mirror of https://github.com/FFmpeg/FFmpeg.git
parent
acdfc4bdfb
commit
11b11577fe
6 changed files with 672 additions and 1 deletions
@ -0,0 +1,605 @@ |
||||
/*
|
||||
* Copyright (c) 2021 Paul B Mahol |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
*/ |
||||
|
||||
#include <float.h> |
||||
#include <math.h> |
||||
|
||||
#include "libavutil/audio_fifo.h" |
||||
#include "libavutil/opt.h" |
||||
#include "libavutil/tx.h" |
||||
#include "audio.h" |
||||
#include "avfilter.h" |
||||
#include "filters.h" |
||||
#include "internal.h" |
||||
#include "window_func.h" |
||||
|
||||
typedef struct ChannelSpectralStats { |
||||
float mean; |
||||
float variance; |
||||
float centroid; |
||||
float spread; |
||||
float skewness; |
||||
float kurtosis; |
||||
float entropy; |
||||
float flatness; |
||||
float crest; |
||||
float flux; |
||||
float slope; |
||||
float decrease; |
||||
float rolloff; |
||||
} ChannelSpectralStats; |
||||
|
||||
typedef struct AudioSpectralStatsContext { |
||||
const AVClass *class; |
||||
int win_size; |
||||
int win_func; |
||||
float overlap; |
||||
int nb_channels; |
||||
int hop_size; |
||||
ChannelSpectralStats *stats; |
||||
AVAudioFifo *fifo; |
||||
float *window_func_lut; |
||||
int64_t pts; |
||||
int eof; |
||||
av_tx_fn tx_fn; |
||||
AVTXContext **fft; |
||||
AVComplexFloat **fft_in; |
||||
AVComplexFloat **fft_out; |
||||
float **prev_magnitude; |
||||
float **magnitude; |
||||
} AudioSpectralStatsContext; |
||||
|
||||
#define OFFSET(x) offsetof(AudioSpectralStatsContext, x) |
||||
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
||||
|
||||
static const AVOption aspectralstats_options[] = { |
||||
{ "win_size", "set the window size", OFFSET(win_size), AV_OPT_TYPE_INT, {.i64=2048}, 32, 65536, A }, |
||||
WIN_FUNC_OPTION("win_func", OFFSET(win_func), A, WFUNC_HANNING), |
||||
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0, 1, A }, |
||||
{ NULL } |
||||
}; |
||||
|
||||
AVFILTER_DEFINE_CLASS(aspectralstats); |
||||
|
||||
static int config_output(AVFilterLink *outlink) |
||||
{ |
||||
AudioSpectralStatsContext *s = outlink->src->priv; |
||||
float overlap, scale; |
||||
int ret; |
||||
|
||||
s->nb_channels = outlink->channels; |
||||
s->fifo = av_audio_fifo_alloc(outlink->format, s->nb_channels, s->win_size); |
||||
if (!s->fifo) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, |
||||
sizeof(*s->window_func_lut)); |
||||
if (!s->window_func_lut) |
||||
return AVERROR(ENOMEM); |
||||
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); |
||||
if (s->overlap == 1.f) |
||||
s->overlap = overlap; |
||||
|
||||
s->hop_size = s->win_size * (1.f - s->overlap); |
||||
if (s->hop_size <= 0) |
||||
return AVERROR(EINVAL); |
||||
|
||||
s->stats = av_calloc(s->nb_channels, sizeof(*s->stats)); |
||||
if (!s->stats) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->fft = av_calloc(s->nb_channels, sizeof(*s->fft)); |
||||
if (!s->fft) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->magnitude = av_calloc(s->nb_channels, sizeof(*s->magnitude)); |
||||
if (!s->magnitude) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->prev_magnitude = av_calloc(s->nb_channels, sizeof(*s->prev_magnitude)); |
||||
if (!s->prev_magnitude) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->fft_in = av_calloc(s->nb_channels, sizeof(*s->fft_in)); |
||||
if (!s->fft_in) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->fft_out = av_calloc(s->nb_channels, sizeof(*s->fft_out)); |
||||
if (!s->fft_out) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
for (int ch = 0; ch < s->nb_channels; ch++) { |
||||
ret = av_tx_init(&s->fft[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->win_size, &scale, 0); |
||||
if (ret < 0) |
||||
return ret; |
||||
|
||||
s->fft_in[ch] = av_calloc(s->win_size, sizeof(**s->fft_in)); |
||||
if (!s->fft_in[ch]) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->fft_out[ch] = av_calloc(s->win_size, sizeof(**s->fft_out)); |
||||
if (!s->fft_out[ch]) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->magnitude[ch] = av_calloc(s->win_size, sizeof(**s->magnitude)); |
||||
if (!s->magnitude[ch]) |
||||
return AVERROR(ENOMEM); |
||||
|
||||
s->prev_magnitude[ch] = av_calloc(s->win_size, sizeof(**s->prev_magnitude)); |
||||
if (!s->prev_magnitude[ch]) |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static void set_meta(AVDictionary **metadata, int chan, const char *key, |
||||
const char *fmt, float val) |
||||
{ |
||||
uint8_t value[128]; |
||||
uint8_t key2[128]; |
||||
|
||||
snprintf(value, sizeof(value), fmt, val); |
||||
if (chan) |
||||
snprintf(key2, sizeof(key2), "lavfi.aspectralstats.%d.%s", chan, key); |
||||
else |
||||
snprintf(key2, sizeof(key2), "lavfi.aspectralstats.%s", key); |
||||
av_dict_set(metadata, key2, value, 0); |
||||
} |
||||
|
||||
static void set_metadata(AudioSpectralStatsContext *s, AVDictionary **metadata) |
||||
{ |
||||
for (int ch = 0; ch < s->nb_channels; ch++) { |
||||
ChannelSpectralStats *stats = &s->stats[ch]; |
||||
|
||||
set_meta(metadata, ch + 1, "mean", "%g", stats->mean); |
||||
set_meta(metadata, ch + 1, "variance", "%g", stats->variance); |
||||
set_meta(metadata, ch + 1, "centroid", "%g", stats->centroid); |
||||
set_meta(metadata, ch + 1, "spread", "%g", stats->spread); |
||||
set_meta(metadata, ch + 1, "skewness", "%g", stats->skewness); |
||||
set_meta(metadata, ch + 1, "kurtosis", "%g", stats->kurtosis); |
||||
set_meta(metadata, ch + 1, "entropy", "%g", stats->entropy); |
||||
set_meta(metadata, ch + 1, "flatness", "%g", stats->flatness); |
||||
set_meta(metadata, ch + 1, "crest", "%g", stats->crest); |
||||
set_meta(metadata, ch + 1, "flux", "%g", stats->flux); |
||||
set_meta(metadata, ch + 1, "slope", "%g", stats->slope); |
||||
set_meta(metadata, ch + 1, "decrease", "%g", stats->decrease); |
||||
set_meta(metadata, ch + 1, "rolloff", "%g", stats->rolloff); |
||||
} |
||||
} |
||||
|
||||
static float spectral_mean(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
float sum = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) |
||||
sum += spectral[n]; |
||||
|
||||
return sum / size; |
||||
} |
||||
|
||||
static float sqrf(float a) |
||||
{ |
||||
return a * a; |
||||
} |
||||
|
||||
static float spectral_variance(const float *const spectral, int size, int max_freq, float mean) |
||||
{ |
||||
float sum = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) |
||||
sum += sqrf(spectral[n] - mean); |
||||
|
||||
return sum / size; |
||||
} |
||||
|
||||
static float spectral_centroid(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
const float scale = max_freq / (float)size; |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
num += spectral[n] * n * scale; |
||||
den += spectral[n]; |
||||
} |
||||
|
||||
if (den <= FLT_EPSILON) |
||||
return 1.f; |
||||
return num / den; |
||||
} |
||||
|
||||
static float spectral_spread(const float *const spectral, int size, int max_freq, float centroid) |
||||
{ |
||||
const float scale = max_freq / (float)size; |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
num += spectral[n] * sqrf(n * scale - centroid); |
||||
den += spectral[n]; |
||||
} |
||||
|
||||
if (den <= FLT_EPSILON) |
||||
return 1.f; |
||||
return sqrtf(num / den); |
||||
} |
||||
|
||||
static float cbrf(float a) |
||||
{ |
||||
return a * a * a; |
||||
} |
||||
|
||||
static float spectral_skewness(const float *const spectral, int size, int max_freq, float centroid, float spread) |
||||
{ |
||||
const float scale = max_freq / (float)size; |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
num += spectral[n] * cbrf(n * scale - centroid); |
||||
den += spectral[n]; |
||||
} |
||||
|
||||
den *= cbrf(spread); |
||||
if (den <= FLT_EPSILON) |
||||
return 1.f; |
||||
return num / den; |
||||
} |
||||
|
||||
static float spectral_kurtosis(const float *const spectral, int size, int max_freq, float centroid, float spread) |
||||
{ |
||||
const float scale = max_freq / (float)size; |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
num += spectral[n] * sqrf(sqrf(n * scale - centroid)); |
||||
den += spectral[n]; |
||||
} |
||||
|
||||
den *= sqrf(sqrf(spread)); |
||||
if (den <= FLT_EPSILON) |
||||
return 1.f; |
||||
return num / den; |
||||
} |
||||
|
||||
static float spectral_entropy(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
num += spectral[n] * logf(spectral[n] + FLT_EPSILON); |
||||
} |
||||
|
||||
den = logf(size); |
||||
if (den <= FLT_EPSILON) |
||||
return 1.f; |
||||
return -num / den; |
||||
} |
||||
|
||||
static float spectral_flatness(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
float v = FLT_EPSILON + spectral[n]; |
||||
num += logf(v); |
||||
den += v; |
||||
} |
||||
|
||||
num /= size; |
||||
den /= size; |
||||
num = expf(num); |
||||
if (den <= FLT_EPSILON) |
||||
return 0.f; |
||||
return num / den; |
||||
} |
||||
|
||||
static float spectral_crest(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
float max = 0.f, mean = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
max = fmaxf(max, spectral[n]); |
||||
mean += spectral[n]; |
||||
} |
||||
|
||||
mean /= size; |
||||
if (mean <= FLT_EPSILON) |
||||
return 0.f; |
||||
return max / mean; |
||||
} |
||||
|
||||
static float spectral_flux(const float *const spectral, const float *const prev_spectral, |
||||
int size, int max_freq) |
||||
{ |
||||
float sum = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) |
||||
sum += sqrf(spectral[n] - prev_spectral[n]); |
||||
|
||||
return sqrtf(sum); |
||||
} |
||||
|
||||
static float spectral_slope(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
const float mean_freq = size * 0.5f; |
||||
float mean_spectral = 0.f, num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) |
||||
mean_spectral += spectral[n]; |
||||
mean_spectral /= size; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
num += ((n - mean_freq) / mean_freq) * (spectral[n] - mean_spectral); |
||||
den += sqrf((n - mean_freq) / mean_freq); |
||||
} |
||||
|
||||
if (fabsf(den) <= FLT_EPSILON) |
||||
return 0.f; |
||||
return num / den; |
||||
} |
||||
|
||||
static float spectral_decrease(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
float num = 0.f, den = 0.f; |
||||
|
||||
for (int n = 1; n < size; n++) { |
||||
num += (spectral[n] - spectral[0]) / n; |
||||
den += spectral[n]; |
||||
} |
||||
|
||||
if (den <= FLT_EPSILON) |
||||
return 0.f; |
||||
return num / den; |
||||
} |
||||
|
||||
static float spectral_rolloff(const float *const spectral, int size, int max_freq) |
||||
{ |
||||
const float scale = max_freq / (float)size; |
||||
float norm = 0.f, sum = 0.f; |
||||
int idx = 0.f; |
||||
|
||||
for (int n = 0; n < size; n++) |
||||
norm += spectral[n]; |
||||
norm *= 0.85f; |
||||
|
||||
for (int n = 0; n < size; n++) { |
||||
sum += spectral[n]; |
||||
if (sum >= norm) { |
||||
idx = n; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
return idx * scale; |
||||
} |
||||
|
||||
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
||||
{ |
||||
AudioSpectralStatsContext *s = ctx->priv; |
||||
AVFrame *in = arg; |
||||
const int channels = s->nb_channels; |
||||
const int samples = in->nb_samples; |
||||
const int start = (channels * jobnr) / nb_jobs; |
||||
const int end = (channels * (jobnr+1)) / nb_jobs; |
||||
|
||||
for (int ch = start; ch < end; ch++) { |
||||
const float *const src = (const float *const)in->extended_data[ch]; |
||||
ChannelSpectralStats *stats = &s->stats[ch]; |
||||
AVComplexFloat *fft_out = s->fft_out[ch]; |
||||
AVComplexFloat *fft_in = s->fft_in[ch]; |
||||
float *magnitude = s->magnitude[ch]; |
||||
float *prev_magnitude = s->prev_magnitude[ch]; |
||||
const float scale = 1.f / s->win_size; |
||||
|
||||
for (int n = 0; n < samples; n++) { |
||||
fft_in[n].re = src[n] * s->window_func_lut[n]; |
||||
fft_in[n].im = 0; |
||||
} |
||||
|
||||
for (int n = in->nb_samples; n < s->win_size; n++) { |
||||
fft_in[n].re = 0; |
||||
fft_in[n].im = 0; |
||||
} |
||||
|
||||
s->tx_fn(s->fft[ch], fft_out, fft_in, sizeof(float)); |
||||
|
||||
for (int n = 0; n < s->win_size / 2; n++) { |
||||
fft_out[n].re *= scale; |
||||
fft_out[n].im *= scale; |
||||
} |
||||
|
||||
for (int n = 0; n < s->win_size / 2; n++) |
||||
magnitude[n] = hypotf(fft_out[n].re, fft_out[n].im); |
||||
|
||||
stats->mean = spectral_mean(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->variance = spectral_variance(magnitude, s->win_size / 2, in->sample_rate / 2, stats->mean); |
||||
stats->centroid = spectral_centroid(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->spread = spectral_spread(magnitude, s->win_size / 2, in->sample_rate / 2, stats->centroid); |
||||
stats->skewness = spectral_skewness(magnitude, s->win_size / 2, in->sample_rate / 2, stats->centroid, stats->spread); |
||||
stats->kurtosis = spectral_kurtosis(magnitude, s->win_size / 2, in->sample_rate / 2, stats->centroid, stats->spread); |
||||
stats->entropy = spectral_entropy(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->flatness = spectral_flatness(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->crest = spectral_crest(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->flux = spectral_flux(magnitude, prev_magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->slope = spectral_slope(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->decrease = spectral_decrease(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
stats->rolloff = spectral_rolloff(magnitude, s->win_size / 2, in->sample_rate / 2); |
||||
|
||||
memcpy(prev_magnitude, magnitude, s->win_size * sizeof(float)); |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static int filter_frame(AVFilterLink *inlink) |
||||
{ |
||||
AVFilterContext *ctx = inlink->dst; |
||||
AVFilterLink *outlink = ctx->outputs[0]; |
||||
AudioSpectralStatsContext *s = ctx->priv; |
||||
AVDictionary **metadata; |
||||
AVFrame *out, *in = NULL; |
||||
int ret = 0; |
||||
|
||||
out = ff_get_audio_buffer(outlink, s->hop_size); |
||||
if (!out) { |
||||
ret = AVERROR(ENOMEM); |
||||
goto fail; |
||||
} |
||||
|
||||
if (!in) { |
||||
in = ff_get_audio_buffer(outlink, s->win_size); |
||||
if (!in) |
||||
return AVERROR(ENOMEM); |
||||
} |
||||
|
||||
ret = av_audio_fifo_peek(s->fifo, (void **)in->extended_data, s->win_size); |
||||
if (ret < 0) |
||||
goto fail; |
||||
|
||||
metadata = &out->metadata; |
||||
ff_filter_execute(ctx, filter_channel, in, NULL, |
||||
FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx))); |
||||
|
||||
set_metadata(s, metadata); |
||||
|
||||
out->pts = s->pts; |
||||
s->pts += av_rescale_q(s->hop_size, (AVRational){1, outlink->sample_rate}, outlink->time_base); |
||||
|
||||
av_audio_fifo_read(s->fifo, (void **)out->extended_data, s->hop_size); |
||||
|
||||
av_frame_free(&in); |
||||
return ff_filter_frame(outlink, out); |
||||
fail: |
||||
av_frame_free(&in); |
||||
return ret < 0 ? ret : 0; |
||||
} |
||||
|
||||
static int activate(AVFilterContext *ctx) |
||||
{ |
||||
AVFilterLink *inlink = ctx->inputs[0]; |
||||
AVFilterLink *outlink = ctx->outputs[0]; |
||||
AudioSpectralStatsContext *s = ctx->priv; |
||||
AVFrame *in = NULL; |
||||
int ret = 0, status; |
||||
int64_t pts; |
||||
|
||||
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); |
||||
|
||||
if (!s->eof && av_audio_fifo_size(s->fifo) < s->win_size) { |
||||
ret = ff_inlink_consume_frame(inlink, &in); |
||||
if (ret < 0) |
||||
return ret; |
||||
|
||||
if (ret > 0) { |
||||
ret = av_audio_fifo_write(s->fifo, (void **)in->extended_data, |
||||
in->nb_samples); |
||||
if (ret >= 0 && s->pts == AV_NOPTS_VALUE) |
||||
s->pts = in->pts; |
||||
|
||||
av_frame_free(&in); |
||||
if (ret < 0) |
||||
return ret; |
||||
} |
||||
} |
||||
|
||||
if ((av_audio_fifo_size(s->fifo) >= s->win_size) || |
||||
(av_audio_fifo_size(s->fifo) > 0 && s->eof)) { |
||||
ret = filter_frame(inlink); |
||||
if (av_audio_fifo_size(s->fifo) >= s->win_size) |
||||
ff_filter_set_ready(ctx, 100); |
||||
return ret; |
||||
} |
||||
|
||||
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) { |
||||
if (status == AVERROR_EOF) { |
||||
s->eof = 1; |
||||
if (av_audio_fifo_size(s->fifo) >= 0) { |
||||
ff_filter_set_ready(ctx, 100); |
||||
return 0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (s->eof && av_audio_fifo_size(s->fifo) <= 0) { |
||||
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts); |
||||
return 0; |
||||
} |
||||
|
||||
if (!s->eof) |
||||
FF_FILTER_FORWARD_WANTED(outlink, inlink); |
||||
|
||||
return FFERROR_NOT_READY; |
||||
} |
||||
|
||||
static av_cold void uninit(AVFilterContext *ctx) |
||||
{ |
||||
AudioSpectralStatsContext *s = ctx->priv; |
||||
|
||||
for (int ch = 0; ch < s->nb_channels; ch++) { |
||||
if (s->fft) |
||||
av_tx_uninit(&s->fft[ch]); |
||||
if (s->fft_in) |
||||
av_freep(&s->fft_in[ch]); |
||||
if (s->fft_out) |
||||
av_freep(&s->fft_out[ch]); |
||||
if (s->magnitude) |
||||
av_freep(&s->magnitude[ch]); |
||||
if (s->prev_magnitude) |
||||
av_freep(&s->prev_magnitude[ch]); |
||||
} |
||||
|
||||
av_freep(&s->fft); |
||||
av_freep(&s->magnitude); |
||||
av_freep(&s->prev_magnitude); |
||||
av_freep(&s->fft_in); |
||||
av_freep(&s->fft_out); |
||||
av_freep(&s->stats); |
||||
|
||||
av_freep(&s->window_func_lut); |
||||
av_audio_fifo_free(s->fifo); |
||||
s->fifo = NULL; |
||||
} |
||||
|
||||
static const AVFilterPad aspectralstats_inputs[] = { |
||||
{ |
||||
.name = "default", |
||||
.type = AVMEDIA_TYPE_AUDIO, |
||||
}, |
||||
}; |
||||
|
||||
static const AVFilterPad aspectralstats_outputs[] = { |
||||
{ |
||||
.name = "default", |
||||
.type = AVMEDIA_TYPE_AUDIO, |
||||
.config_props = config_output, |
||||
}, |
||||
}; |
||||
|
||||
const AVFilter ff_af_aspectralstats = { |
||||
.name = "aspectralstats", |
||||
.description = NULL_IF_CONFIG_SMALL("Show frequency domain statistics about audio frames."), |
||||
.priv_size = sizeof(AudioSpectralStatsContext), |
||||
.priv_class = &aspectralstats_class, |
||||
.uninit = uninit, |
||||
.activate = activate, |
||||
FILTER_INPUTS(aspectralstats_inputs), |
||||
FILTER_OUTPUTS(aspectralstats_outputs), |
||||
FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP), |
||||
.flags = AVFILTER_FLAG_SLICE_THREADS, |
||||
}; |
Loading…
Reference in new issue