diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c index 2e5aacdc2b..61e5628843 100644 --- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c +++ b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c @@ -187,12 +187,14 @@ static void * dnn_execute_layer_conv2d_thread(void *threadarg) int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const void *parameters, NativeContext *ctx) { +#if HAVE_PTHREAD_CANCEL int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count()) ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads); -#if HAVE_PTHREAD_CANCEL int thread_stride; -#endif ThreadParam **thread_param = av_malloc_array(thread_num, sizeof(*thread_param)); +#else + ThreadParam thread_param = { 0 }; +#endif ThreadCommonParam thread_common_param; const ConvolutionalParams *conv_params = parameters; int height = operands[input_operand_indexes[0]].dims[1]; @@ -244,15 +246,13 @@ int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_opera for (int i = 0; i < thread_num; i++){ av_freep(&thread_param[i]); } + av_freep(&thread_param); #else - thread_param[0] = av_malloc(sizeof(*thread_param[0])); - thread_param[0]->thread_common_param = &thread_common_param; - thread_param[0]->thread_start = pad_size; - thread_param[0]->thread_end = height - pad_size; - dnn_execute_layer_conv2d_thread((void *)thread_param[0]); - av_freep(&thread_param[0]); + thread_param.thread_common_param = &thread_common_param; + thread_param.thread_start = pad_size; + thread_param.thread_end = height - pad_size; + dnn_execute_layer_conv2d_thread(&thread_param); #endif - av_freep(&thread_param); return DNN_SUCCESS; }