mirror of https://github.com/FFmpeg/FFmpeg.git
parent
8835c2c829
commit
1a265f6187
8 changed files with 861 additions and 3 deletions
@ -0,0 +1,836 @@ |
||||
/*
|
||||
* Apple ProRes encoder |
||||
* |
||||
* Copyright (c) 2012 Konstantin Shishkov |
||||
* |
||||
* This file is part of Libav. |
||||
* |
||||
* Libav is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* Libav is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with Libav; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include "libavutil/opt.h" |
||||
#include "avcodec.h" |
||||
#include "put_bits.h" |
||||
#include "bytestream.h" |
||||
#include "internal.h" |
||||
#include "proresdsp.h" |
||||
#include "proresdata.h" |
||||
|
||||
#define CFACTOR_Y422 2 |
||||
#define CFACTOR_Y444 3 |
||||
|
||||
#define MAX_MBS_PER_SLICE 8 |
||||
|
||||
#define MAX_PLANES 3 // should be increased to 4 when there's PIX_FMT_YUV444AP10
|
||||
|
||||
enum { |
||||
PRORES_PROFILE_PROXY = 0, |
||||
PRORES_PROFILE_LT, |
||||
PRORES_PROFILE_STANDARD, |
||||
PRORES_PROFILE_HQ, |
||||
}; |
||||
|
||||
#define NUM_MB_LIMITS 4 |
||||
static const int prores_mb_limits[NUM_MB_LIMITS] = { |
||||
1620, // up to 720x576
|
||||
2700, // up to 960x720
|
||||
6075, // up to 1440x1080
|
||||
9216, // up to 2048x1152
|
||||
}; |
||||
|
||||
static const struct prores_profile { |
||||
const char *full_name; |
||||
uint32_t tag; |
||||
int min_quant; |
||||
int max_quant; |
||||
int br_tab[NUM_MB_LIMITS]; |
||||
uint8_t quant[64]; |
||||
} prores_profile_info[4] = { |
||||
{ |
||||
.full_name = "proxy", |
||||
.tag = MKTAG('a', 'p', 'c', 'o'), |
||||
.min_quant = 4, |
||||
.max_quant = 8, |
||||
.br_tab = { 300, 242, 220, 194 }, |
||||
.quant = { |
||||
4, 7, 9, 11, 13, 14, 15, 63, |
||||
7, 7, 11, 12, 14, 15, 63, 63, |
||||
9, 11, 13, 14, 15, 63, 63, 63, |
||||
11, 11, 13, 14, 63, 63, 63, 63, |
||||
11, 13, 14, 63, 63, 63, 63, 63, |
||||
13, 14, 63, 63, 63, 63, 63, 63, |
||||
13, 63, 63, 63, 63, 63, 63, 63, |
||||
63, 63, 63, 63, 63, 63, 63, 63, |
||||
}, |
||||
}, |
||||
{ |
||||
.full_name = "LT", |
||||
.tag = MKTAG('a', 'p', 'c', 's'), |
||||
.min_quant = 1, |
||||
.max_quant = 9, |
||||
.br_tab = { 720, 560, 490, 440 }, |
||||
.quant = { |
||||
4, 5, 6, 7, 9, 11, 13, 15, |
||||
5, 5, 7, 8, 11, 13, 15, 17, |
||||
6, 7, 9, 11, 13, 15, 15, 17, |
||||
7, 7, 9, 11, 13, 15, 17, 19, |
||||
7, 9, 11, 13, 14, 16, 19, 23, |
||||
9, 11, 13, 14, 16, 19, 23, 29, |
||||
9, 11, 13, 15, 17, 21, 28, 35, |
||||
11, 13, 16, 17, 21, 28, 35, 41, |
||||
}, |
||||
}, |
||||
{ |
||||
.full_name = "standard", |
||||
.tag = MKTAG('a', 'p', 'c', 'n'), |
||||
.min_quant = 1, |
||||
.max_quant = 6, |
||||
.br_tab = { 1050, 808, 710, 632 }, |
||||
.quant = { |
||||
4, 4, 5, 5, 6, 7, 7, 9, |
||||
4, 4, 5, 6, 7, 7, 9, 9, |
||||
5, 5, 6, 7, 7, 9, 9, 10, |
||||
5, 5, 6, 7, 7, 9, 9, 10, |
||||
5, 6, 7, 7, 8, 9, 10, 12, |
||||
6, 7, 7, 8, 9, 10, 12, 15, |
||||
6, 7, 7, 9, 10, 11, 14, 17, |
||||
7, 7, 9, 10, 11, 14, 17, 21, |
||||
}, |
||||
}, |
||||
{ |
||||
.full_name = "high quality", |
||||
.tag = MKTAG('a', 'p', 'c', 'h'), |
||||
.min_quant = 1, |
||||
.max_quant = 6, |
||||
.br_tab = { 1566, 1216, 1070, 950 }, |
||||
.quant = { |
||||
4, 4, 4, 4, 4, 4, 4, 4, |
||||
4, 4, 4, 4, 4, 4, 4, 4, |
||||
4, 4, 4, 4, 4, 4, 4, 4, |
||||
4, 4, 4, 4, 4, 4, 4, 5, |
||||
4, 4, 4, 4, 4, 4, 5, 5, |
||||
4, 4, 4, 4, 4, 5, 5, 6, |
||||
4, 4, 4, 4, 5, 5, 6, 7, |
||||
4, 4, 4, 4, 5, 6, 7, 7, |
||||
}, |
||||
} |
||||
// for 4444 profile bitrate numbers are { 2350, 1828, 1600, 1425 }
|
||||
}; |
||||
|
||||
#define TRELLIS_WIDTH 16 |
||||
#define SCORE_LIMIT INT_MAX / 2 |
||||
|
||||
struct TrellisNode { |
||||
int prev_node; |
||||
int quant; |
||||
int bits; |
||||
int score; |
||||
}; |
||||
|
||||
typedef struct ProresContext { |
||||
AVClass *class; |
||||
DECLARE_ALIGNED(16, DCTELEM, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; |
||||
DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16]; |
||||
int16_t quants[16][64]; |
||||
|
||||
ProresDSPContext dsp; |
||||
ScanTable scantable; |
||||
|
||||
int mb_width, mb_height; |
||||
int mbs_per_slice; |
||||
int num_chroma_blocks, chroma_factor; |
||||
int slices_width; |
||||
int num_slices; |
||||
int num_planes; |
||||
int bits_per_mb; |
||||
|
||||
int profile; |
||||
const struct prores_profile *profile_info; |
||||
|
||||
struct TrellisNode *nodes; |
||||
int *slice_q; |
||||
} ProresContext; |
||||
|
||||
static void get_slice_data(ProresContext *ctx, const uint16_t *src, |
||||
int linesize, int x, int y, int w, int h, |
||||
DCTELEM *blocks, |
||||
int mbs_per_slice, int blocks_per_mb) |
||||
{ |
||||
const uint16_t *esrc; |
||||
const int mb_width = 4 * blocks_per_mb; |
||||
int elinesize; |
||||
int i, j, k; |
||||
|
||||
for (i = 0; i < mbs_per_slice; i++, src += mb_width) { |
||||
if (x >= w) { |
||||
memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb |
||||
* sizeof(*blocks)); |
||||
return; |
||||
} |
||||
if (x + mb_width <= w && y + 16 <= h) { |
||||
esrc = src; |
||||
elinesize = linesize; |
||||
} else { |
||||
int bw, bh, pix; |
||||
const int estride = 16 / sizeof(*ctx->emu_buf); |
||||
|
||||
esrc = ctx->emu_buf; |
||||
elinesize = 16; |
||||
|
||||
bw = FFMIN(w - x, mb_width); |
||||
bh = FFMIN(h - y, 16); |
||||
|
||||
for (j = 0; j < bh; j++) { |
||||
memcpy(ctx->emu_buf + j * estride, src + j * linesize, |
||||
bw * sizeof(*src)); |
||||
pix = ctx->emu_buf[j * estride + bw - 1]; |
||||
for (k = bw; k < mb_width; k++) |
||||
ctx->emu_buf[j * estride + k] = pix; |
||||
} |
||||
for (; j < 16; j++) |
||||
memcpy(ctx->emu_buf + j * estride, |
||||
ctx->emu_buf + (bh - 1) * estride, |
||||
mb_width * sizeof(*ctx->emu_buf)); |
||||
} |
||||
ctx->dsp.fdct(esrc, elinesize, blocks); |
||||
blocks += 64; |
||||
if (blocks_per_mb > 2) { |
||||
ctx->dsp.fdct(src + 8, linesize, blocks); |
||||
blocks += 64; |
||||
} |
||||
ctx->dsp.fdct(src + linesize * 4, linesize, blocks); |
||||
blocks += 64; |
||||
if (blocks_per_mb > 2) { |
||||
ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks); |
||||
blocks += 64; |
||||
} |
||||
|
||||
x += mb_width; |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* Write an unsigned rice/exp golomb codeword. |
||||
*/ |
||||
static inline void encode_vlc_codeword(PutBitContext *pb, uint8_t codebook, int val) |
||||
{ |
||||
unsigned int rice_order, exp_order, switch_bits, switch_val; |
||||
int exponent; |
||||
|
||||
/* number of prefix bits to switch between Rice and expGolomb */ |
||||
switch_bits = (codebook & 3) + 1; |
||||
rice_order = codebook >> 5; /* rice code order */ |
||||
exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
||||
|
||||
switch_val = switch_bits << rice_order; |
||||
|
||||
if (val >= switch_val) { |
||||
val -= switch_val - (1 << exp_order); |
||||
exponent = av_log2(val); |
||||
|
||||
put_bits(pb, exponent - exp_order + switch_bits, 0); |
||||
put_bits(pb, 1, 1); |
||||
put_bits(pb, exponent, val); |
||||
} else { |
||||
exponent = val >> rice_order; |
||||
|
||||
if (exponent) |
||||
put_bits(pb, exponent, 0); |
||||
put_bits(pb, 1, 1); |
||||
if (rice_order) |
||||
put_sbits(pb, rice_order, val); |
||||
} |
||||
} |
||||
|
||||
#define GET_SIGN(x) ((x) >> 31) |
||||
#define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x)) |
||||
|
||||
static void encode_dcs(PutBitContext *pb, DCTELEM *blocks, |
||||
int blocks_per_slice, int scale) |
||||
{ |
||||
int i; |
||||
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; |
||||
|
||||
prev_dc = (blocks[0] - 0x4000) / scale; |
||||
encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc)); |
||||
codebook = 3; |
||||
blocks += 64; |
||||
|
||||
for (i = 1; i < blocks_per_slice; i++, blocks += 64) { |
||||
dc = (blocks[0] - 0x4000) / scale; |
||||
delta = dc - prev_dc; |
||||
new_sign = GET_SIGN(delta); |
||||
delta = (delta ^ sign) - sign; |
||||
code = MAKE_CODE(delta); |
||||
encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code); |
||||
codebook = (code + (code & 1)) >> 1; |
||||
codebook = FFMIN(codebook, 3); |
||||
sign = new_sign; |
||||
prev_dc = dc; |
||||
} |
||||
} |
||||
|
||||
static void encode_acs(PutBitContext *pb, DCTELEM *blocks, |
||||
int blocks_per_slice, |
||||
int plane_size_factor, |
||||
const uint8_t *scan, const int16_t *qmat) |
||||
{ |
||||
int idx, i; |
||||
int run, level, run_cb, lev_cb; |
||||
int max_coeffs, abs_level; |
||||
|
||||
max_coeffs = blocks_per_slice << 6; |
||||
run_cb = ff_prores_run_to_cb_index[4]; |
||||
lev_cb = ff_prores_lev_to_cb_index[2]; |
||||
run = 0; |
||||
|
||||
for (i = 1; i < 64; i++) { |
||||
for (idx = scan[i]; idx < max_coeffs; idx += 64) { |
||||
level = blocks[idx] / qmat[scan[i]]; |
||||
if (level) { |
||||
abs_level = FFABS(level); |
||||
encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run); |
||||
encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb], |
||||
abs_level - 1); |
||||
put_sbits(pb, 1, GET_SIGN(level)); |
||||
|
||||
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
||||
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; |
||||
run = 0; |
||||
} else { |
||||
run++; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb, |
||||
const uint16_t *src, int linesize, |
||||
int mbs_per_slice, DCTELEM *blocks, |
||||
int blocks_per_mb, int plane_size_factor, |
||||
const int16_t *qmat) |
||||
{ |
||||
int blocks_per_slice, saved_pos; |
||||
|
||||
saved_pos = put_bits_count(pb); |
||||
blocks_per_slice = mbs_per_slice * blocks_per_mb; |
||||
|
||||
encode_dcs(pb, blocks, blocks_per_slice, qmat[0]); |
||||
encode_acs(pb, blocks, blocks_per_slice, plane_size_factor, |
||||
ctx->scantable.permutated, qmat); |
||||
flush_put_bits(pb); |
||||
|
||||
return (put_bits_count(pb) - saved_pos) >> 3; |
||||
} |
||||
|
||||
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, |
||||
PutBitContext *pb, |
||||
int sizes[4], int x, int y, int quant, |
||||
int mbs_per_slice) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
int i, xp, yp; |
||||
int total_size = 0; |
||||
const uint16_t *src; |
||||
int slice_width_factor = av_log2(mbs_per_slice); |
||||
int num_cblocks, pwidth; |
||||
int plane_factor, is_chroma; |
||||
|
||||
for (i = 0; i < ctx->num_planes; i++) { |
||||
is_chroma = (i == 1 || i == 2); |
||||
plane_factor = slice_width_factor + 2; |
||||
if (is_chroma) |
||||
plane_factor += ctx->chroma_factor - 3; |
||||
if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) { |
||||
xp = x << 4; |
||||
yp = y << 4; |
||||
num_cblocks = 4; |
||||
pwidth = avctx->width; |
||||
} else { |
||||
xp = x << 3; |
||||
yp = y << 4; |
||||
num_cblocks = 2; |
||||
pwidth = avctx->width >> 1; |
||||
} |
||||
src = (const uint16_t*)(pic->data[i] + yp * pic->linesize[i]) + xp; |
||||
|
||||
get_slice_data(ctx, src, pic->linesize[i], xp, yp, |
||||
pwidth, avctx->height, ctx->blocks[0], |
||||
mbs_per_slice, num_cblocks); |
||||
sizes[i] = encode_slice_plane(ctx, pb, src, pic->linesize[i], |
||||
mbs_per_slice, ctx->blocks[0], |
||||
num_cblocks, plane_factor, |
||||
ctx->quants[quant]); |
||||
total_size += sizes[i]; |
||||
} |
||||
return total_size; |
||||
} |
||||
|
||||
static inline int estimate_vlc(uint8_t codebook, int val) |
||||
{ |
||||
unsigned int rice_order, exp_order, switch_bits, switch_val; |
||||
int exponent; |
||||
|
||||
/* number of prefix bits to switch between Rice and expGolomb */ |
||||
switch_bits = (codebook & 3) + 1; |
||||
rice_order = codebook >> 5; /* rice code order */ |
||||
exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
||||
|
||||
switch_val = switch_bits << rice_order; |
||||
|
||||
if (val >= switch_val) { |
||||
val -= switch_val - (1 << exp_order); |
||||
exponent = av_log2(val); |
||||
|
||||
return exponent * 2 - exp_order + switch_bits + 1; |
||||
} else { |
||||
return (val >> rice_order) + rice_order + 1; |
||||
} |
||||
} |
||||
|
||||
static int estimate_dcs(int *error, DCTELEM *blocks, int blocks_per_slice, |
||||
int scale) |
||||
{ |
||||
int i; |
||||
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; |
||||
int bits; |
||||
|
||||
prev_dc = (blocks[0] - 0x4000) / scale; |
||||
bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc)); |
||||
codebook = 3; |
||||
blocks += 64; |
||||
*error += FFABS(blocks[0] - 0x4000) % scale; |
||||
|
||||
for (i = 1; i < blocks_per_slice; i++, blocks += 64) { |
||||
dc = (blocks[0] - 0x4000) / scale; |
||||
*error += FFABS(blocks[0] - 0x4000) % scale; |
||||
delta = dc - prev_dc; |
||||
new_sign = GET_SIGN(delta); |
||||
delta = (delta ^ sign) - sign; |
||||
code = MAKE_CODE(delta); |
||||
bits += estimate_vlc(ff_prores_dc_codebook[codebook], code); |
||||
codebook = (code + (code & 1)) >> 1; |
||||
codebook = FFMIN(codebook, 3); |
||||
sign = new_sign; |
||||
prev_dc = dc; |
||||
} |
||||
|
||||
return bits; |
||||
} |
||||
|
||||
static int estimate_acs(int *error, DCTELEM *blocks, int blocks_per_slice, |
||||
int plane_size_factor, |
||||
const uint8_t *scan, const int16_t *qmat) |
||||
{ |
||||
int idx, i; |
||||
int run, level, run_cb, lev_cb; |
||||
int max_coeffs, abs_level; |
||||
int bits = 0; |
||||
|
||||
max_coeffs = blocks_per_slice << 6; |
||||
run_cb = ff_prores_run_to_cb_index[4]; |
||||
lev_cb = ff_prores_lev_to_cb_index[2]; |
||||
run = 0; |
||||
|
||||
for (i = 1; i < 64; i++) { |
||||
for (idx = scan[i]; idx < max_coeffs; idx += 64) { |
||||
level = blocks[idx] / qmat[scan[i]]; |
||||
*error += FFABS(blocks[idx]) % qmat[scan[i]]; |
||||
if (level) { |
||||
abs_level = FFABS(level); |
||||
bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run); |
||||
bits += estimate_vlc(ff_prores_ac_codebook[lev_cb], |
||||
abs_level - 1) + 1; |
||||
|
||||
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
||||
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; |
||||
run = 0; |
||||
} else { |
||||
run++; |
||||
} |
||||
} |
||||
} |
||||
|
||||
return bits; |
||||
} |
||||
|
||||
static int estimate_slice_plane(ProresContext *ctx, int *error, int plane, |
||||
const uint16_t *src, int linesize, |
||||
int mbs_per_slice, |
||||
int blocks_per_mb, int plane_size_factor, |
||||
const int16_t *qmat) |
||||
{ |
||||
int blocks_per_slice; |
||||
int bits; |
||||
|
||||
blocks_per_slice = mbs_per_slice * blocks_per_mb; |
||||
|
||||
bits = estimate_dcs(error, ctx->blocks[plane], blocks_per_slice, qmat[0]); |
||||
bits += estimate_acs(error, ctx->blocks[plane], blocks_per_slice, |
||||
plane_size_factor, ctx->scantable.permutated, qmat); |
||||
|
||||
return FFALIGN(bits, 8); |
||||
} |
||||
|
||||
static int find_slice_quant(AVCodecContext *avctx, const AVFrame *pic, |
||||
int trellis_node, int x, int y, int mbs_per_slice) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
int i, q, pq, xp, yp; |
||||
const uint16_t *src; |
||||
int slice_width_factor = av_log2(mbs_per_slice); |
||||
int num_cblocks[MAX_PLANES], pwidth; |
||||
int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES]; |
||||
const int min_quant = ctx->profile_info->min_quant; |
||||
const int max_quant = ctx->profile_info->max_quant; |
||||
int error, bits, bits_limit; |
||||
int mbs, prev, cur, new_score; |
||||
int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH]; |
||||
|
||||
mbs = x + mbs_per_slice; |
||||
|
||||
for (i = 0; i < ctx->num_planes; i++) { |
||||
is_chroma[i] = (i == 1 || i == 2); |
||||
plane_factor[i] = slice_width_factor + 2; |
||||
if (is_chroma[i]) |
||||
plane_factor[i] += ctx->chroma_factor - 3; |
||||
if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) { |
||||
xp = x << 4; |
||||
yp = y << 4; |
||||
num_cblocks[i] = 4; |
||||
pwidth = avctx->width; |
||||
} else { |
||||
xp = x << 3; |
||||
yp = y << 4; |
||||
num_cblocks[i] = 2; |
||||
pwidth = avctx->width >> 1; |
||||
} |
||||
src = (const uint16_t*)(pic->data[i] + yp * pic->linesize[i]) + xp; |
||||
|
||||
get_slice_data(ctx, src, pic->linesize[i], xp, yp, |
||||
pwidth, avctx->height, ctx->blocks[i], |
||||
mbs_per_slice, num_cblocks[i]); |
||||
} |
||||
|
||||
for (q = min_quant; q <= max_quant; q++) { |
||||
ctx->nodes[trellis_node + q].prev_node = -1; |
||||
ctx->nodes[trellis_node + q].quant = q; |
||||
} |
||||
|
||||
// todo: maybe perform coarser quantising to fit into frame size when needed
|
||||
for (q = min_quant; q <= max_quant; q++) { |
||||
bits = 0; |
||||
error = 0; |
||||
for (i = 0; i < ctx->num_planes; i++) { |
||||
bits += estimate_slice_plane(ctx, &error, i, |
||||
src, pic->linesize[i], |
||||
mbs_per_slice, |
||||
num_cblocks[i], plane_factor[i], |
||||
ctx->quants[q]); |
||||
} |
||||
if (bits > 65000 * 8) { |
||||
error = SCORE_LIMIT; |
||||
break; |
||||
} |
||||
slice_bits[q] = bits; |
||||
slice_score[q] = error; |
||||
} |
||||
|
||||
bits_limit = mbs * ctx->bits_per_mb; |
||||
for (pq = min_quant; pq <= max_quant; pq++) { |
||||
prev = trellis_node - TRELLIS_WIDTH + pq; |
||||
|
||||
for (q = min_quant; q <= max_quant; q++) { |
||||
cur = trellis_node + q; |
||||
|
||||
bits = ctx->nodes[prev].bits + slice_bits[q]; |
||||
error = slice_score[q]; |
||||
if (bits > bits_limit) |
||||
error = SCORE_LIMIT; |
||||
|
||||
if (ctx->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT) |
||||
new_score = ctx->nodes[prev].score + error; |
||||
else |
||||
new_score = SCORE_LIMIT; |
||||
if (ctx->nodes[cur].prev_node == -1 || |
||||
ctx->nodes[cur].score >= new_score) { |
||||
|
||||
ctx->nodes[cur].bits = bits; |
||||
ctx->nodes[cur].score = new_score; |
||||
ctx->nodes[cur].prev_node = prev; |
||||
} |
||||
} |
||||
} |
||||
|
||||
error = ctx->nodes[trellis_node + min_quant].score; |
||||
pq = trellis_node + min_quant; |
||||
for (q = min_quant + 1; q <= max_quant; q++) { |
||||
if (ctx->nodes[trellis_node + q].score <= error) { |
||||
error = ctx->nodes[trellis_node + q].score; |
||||
pq = trellis_node + q; |
||||
} |
||||
} |
||||
|
||||
return pq; |
||||
} |
||||
|
||||
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
||||
const AVFrame *pic, int *got_packet) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp; |
||||
uint8_t *picture_size_pos; |
||||
PutBitContext pb; |
||||
int x, y, i, mb, q = 0; |
||||
int sizes[4] = { 0 }; |
||||
int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1); |
||||
int frame_size, picture_size, slice_size; |
||||
int mbs_per_slice = ctx->mbs_per_slice; |
||||
int pkt_size, ret; |
||||
|
||||
*avctx->coded_frame = *pic; |
||||
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; |
||||
avctx->coded_frame->key_frame = 1; |
||||
|
||||
pkt_size = ctx->mb_width * ctx->mb_height * 64 * 3 * 12 |
||||
+ ctx->num_slices * 2 + 200 + FF_MIN_BUFFER_SIZE; |
||||
|
||||
if ((ret = ff_alloc_packet(pkt, pkt_size)) < 0) { |
||||
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); |
||||
return ret; |
||||
} |
||||
|
||||
orig_buf = pkt->data; |
||||
|
||||
// frame atom
|
||||
orig_buf += 4; // frame size
|
||||
bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID
|
||||
buf = orig_buf; |
||||
|
||||
// frame header
|
||||
tmp = buf; |
||||
buf += 2; // frame header size will be stored here
|
||||
bytestream_put_be16 (&buf, 0); // version 1
|
||||
bytestream_put_buffer(&buf, "Lavc", 4); // creator
|
||||
bytestream_put_be16 (&buf, avctx->width); |
||||
bytestream_put_be16 (&buf, avctx->height); |
||||
bytestream_put_byte (&buf, ctx->chroma_factor << 6); // frame flags
|
||||
bytestream_put_byte (&buf, 0); // reserved
|
||||
bytestream_put_byte (&buf, 0); // primaries
|
||||
bytestream_put_byte (&buf, 0); // transfer function
|
||||
bytestream_put_byte (&buf, 6); // colour matrix - ITU-R BT.601-4
|
||||
bytestream_put_byte (&buf, 0x40); // source format and alpha information
|
||||
bytestream_put_byte (&buf, 0); // reserved
|
||||
bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present
|
||||
// luma quantisation matrix
|
||||
for (i = 0; i < 64; i++) |
||||
bytestream_put_byte(&buf, ctx->profile_info->quant[i]); |
||||
// chroma quantisation matrix
|
||||
for (i = 0; i < 64; i++) |
||||
bytestream_put_byte(&buf, ctx->profile_info->quant[i]); |
||||
bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size
|
||||
|
||||
// picture header
|
||||
picture_size_pos = buf + 1; |
||||
bytestream_put_byte (&buf, 0x40); // picture header size (in bits)
|
||||
buf += 4; // picture data size will be stored here
|
||||
bytestream_put_be16 (&buf, ctx->num_slices); // total number of slices
|
||||
bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs
|
||||
|
||||
// seek table - will be filled during slice encoding
|
||||
slice_sizes = buf; |
||||
buf += ctx->num_slices * 2; |
||||
|
||||
// slices
|
||||
for (y = 0; y < ctx->mb_height; y++) { |
||||
mbs_per_slice = ctx->mbs_per_slice; |
||||
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { |
||||
while (ctx->mb_width - x < mbs_per_slice) |
||||
mbs_per_slice >>= 1; |
||||
q = find_slice_quant(avctx, pic, (mb + 1) * TRELLIS_WIDTH, x, y, |
||||
mbs_per_slice); |
||||
} |
||||
|
||||
for (x = ctx->slices_width - 1; x >= 0; x--) { |
||||
ctx->slice_q[x] = ctx->nodes[q].quant; |
||||
q = ctx->nodes[q].prev_node; |
||||
} |
||||
|
||||
mbs_per_slice = ctx->mbs_per_slice; |
||||
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { |
||||
q = ctx->slice_q[mb]; |
||||
|
||||
while (ctx->mb_width - x < mbs_per_slice) |
||||
mbs_per_slice >>= 1; |
||||
|
||||
bytestream_put_byte(&buf, slice_hdr_size << 3); |
||||
slice_hdr = buf; |
||||
buf += slice_hdr_size - 1; |
||||
init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)) * 8); |
||||
encode_slice(avctx, pic, &pb, sizes, x, y, q, mbs_per_slice); |
||||
|
||||
bytestream_put_byte(&slice_hdr, q); |
||||
slice_size = slice_hdr_size + sizes[ctx->num_planes - 1]; |
||||
for (i = 0; i < ctx->num_planes - 1; i++) { |
||||
bytestream_put_be16(&slice_hdr, sizes[i]); |
||||
slice_size += sizes[i]; |
||||
} |
||||
bytestream_put_be16(&slice_sizes, slice_size); |
||||
buf += slice_size - slice_hdr_size; |
||||
} |
||||
} |
||||
|
||||
orig_buf -= 8; |
||||
frame_size = buf - orig_buf; |
||||
picture_size = buf - picture_size_pos - 6; |
||||
bytestream_put_be32(&orig_buf, frame_size); |
||||
bytestream_put_be32(&picture_size_pos, picture_size); |
||||
|
||||
pkt->size = frame_size; |
||||
pkt->flags |= AV_PKT_FLAG_KEY; |
||||
*got_packet = 1; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static av_cold int encode_close(AVCodecContext *avctx) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
|
||||
if (avctx->coded_frame->data[0]) |
||||
avctx->release_buffer(avctx, avctx->coded_frame); |
||||
|
||||
av_freep(&avctx->coded_frame); |
||||
|
||||
av_freep(&ctx->nodes); |
||||
av_freep(&ctx->slice_q); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static av_cold int encode_init(AVCodecContext *avctx) |
||||
{ |
||||
ProresContext *ctx = avctx->priv_data; |
||||
int mps; |
||||
int i, j; |
||||
int min_quant, max_quant; |
||||
|
||||
avctx->bits_per_raw_sample = 10; |
||||
avctx->coded_frame = avcodec_alloc_frame(); |
||||
if (!avctx->coded_frame) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
ff_proresdsp_init(&ctx->dsp); |
||||
ff_init_scantable(ctx->dsp.dct_permutation, &ctx->scantable, |
||||
ff_prores_progressive_scan); |
||||
|
||||
mps = ctx->mbs_per_slice; |
||||
if (mps & (mps - 1)) { |
||||
av_log(avctx, AV_LOG_ERROR, |
||||
"there should be an integer power of two MBs per slice\n"); |
||||
return AVERROR(EINVAL); |
||||
} |
||||
|
||||
ctx->chroma_factor = avctx->pix_fmt == PIX_FMT_YUV422P10 |
||||
? CFACTOR_Y422 |
||||
: CFACTOR_Y444; |
||||
ctx->profile_info = prores_profile_info + ctx->profile; |
||||
ctx->num_planes = 3; |
||||
|
||||
ctx->mb_width = FFALIGN(avctx->width, 16) >> 4; |
||||
ctx->mb_height = FFALIGN(avctx->height, 16) >> 4; |
||||
ctx->slices_width = ctx->mb_width / mps; |
||||
ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps); |
||||
ctx->num_slices = ctx->mb_height * ctx->slices_width; |
||||
|
||||
for (i = 0; i < NUM_MB_LIMITS - 1; i++) |
||||
if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height) |
||||
break; |
||||
ctx->bits_per_mb = ctx->profile_info->br_tab[i]; |
||||
|
||||
min_quant = ctx->profile_info->min_quant; |
||||
max_quant = ctx->profile_info->max_quant; |
||||
for (i = min_quant; i <= max_quant; i++) { |
||||
for (j = 0; j < 64; j++) |
||||
ctx->quants[i][j] = ctx->profile_info->quant[j] * i; |
||||
} |
||||
|
||||
avctx->codec_tag = ctx->profile_info->tag; |
||||
|
||||
av_log(avctx, AV_LOG_DEBUG, "profile %d, %d slices, %d bits per MB\n", |
||||
ctx->profile, ctx->num_slices, ctx->bits_per_mb); |
||||
|
||||
ctx->nodes = av_malloc((ctx->slices_width + 1) * TRELLIS_WIDTH |
||||
* sizeof(*ctx->nodes)); |
||||
if (!ctx->nodes) { |
||||
encode_close(avctx); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
for (i = min_quant; i <= max_quant; i++) { |
||||
ctx->nodes[i].prev_node = -1; |
||||
ctx->nodes[i].bits = 0; |
||||
ctx->nodes[i].score = 0; |
||||
} |
||||
|
||||
ctx->slice_q = av_malloc(ctx->slices_width * sizeof(*ctx->slice_q)); |
||||
if (!ctx->slice_q) { |
||||
encode_close(avctx); |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
#define OFFSET(x) offsetof(ProresContext, x) |
||||
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
||||
|
||||
static const AVOption options[] = { |
||||
{ "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice), |
||||
AV_OPT_TYPE_INT, { 8 }, 1, MAX_MBS_PER_SLICE, VE }, |
||||
{ "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT, |
||||
{ PRORES_PROFILE_STANDARD }, |
||||
PRORES_PROFILE_PROXY, PRORES_PROFILE_HQ, VE, "profile" }, |
||||
{ "proxy", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_PROXY }, |
||||
0, 0, VE, "profile" }, |
||||
{ "lt", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_LT }, |
||||
0, 0, VE, "profile" }, |
||||
{ "standard", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_STANDARD }, |
||||
0, 0, VE, "profile" }, |
||||
{ "hq", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_HQ }, |
||||
0, 0, VE, "profile" }, |
||||
{ NULL } |
||||
}; |
||||
|
||||
static const AVClass proresenc_class = { |
||||
.class_name = "ProRes encoder", |
||||
.item_name = av_default_item_name, |
||||
.option = options, |
||||
.version = LIBAVUTIL_VERSION_INT, |
||||
}; |
||||
|
||||
AVCodec ff_prores_encoder = { |
||||
.name = "prores", |
||||
.type = AVMEDIA_TYPE_VIDEO, |
||||
.id = CODEC_ID_PRORES, |
||||
.priv_data_size = sizeof(ProresContext), |
||||
.init = encode_init, |
||||
.close = encode_close, |
||||
.encode2 = encode_frame, |
||||
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), |
||||
.pix_fmts = (const enum PixelFormat[]) { |
||||
PIX_FMT_YUV422P10, PIX_FMT_YUV444P10, PIX_FMT_NONE |
||||
}, |
||||
.priv_class = &proresenc_class, |
||||
}; |
Loading…
Reference in new issue