#define CLIP(x, min, max) (x < min ? min : (x > max ? max : x))
#define OFFSET(x) offsetof(DRContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption derain_options[] = {
@ -74,25 +71,6 @@ static int query_formats(AVFilterContext *ctx)
return ff_set_common_formats(ctx, formats);
}
static int config_inputs(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
DRContext *dr_context = ctx->priv;
DNNReturnType result;
dr_context->input.width = inlink->w;
dr_context->input.height = inlink->h;
dr_context->input.channels = 3;
result = (dr_context->model->set_input)(dr_context->model->model, &dr_context->input, "x");
if (result != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "could not set input and output for the model\n");
return AVERROR(EIO);
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
@ -100,43 +78,30 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
DRContext *dr_context = ctx->priv;
DNNReturnType dnn_result;
const char *model_output_name = "y";
AVFrame *out;
dnn_result = (dr_context->model->set_input)(dr_context->model->model, in, "x");
if (dnn_result != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "could not set input for the model\n");
av_frame_free(&in);
return AVERROR(EIO);
}
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_log(ctx, AV_LOG_ERROR, "could not allocate memory for output frame\n");
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
for (int i = 0; i < in->height; i++){
for(int j = 0; j < in->width * 3; j++){
int k = i * in->linesize[0] + j;
int t = i * in->width * 3 + j;
((float *)dr_context->input.data)[t] = in->data[0][k] / 255.0;
}
}
dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, &dr_context->output, &model_output_name, 1);
dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, &model_output_name, 1, out);
if (dnn_result != DNN_SUCCESS){
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
av_frame_free(&in);
return AVERROR(EIO);
}
out->height = dr_context->output.height;
out->width = dr_context->output.width;
outlink->h = dr_context->output.height;
outlink->w = dr_context->output.width;
for (int i = 0; i < out->height; i++){
for(int j = 0; j < out->width * 3; j++){
int k = i * out->linesize[0] + j;
int t = i * out->width * 3 + j;
out->data[0][k] = CLIP((int)((((float *)dr_context->output.data)[t]) * 255), 0, 255);
}
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);
@ -146,7 +111,6 @@ static av_cold int init(AVFilterContext *ctx)
{
DRContext *dr_context = ctx->priv;
dr_context->input.dt = DNN_FLOAT;
dr_context->dnn_module = ff_get_dnn_module(dr_context->backend_type);
if (!dr_context->dnn_module) {
av_log(ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
@ -184,7 +148,6 @@ static const AVFilterPad derain_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_inputs,
.filter_frame = filter_frame,
},
{ NULL }

@ -46,12 +46,6 @@ typedef struct DnnProcessingContext {
DNNModule *dnn_module;
DNNModel *model;
// input & output of the model at execution time
DNNData input;
DNNData output;
struct SwsContext *sws_gray8_to_grayf32;
struct SwsContext *sws_grayf32_to_gray8;
struct SwsContext *sws_uv_scale;
int sws_uv_height;
} DnnProcessingContext;
@ -103,7 +97,7 @@ static av_cold int init(AVFilterContext *context)
return AVERROR(EINVAL);
}
ctx->model = (ctx->dnn_module->load_model)(ctx->model_filename, ctx->backend_options, NULL);
ctx->model = (ctx->dnn_module->load_model)(ctx->model_filename, ctx->backend_options, ctx);
if (!ctx->model) {
av_log(ctx, AV_LOG_ERROR, "could not load DNN model\n");
return AVERROR(EINVAL);
@ -148,6 +142,10 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
model_input->width, inlink->w);
return AVERROR(EIO);
}
if (model_input->dt != DNN_FLOAT) {
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type as float32.\n");
return AVERROR(EIO);
}
switch (fmt) {
case AV_PIX_FMT_RGB24:
@ -156,20 +154,6 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
LOG_FORMAT_CHANNEL_MISMATCH();
return AVERROR(EIO);
}
if (model_input->dt != DNN_FLOAT && model_input->dt != DNN_UINT8) {
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type as float32 and uint8.\n");
return AVERROR(EIO);
}
return 0;
case AV_PIX_FMT_GRAY8:
if (model_input->channels != 1) {
LOG_FORMAT_CHANNEL_MISMATCH();
return AVERROR(EIO);
}
if (model_input->dt != DNN_UINT8) {
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type uint8.\n");
return AVERROR(EIO);
}
return 0;
case AV_PIX_FMT_GRAYF32:
case AV_PIX_FMT_YUV420P:
@ -181,10 +165,6 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
LOG_FORMAT_CHANNEL_MISMATCH();
return AVERROR(EIO);
}
if (model_input->dt != DNN_FLOAT) {
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type float32.\n");
return AVERROR(EIO);
}
return 0;
default:
av_log(ctx, AV_LOG_ERROR, "%s not supported.\n", av_get_pix_fmt_name(fmt));
@ -213,74 +193,24 @@ static int config_input(AVFilterLink *inlink)
return check;
}
ctx->input.width = inlink->w;
ctx->input.height = inlink->h;
ctx->input.channels = model_input.channels;
ctx->input.dt = model_input.dt;
result = (ctx->model->set_input)(ctx->model->model,
&ctx->input, ctx->model_inputname);
if (result != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "could not set input and output for the model\n");
return AVERROR(EIO);
}
return 0;
}
static int prepare_sws_context(AVFilterLink *outlink)
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components == 3;
}
static int prepare_uv_scale(AVFilterLink *outlink)
{
AVFilterContext *context = outlink->src;
DnnProcessingContext *ctx = context->priv;
AVFilterLink *inlink = context->inputs[0];
enum AVPixelFormat fmt = inlink->format;
DNNDataType input_dt = ctx->input.dt;
DNNDataType output_dt = ctx->output.dt;
switch (fmt) {
case AV_PIX_FMT_RGB24:
case AV_PIX_FMT_BGR24:
if (input_dt == DNN_FLOAT) {
ctx->sws_gray8_to_grayf32 = sws_getContext(inlink->w * 3,
inlink->h,
AV_PIX_FMT_GRAY8,
inlink->w * 3,
inlink->h,
AV_PIX_FMT_GRAYF32,
0, NULL, NULL, NULL);
}
if (output_dt == DNN_FLOAT) {
ctx->sws_grayf32_to_gray8 = sws_getContext(outlink->w * 3,
outlink->h,
AV_PIX_FMT_GRAYF32,
outlink->w * 3,
outlink->h,
AV_PIX_FMT_GRAY8,
0, NULL, NULL, NULL);
}
return 0;
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
av_assert0(input_dt == DNN_FLOAT);
av_assert0(output_dt == DNN_FLOAT);
ctx->sws_gray8_to_grayf32 = sws_getContext(inlink->w,
inlink->h,
AV_PIX_FMT_GRAY8,
inlink->w,
inlink->h,
AV_PIX_FMT_GRAYF32,
0, NULL, NULL, NULL);
ctx->sws_grayf32_to_gray8 = sws_getContext(outlink->w,
outlink->h,
AV_PIX_FMT_GRAYF32,
outlink->w,
outlink->h,
AV_PIX_FMT_GRAY8,
0, NULL, NULL, NULL);
if (isPlanarYUV(fmt)) {
if (inlink->w != outlink->w || inlink->h != outlink->h) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(fmt);
int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
@ -292,10 +222,6 @@ static int prepare_sws_context(AVFilterLink *outlink)
SWS_BICUBIC, NULL, NULL, NULL);
ctx->sws_uv_height = sws_src_h;
}
return 0;
default:
//do nothing
break;
}
return 0;
@ -306,120 +232,34 @@ static int config_output(AVFilterLink *outlink)
AVFilterContext *context = outlink->src;
DnnProcessingContext *ctx = context->priv;
DNNReturnType result;
AVFilterLink *inlink = context->inputs[0];
AVFrame *out = NULL;
// have a try run in case that the dnn model resize the frame
result = (ctx->dnn_module->execute_model)(ctx->model, &ctx->output, (const char **)&ctx->model_outputname, 1);
if (result != DNN_SUCCESS){
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
AVFrame *fake_in = ff_get_video_buffer(inlink, inlink->w, inlink->h);
result = (ctx->model->set_input)(ctx->model->model, fake_in, ctx->model_inputname);
if (result != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "could not set input for the model\n");
return AVERROR(EIO);
}
outlink->w = ctx->output.width;
outlink->h = ctx->output.height;
prepare_sws_context(outlink);
return 0;
}
static int copy_from_frame_to_dnn(DnnProcessingContext *ctx, const AVFrame *frame)
{
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
DNNData *dnn_input = &ctx->input;
switch (frame->format) {
case AV_PIX_FMT_RGB24:
case AV_PIX_FMT_BGR24:
if (dnn_input->dt == DNN_FLOAT) {
sws_scale(ctx->sws_gray8_to_grayf32, (const uint8_t **)frame->data, frame->linesize,
0, frame->height, (uint8_t * const*)(&dnn_input->data),
(const int [4]){frame->width * 3 * sizeof(float), 0, 0, 0});
} else {
av_assert0(dnn_input->dt == DNN_UINT8);
av_image_copy_plane(dnn_input->data, bytewidth,
frame->data[0], frame->linesize[0],
bytewidth, frame->height);
}
return 0;
case AV_PIX_FMT_GRAY8:
case AV_PIX_FMT_GRAYF32:
av_image_copy_plane(dnn_input->data, bytewidth,
frame->data[0], frame->linesize[0],
bytewidth, frame->height);
return 0;
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
sws_scale(ctx->sws_gray8_to_grayf32, (const uint8_t **)frame->data, frame->linesize,
0, frame->height, (uint8_t * const*)(&dnn_input->data),
(const int [4]){frame->width * sizeof(float), 0, 0, 0});
return 0;
default:
// have a try run in case that the dnn model resize the frame
out = ff_get_video_buffer(inlink, inlink->w, inlink->h);
result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&ctx->model_outputname, 1, out);
if (result != DNN_SUCCESS){
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
return AVERROR(EIO);
}
return 0;
}
outlink->w = out->width;
outlink->h = out->height;
static int copy_from_dnn_to_frame(DnnProcessingContext *ctx, AVFrame *frame)
{
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
DNNData *dnn_output = &ctx->output;
switch (frame->format) {
case AV_PIX_FMT_RGB24:
case AV_PIX_FMT_BGR24:
if (dnn_output->dt == DNN_FLOAT) {
sws_scale(ctx->sws_grayf32_to_gray8, (const uint8_t *[4]){(const uint8_t *)dnn_output->data, 0, 0, 0},
(const int[4]){frame->width * 3 * sizeof(float), 0, 0, 0},
0, frame->height, (uint8_t * const*)frame->data, frame->linesize);
} else {
av_assert0(dnn_output->dt == DNN_UINT8);
av_image_copy_plane(frame->data[0], frame->linesize[0],
dnn_output->data, bytewidth,
bytewidth, frame->height);
}
return 0;
case AV_PIX_FMT_GRAY8:
// it is possible that data type of dnn output is float32,
// need to add support for such case when needed.
av_assert0(dnn_output->dt == DNN_UINT8);
av_image_copy_plane(frame->data[0], frame->linesize[0],
dnn_output->data, bytewidth,
bytewidth, frame->height);
return 0;
case AV_PIX_FMT_GRAYF32:
av_assert0(dnn_output->dt == DNN_FLOAT);
av_image_copy_plane(frame->data[0], frame->linesize[0],
dnn_output->data, bytewidth,
bytewidth, frame->height);
return 0;
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
sws_scale(ctx->sws_grayf32_to_gray8, (const uint8_t *[4]){(const uint8_t *)dnn_output->data, 0, 0, 0},
(const int[4]){frame->width * sizeof(float), 0, 0, 0},
0, frame->height, (uint8_t * const*)frame->data, frame->linesize);
return 0;
default:
return AVERROR(EIO);
}
av_frame_free(&fake_in);
av_frame_free(&out);
prepare_uv_scale(outlink);
return 0;
}
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
av_assert0(desc);
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components == 3;
}
static int copy_uv_planes(DnnProcessingContext *ctx, AVFrame *out, const AVFrame *in)
{
const AVPixFmtDescriptor *desc;
@ -453,11 +293,9 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
DNNReturnType dnn_result;
AVFrame *out;
copy_from_frame_to_dnn(ctx, in);
dnn_result = (ctx->dnn_module->execute_model)(ctx->model, &ctx->output, (const char **)&ctx->model_outputname, 1);
if (dnn_result != DNN_SUCCESS){
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
dnn_result = (ctx->model->set_input)(ctx->model->model, in, ctx->model_inputname);
if (dnn_result != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "could not set input for the model\n");
av_frame_free(&in);
return AVERROR(EIO);
}
@ -467,9 +305,15 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
copy_from_dnn_to_frame(ctx, out);
dnn_result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&ctx->model_outputname, 1, out);
if (dnn_result != DNN_SUCCESS){
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
av_frame_free(&in);
av_frame_free(&out);
return AVERROR(EIO);
}
if (isPlanarYUV(in->format))
copy_uv_planes(ctx, out, in);
@ -482,8 +326,6 @@ static av_cold void uninit(AVFilterContext *ctx)
{
DnnProcessingContext *context = ctx->priv;
sws_freeContext(context->sws_gray8_to_grayf32);
sws_freeContext(context->sws_grayf32_to_gray8);
sws_freeContext(context->sws_uv_scale);
if (context->dnn_module)

@ -41,11 +41,10 @@ typedef struct SRContext {
DNNBackendType backend_type;
DNNModule *dnn_module;
DNNModel *model;
DNNData input;
DNNData output;
int scale_factor;
struct SwsContext *sws_contexts[3];
int sws_slice_h, sws_input_linesize, sws_output_linesize;
struct SwsContext *sws_uv_scale;
int sws_uv_height;
struct SwsContext *sws_pre_scale;
} SRContext;
#define OFFSET(x) offsetof(SRContext, x)
@ -87,11 +86,6 @@ static av_cold int init(AVFilterContext *context)
return AVERROR(EIO);
}
sr_context->input.dt = DNN_FLOAT;
sr_context->sws_contexts[0] = NULL;
sr_context->sws_contexts[1] = NULL;
sr_context->sws_contexts[2] = NULL;
return 0;
}
@ -111,95 +105,63 @@ static int query_formats(AVFilterContext *context)
return ff_set_common_formats(context, formats_list);
}
static int config_props(AVFilterLink *inlink)
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *context = inlink->dst;
SRContext *sr_context = context->priv;
AVFilterLink *outlink = context->outputs[0];
AVFilterContext *context = outlink->src;
SRContext *ctx = context->priv;
DNNReturnType result;
int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w;
AVFilterLink *inlink = context->inputs[0];
AVFrame *out = NULL;
const char *model_output_name = "y";
sr_context->input.width = inlink->w * sr_context->scale_factor;
sr_context->input.height = inlink->h * sr_context->scale_factor;
sr_context->input.channels = 1;
result = (sr_context->model->set_input)(sr_context->model->model, &sr_context->input, "x");
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
AVFrame *fake_in = ff_get_video_buffer(inlink, inlink->w, inlink->h);
result = (ctx->model->set_input)(ctx->model->model, fake_in, "x");
if (result != DNN_SUCCESS) {
av_log(context, AV_LOG_ERROR, "could not set input for the model\n");
return AVERROR(EIO);
}
result = (sr_context->dnn_module->execute_model)(sr_context->model, &sr_context->output, &model_output_name, 1);
// have a try run in case that the dnn model resize the frame
out = ff_get_video_buffer(inlink, inlink->w, inlink->h);
result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&model_output_name, 1, out);
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
return AVERROR(EIO);
}
if (sr_context->input.height != sr_context->output.height || sr_context->input.width != sr_context->output.width){
sr_context->input.width = inlink->w;
sr_context->input.height = inlink->h;
result = (sr_context->model->set_input)(sr_context->model->model, &sr_context->input, "x");
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
return AVERROR(EIO);
}
result = (sr_context->dnn_module->execute_model)(sr_context->model, &sr_context->output, &model_output_name, 1);
if (result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
return AVERROR(EIO);
}
sr_context->scale_factor = 0;
}
outlink->h = sr_context->output.height;
outlink->w = sr_context->output.width;
sr_context->sws_contexts[1] = sws_getContext(sr_context->input.width, sr_context->input.height, AV_PIX_FMT_GRAY8,
sr_context->input.width, sr_context->input.height, AV_PIX_FMT_GRAYF32,
0, NULL, NULL, NULL);
sr_context->sws_input_linesize = sr_context->input.width << 2;
sr_context->sws_contexts[2] = sws_getContext(sr_context->output.width, sr_context->output.height, AV_PIX_FMT_GRAYF32,
sr_context->output.width, sr_context->output.height, AV_PIX_FMT_GRAY8,
0, NULL, NULL, NULL);
sr_context->sws_output_linesize = sr_context->output.width << 2;
if (!sr_context->sws_contexts[1] || !sr_context->sws_contexts[2]){
av_log(context, AV_LOG_ERROR, "could not create SwsContext for conversions\n");
return AVERROR(ENOMEM);
}
if (sr_context->scale_factor){
sr_context->sws_contexts[0] = sws_getContext(inlink->w, inlink->h, inlink->format,
outlink->w, outlink->h, outlink->format,
SWS_BICUBIC, NULL, NULL, NULL);
if (!sr_context->sws_contexts[0]){
av_log(context, AV_LOG_ERROR, "could not create SwsContext for scaling\n");
return AVERROR(ENOMEM);
}
sr_context->sws_slice_h = inlink->h;
} else {
if (fake_in->width != out->width || fake_in->height != out->height) {
//espcn
outlink->w = out->width;
outlink->h = out->height;
if (inlink->format != AV_PIX_FMT_GRAY8){
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
sws_src_h = AV_CEIL_RSHIFT(sr_context->input.height, desc->log2_chroma_h);
sws_src_w = AV_CEIL_RSHIFT(sr_context->input.width, desc->log2_chroma_w);
sws_dst_h = AV_CEIL_RSHIFT(sr_context->output.height, desc->log2_chroma_h);
sws_dst_w = AV_CEIL_RSHIFT(sr_context->output.width, desc->log2_chroma_w);
sr_context->sws_contexts[0] = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
int sws_src_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
int sws_dst_h = AV_CEIL_RSHIFT(outlink->h, desc->log2_chroma_h);
int sws_dst_w = AV_CEIL_RSHIFT(outlink->w, desc->log2_chroma_w);
ctx->sws_uv_scale = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8,
SWS_BICUBIC, NULL, NULL, NULL);
if (!sr_context->sws_contexts[0]){
av_log(context, AV_LOG_ERROR, "could not create SwsContext for scaling\n");
return AVERROR(ENOMEM);
}
sr_context->sws_slice_h = sws_src_h;
ctx->sws_uv_height = sws_src_h;
}
} else {
//srcnn
outlink->w = out->width * ctx->scale_factor;
outlink->h = out->height * ctx->scale_factor;
ctx->sws_pre_scale = sws_getContext(inlink->w, inlink->h, inlink->format,
outlink->w, outlink->h, outlink->format,
SWS_BICUBIC, NULL, NULL, NULL);
}
av_frame_free(&fake_in);
av_frame_free(&out);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *context = inlink->dst;
SRContext *sr_context = context->priv;
SRContext *ctx = context->priv;
AVFilterLink *outlink = context->outputs[0];
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
DNNReturnType dnn_result;
@ -211,45 +173,44 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
out->height = sr_context->output.height;
out->width = sr_context->output.width;
if (sr_context->scale_factor){
sws_scale(sr_context->sws_contexts[0], (const uint8_t **)in->data, in->linesize,
0, sr_context->sws_slice_h, out->data, out->linesize);
sws_scale(sr_context->sws_contexts[1], (const uint8_t **)out->data, out->linesize,
0, out->height, (uint8_t * const*)(&sr_context->input.data),
(const int [4]){sr_context->sws_input_linesize, 0, 0, 0});
if (ctx->sws_pre_scale) {
sws_scale(ctx->sws_pre_scale,
(const uint8_t **)in->data, in->linesize, 0, in->height,
out->data, out->linesize);
dnn_result = (ctx->model->set_input)(ctx->model->model, out, "x");
} else {
if (sr_context->sws_contexts[0]){
sws_scale(sr_context->sws_contexts[0], (const uint8_t **)(in->data + 1), in->linesize + 1,
0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1);
sws_scale(sr_context->sws_contexts[0], (const uint8_t **)(in->data + 2), in->linesize + 2,
0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2);
dnn_result = (ctx->model->set_input)(ctx->model->model, in, "x");
}
sws_scale(sr_context->sws_contexts[1], (const uint8_t **)in->data, in->linesize,
0, in->height, (uint8_t * const*)(&sr_context->input.data),
(const int [4]){sr_context->sws_input_linesize, 0, 0, 0});
}
if (dnn_result != DNN_SUCCESS) {
av_frame_free(&in);
av_frame_free(&out);
av_log(context, AV_LOG_ERROR, "could not set input for the model\n");
return AVERROR(EIO);
}
dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model, &sr_context->output, &model_output_name, 1);
dnn_result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&model_output_name, 1, out);
if (dnn_result != DNN_SUCCESS){
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
av_log(ctx, AV_LOG_ERROR, "failed to execute loaded model\n");
av_frame_free(&in);
av_frame_free(&out);
return AVERROR(EIO);
}
sws_scale(sr_context->sws_contexts[2], (const uint8_t *[4]){(const uint8_t *)sr_context->output.data, 0, 0, 0},
(const int[4]){sr_context->sws_output_linesize, 0, 0, 0},
0, out->height, (uint8_t * const*)out->data, out->linesize);
if (ctx->sws_uv_scale) {
sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 1), in->linesize + 1,
0, ctx->sws_uv_height, out->data + 1, out->linesize + 1);
sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 2), in->linesize + 2,
0, ctx->sws_uv_height, out->data + 2, out->linesize + 2);
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *context)
{
int i;
SRContext *sr_context = context->priv;
if (sr_context->dnn_module){
@ -257,16 +218,14 @@ static av_cold void uninit(AVFilterContext *context)
av_freep(&sr_context->dnn_module);
}
for (i = 0; i < 3; ++i){
sws_freeContext(sr_context->sws_contexts[i]);
}
sws_freeContext(sr_context->sws_uv_scale);
sws_freeContext(sr_context->sws_pre_scale);
}
static const AVFilterPad sr_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
{ NULL }
@ -275,6 +234,7 @@ static const AVFilterPad sr_inputs[] = {
static const AVFilterPad sr_outputs[] = {
{
.name = "default",
.config_props = config_output,
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }

Loading…
Cancel
Save