Also contains the following changes to the library: - add ff_ prefix to functions - remove cplusplus defines. - add FF_ prefix to contants and some structs - remove true peak calculation feature, since it uses its own resampler, and af_loudnorm does not need it. - remove version info and some fprintf(stderr) functions - convert to use av_malloc - always use histogram mode for LRA calculation, otherwise LRA data is slowly consuming memory making af_loudnorm unfit for 24/7 operation. It also uses a BSD style linked list implementation which is probably not available on all platforms. So let's just remove the classic mode which not uses histogram. - add ff_thread_once for calculating static histogram tables - convert some functions to void which cannot fail - remove intrinsics and some unused headers - add support for planar audio - remove channel / sample rate changer function, in ffmpeg usually we simply alloc a new context - convert some static variables to defines - declare static histogram variables as aligned - convert some initalizations to mallocz - add window size parameter to init function and remove window size setter function - convert return codes to AVERROR - fix indentation Signed-off-by: Marton Balint <cus@passwd.hu>pull/240/head
parent
7b8445f03d
commit
005d058f42
8 changed files with 1113 additions and 40 deletions
@ -0,0 +1,784 @@ |
||||
/*
|
||||
* Copyright (c) 2011 Jan Kokemüller |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
* |
||||
* This file is based on libebur128 which is available at |
||||
* https://github.com/jiixyj/libebur128/
|
||||
* |
||||
* Libebur128 has the following copyright: |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||
* of this software and associated documentation files (the "Software"), to deal |
||||
* in the Software without restriction, including without limitation the rights |
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||
* copies of the Software, and to permit persons to whom the Software is |
||||
* furnished to do so, subject to the following conditions: |
||||
* |
||||
* The above copyright notice and this permission notice shall be included in |
||||
* all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||
* THE SOFTWARE. |
||||
*/ |
||||
|
||||
#include "ebur128.h" |
||||
|
||||
#include <float.h> |
||||
#include <limits.h> |
||||
#include <math.h> /* You may have to define _USE_MATH_DEFINES if you use MSVC */ |
||||
|
||||
#include "libavutil/common.h" |
||||
#include "libavutil/mem.h" |
||||
#include "libavutil/thread.h" |
||||
|
||||
#define CHECK_ERROR(condition, errorcode, goto_point) \ |
||||
if ((condition)) { \
|
||||
errcode = (errorcode); \
|
||||
goto goto_point; \
|
||||
} |
||||
|
||||
#define ALMOST_ZERO 0.000001 |
||||
|
||||
#define RELATIVE_GATE (-10.0) |
||||
#define RELATIVE_GATE_FACTOR pow(10.0, RELATIVE_GATE / 10.0) |
||||
#define MINUS_20DB pow(10.0, -20.0 / 10.0) |
||||
|
||||
struct FFEBUR128StateInternal { |
||||
/** Filtered audio data (used as ring buffer). */ |
||||
double *audio_data; |
||||
/** Size of audio_data array. */ |
||||
size_t audio_data_frames; |
||||
/** Current index for audio_data. */ |
||||
size_t audio_data_index; |
||||
/** How many frames are needed for a gating block. Will correspond to 400ms
|
||||
* of audio at initialization, and 100ms after the first block (75% overlap |
||||
* as specified in the 2011 revision of BS1770). */ |
||||
unsigned long needed_frames; |
||||
/** The channel map. Has as many elements as there are channels. */ |
||||
int *channel_map; |
||||
/** How many samples fit in 100ms (rounded). */ |
||||
unsigned long samples_in_100ms; |
||||
/** BS.1770 filter coefficients (nominator). */ |
||||
double b[5]; |
||||
/** BS.1770 filter coefficients (denominator). */ |
||||
double a[5]; |
||||
/** BS.1770 filter state. */ |
||||
double v[5][5]; |
||||
/** Histograms, used to calculate LRA. */ |
||||
unsigned long *block_energy_histogram; |
||||
unsigned long *short_term_block_energy_histogram; |
||||
/** Keeps track of when a new short term block is needed. */ |
||||
size_t short_term_frame_counter; |
||||
/** Maximum sample peak, one per channel */ |
||||
double *sample_peak; |
||||
/** The maximum window duration in ms. */ |
||||
unsigned long window; |
||||
/** Data pointer array for interleaved data */ |
||||
void **data_ptrs; |
||||
}; |
||||
|
||||
static AVOnce histogram_init = AV_ONCE_INIT; |
||||
static DECLARE_ALIGNED(32, double, histogram_energies)[1000]; |
||||
static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001]; |
||||
|
||||
static void ebur128_init_filter(FFEBUR128State * st) |
||||
{ |
||||
int i, j; |
||||
|
||||
double f0 = 1681.974450955533; |
||||
double G = 3.999843853973347; |
||||
double Q = 0.7071752369554196; |
||||
|
||||
double K = tan(M_PI * f0 / (double) st->samplerate); |
||||
double Vh = pow(10.0, G / 20.0); |
||||
double Vb = pow(Vh, 0.4996667741545416); |
||||
|
||||
double pb[3] = { 0.0, 0.0, 0.0 }; |
||||
double pa[3] = { 1.0, 0.0, 0.0 }; |
||||
double rb[3] = { 1.0, -2.0, 1.0 }; |
||||
double ra[3] = { 1.0, 0.0, 0.0 }; |
||||
|
||||
double a0 = 1.0 + K / Q + K * K; |
||||
pb[0] = (Vh + Vb * K / Q + K * K) / a0; |
||||
pb[1] = 2.0 * (K * K - Vh) / a0; |
||||
pb[2] = (Vh - Vb * K / Q + K * K) / a0; |
||||
pa[1] = 2.0 * (K * K - 1.0) / a0; |
||||
pa[2] = (1.0 - K / Q + K * K) / a0; |
||||
|
||||
f0 = 38.13547087602444; |
||||
Q = 0.5003270373238773; |
||||
K = tan(M_PI * f0 / (double) st->samplerate); |
||||
|
||||
ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K); |
||||
ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K); |
||||
|
||||
st->d->b[0] = pb[0] * rb[0]; |
||||
st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0]; |
||||
st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0]; |
||||
st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1]; |
||||
st->d->b[4] = pb[2] * rb[2]; |
||||
|
||||
st->d->a[0] = pa[0] * ra[0]; |
||||
st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0]; |
||||
st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0]; |
||||
st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1]; |
||||
st->d->a[4] = pa[2] * ra[2]; |
||||
|
||||
for (i = 0; i < 5; ++i) { |
||||
for (j = 0; j < 5; ++j) { |
||||
st->d->v[i][j] = 0.0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
static int ebur128_init_channel_map(FFEBUR128State * st) |
||||
{ |
||||
size_t i; |
||||
st->d->channel_map = |
||||
(int *) av_malloc_array(st->channels, sizeof(int)); |
||||
if (!st->d->channel_map) |
||||
return AVERROR(ENOMEM); |
||||
if (st->channels == 4) { |
||||
st->d->channel_map[0] = FF_EBUR128_LEFT; |
||||
st->d->channel_map[1] = FF_EBUR128_RIGHT; |
||||
st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND; |
||||
st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND; |
||||
} else if (st->channels == 5) { |
||||
st->d->channel_map[0] = FF_EBUR128_LEFT; |
||||
st->d->channel_map[1] = FF_EBUR128_RIGHT; |
||||
st->d->channel_map[2] = FF_EBUR128_CENTER; |
||||
st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND; |
||||
st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND; |
||||
} else { |
||||
for (i = 0; i < st->channels; ++i) { |
||||
switch (i) { |
||||
case 0: |
||||
st->d->channel_map[i] = FF_EBUR128_LEFT; |
||||
break; |
||||
case 1: |
||||
st->d->channel_map[i] = FF_EBUR128_RIGHT; |
||||
break; |
||||
case 2: |
||||
st->d->channel_map[i] = FF_EBUR128_CENTER; |
||||
break; |
||||
case 3: |
||||
st->d->channel_map[i] = FF_EBUR128_UNUSED; |
||||
break; |
||||
case 4: |
||||
st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND; |
||||
break; |
||||
case 5: |
||||
st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND; |
||||
break; |
||||
default: |
||||
st->d->channel_map[i] = FF_EBUR128_UNUSED; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
static inline void init_histogram(void) |
||||
{ |
||||
int i; |
||||
/* initialize static constants */ |
||||
histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0); |
||||
for (i = 0; i < 1000; ++i) { |
||||
histogram_energies[i] = |
||||
pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0); |
||||
} |
||||
for (i = 1; i < 1001; ++i) { |
||||
histogram_energy_boundaries[i] = |
||||
pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0); |
||||
} |
||||
} |
||||
|
||||
FFEBUR128State *ff_ebur128_init(unsigned int channels, |
||||
unsigned long samplerate, |
||||
unsigned long window, int mode) |
||||
{ |
||||
int errcode; |
||||
FFEBUR128State *st; |
||||
|
||||
st = (FFEBUR128State *) av_malloc(sizeof(FFEBUR128State)); |
||||
CHECK_ERROR(!st, 0, exit) |
||||
st->d = (struct FFEBUR128StateInternal *) |
||||
av_malloc(sizeof(struct FFEBUR128StateInternal)); |
||||
CHECK_ERROR(!st->d, 0, free_state) |
||||
st->channels = channels; |
||||
errcode = ebur128_init_channel_map(st); |
||||
CHECK_ERROR(errcode, 0, free_internal) |
||||
|
||||
st->d->sample_peak = |
||||
(double *) av_mallocz_array(channels, sizeof(double)); |
||||
CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map) |
||||
|
||||
st->samplerate = samplerate; |
||||
st->d->samples_in_100ms = (st->samplerate + 5) / 10; |
||||
st->mode = mode; |
||||
if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) { |
||||
st->d->window = FFMAX(window, 3000); |
||||
} else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) { |
||||
st->d->window = FFMAX(window, 400); |
||||
} else { |
||||
goto free_sample_peak; |
||||
} |
||||
st->d->audio_data_frames = st->samplerate * st->d->window / 1000; |
||||
if (st->d->audio_data_frames % st->d->samples_in_100ms) { |
||||
/* round up to multiple of samples_in_100ms */ |
||||
st->d->audio_data_frames = st->d->audio_data_frames |
||||
+ st->d->samples_in_100ms |
||||
- (st->d->audio_data_frames % st->d->samples_in_100ms); |
||||
} |
||||
st->d->audio_data = |
||||
(double *) av_mallocz_array(st->d->audio_data_frames, |
||||
st->channels * sizeof(double)); |
||||
CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak) |
||||
|
||||
ebur128_init_filter(st); |
||||
|
||||
st->d->block_energy_histogram = |
||||
av_mallocz(1000 * sizeof(unsigned long)); |
||||
CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data) |
||||
st->d->short_term_block_energy_histogram = |
||||
av_mallocz(1000 * sizeof(unsigned long)); |
||||
CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0, |
||||
free_block_energy_histogram) |
||||
st->d->short_term_frame_counter = 0; |
||||
|
||||
/* the first block needs 400ms of audio data */ |
||||
st->d->needed_frames = st->d->samples_in_100ms * 4; |
||||
/* start at the beginning of the buffer */ |
||||
st->d->audio_data_index = 0; |
||||
|
||||
if (ff_thread_once(&histogram_init, &init_histogram) != 0) |
||||
goto free_short_term_block_energy_histogram; |
||||
|
||||
st->d->data_ptrs = av_malloc_array(channels, sizeof(void *)); |
||||
CHECK_ERROR(!st->d->data_ptrs, 0, |
||||
free_short_term_block_energy_histogram); |
||||
|
||||
return st; |
||||
|
||||
free_short_term_block_energy_histogram: |
||||
av_free(st->d->short_term_block_energy_histogram); |
||||
free_block_energy_histogram: |
||||
av_free(st->d->block_energy_histogram); |
||||
free_audio_data: |
||||
av_free(st->d->audio_data); |
||||
free_sample_peak: |
||||
av_free(st->d->sample_peak); |
||||
free_channel_map: |
||||
av_free(st->d->channel_map); |
||||
free_internal: |
||||
av_free(st->d); |
||||
free_state: |
||||
av_free(st); |
||||
exit: |
||||
return NULL; |
||||
} |
||||
|
||||
void ff_ebur128_destroy(FFEBUR128State ** st) |
||||
{ |
||||
av_free((*st)->d->block_energy_histogram); |
||||
av_free((*st)->d->short_term_block_energy_histogram); |
||||
av_free((*st)->d->audio_data); |
||||
av_free((*st)->d->channel_map); |
||||
av_free((*st)->d->sample_peak); |
||||
av_free((*st)->d->data_ptrs); |
||||
av_free((*st)->d); |
||||
av_free(*st); |
||||
*st = NULL; |
||||
} |
||||
|
||||
#define EBUR128_FILTER(type, min_scale, max_scale) \ |
||||
static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs, \
|
||||
size_t src_index, size_t frames, \
|
||||
int stride) { \
|
||||
static double scaling_factor = -((double) min_scale) > (double) max_scale ? \
|
||||
-((double) min_scale) : (double) max_scale; \
|
||||
double* audio_data = st->d->audio_data + st->d->audio_data_index; \
|
||||
size_t i, c; \
|
||||
\
|
||||
if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
|
||||
for (c = 0; c < st->channels; ++c) { \
|
||||
double max = 0.0; \
|
||||
for (i = 0; i < frames; ++i) { \
|
||||
type v = srcs[c][src_index + i * stride]; \
|
||||
if (v > max) { \
|
||||
max = v; \
|
||||
} else if (-v > max) { \
|
||||
max = -1.0 * v; \
|
||||
} \
|
||||
} \
|
||||
max /= scaling_factor; \
|
||||
if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max; \
|
||||
} \
|
||||
} \
|
||||
for (c = 0; c < st->channels; ++c) { \
|
||||
int ci = st->d->channel_map[c] - 1; \
|
||||
if (ci < 0) continue; \
|
||||
else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */ \
|
||||
for (i = 0; i < frames; ++i) { \
|
||||
st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
|
||||
- st->d->a[1] * st->d->v[ci][1] \
|
||||
- st->d->a[2] * st->d->v[ci][2] \
|
||||
- st->d->a[3] * st->d->v[ci][3] \
|
||||
- st->d->a[4] * st->d->v[ci][4]; \
|
||||
audio_data[i * st->channels + c] = \
|
||||
st->d->b[0] * st->d->v[ci][0] \
|
||||
+ st->d->b[1] * st->d->v[ci][1] \
|
||||
+ st->d->b[2] * st->d->v[ci][2] \
|
||||
+ st->d->b[3] * st->d->v[ci][3] \
|
||||
+ st->d->b[4] * st->d->v[ci][4]; \
|
||||
st->d->v[ci][4] = st->d->v[ci][3]; \
|
||||
st->d->v[ci][3] = st->d->v[ci][2]; \
|
||||
st->d->v[ci][2] = st->d->v[ci][1]; \
|
||||
st->d->v[ci][1] = st->d->v[ci][0]; \
|
||||
} \
|
||||
st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
|
||||
st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
|
||||
st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
|
||||
st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
|
||||
} \
|
||||
} |
||||
EBUR128_FILTER(short, SHRT_MIN, SHRT_MAX) |
||||
EBUR128_FILTER(int, INT_MIN, INT_MAX) |
||||
EBUR128_FILTER(float, -1.0f, 1.0f) EBUR128_FILTER(double, -1.0, 1.0) |
||||
|
||||
static double ebur128_energy_to_loudness(double energy) |
||||
{ |
||||
return 10 * (log(energy) / log(10.0)) - 0.691; |
||||
} |
||||
|
||||
static size_t find_histogram_index(double energy) |
||||
{ |
||||
size_t index_min = 0; |
||||
size_t index_max = 1000; |
||||
size_t index_mid; |
||||
|
||||
do { |
||||
index_mid = (index_min + index_max) / 2; |
||||
if (energy >= histogram_energy_boundaries[index_mid]) { |
||||
index_min = index_mid; |
||||
} else { |
||||
index_max = index_mid; |
||||
} |
||||
} while (index_max - index_min != 1); |
||||
|
||||
return index_min; |
||||
} |
||||
|
||||
static void ebur128_calc_gating_block(FFEBUR128State * st, |
||||
size_t frames_per_block, |
||||
double *optional_output) |
||||
{ |
||||
size_t i, c; |
||||
double sum = 0.0; |
||||
double channel_sum; |
||||
for (c = 0; c < st->channels; ++c) { |
||||
if (st->d->channel_map[c] == FF_EBUR128_UNUSED) |
||||
continue; |
||||
channel_sum = 0.0; |
||||
if (st->d->audio_data_index < frames_per_block * st->channels) { |
||||
for (i = 0; i < st->d->audio_data_index / st->channels; ++i) { |
||||
channel_sum += st->d->audio_data[i * st->channels + c] * |
||||
st->d->audio_data[i * st->channels + c]; |
||||
} |
||||
for (i = st->d->audio_data_frames - |
||||
(frames_per_block - |
||||
st->d->audio_data_index / st->channels); |
||||
i < st->d->audio_data_frames; ++i) { |
||||
channel_sum += st->d->audio_data[i * st->channels + c] * |
||||
st->d->audio_data[i * st->channels + c]; |
||||
} |
||||
} else { |
||||
for (i = |
||||
st->d->audio_data_index / st->channels - frames_per_block; |
||||
i < st->d->audio_data_index / st->channels; ++i) { |
||||
channel_sum += |
||||
st->d->audio_data[i * st->channels + |
||||
c] * st->d->audio_data[i * |
||||
st->channels + |
||||
c]; |
||||
} |
||||
} |
||||
if (st->d->channel_map[c] == FF_EBUR128_Mp110 || |
||||
st->d->channel_map[c] == FF_EBUR128_Mm110 || |
||||
st->d->channel_map[c] == FF_EBUR128_Mp060 || |
||||
st->d->channel_map[c] == FF_EBUR128_Mm060 || |
||||
st->d->channel_map[c] == FF_EBUR128_Mp090 || |
||||
st->d->channel_map[c] == FF_EBUR128_Mm090) { |
||||
channel_sum *= 1.41; |
||||
} else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) { |
||||
channel_sum *= 2.0; |
||||
} |
||||
sum += channel_sum; |
||||
} |
||||
sum /= (double) frames_per_block; |
||||
if (optional_output) { |
||||
*optional_output = sum; |
||||
} else if (sum >= histogram_energy_boundaries[0]) { |
||||
++st->d->block_energy_histogram[find_histogram_index(sum)]; |
||||
} |
||||
} |
||||
|
||||
int ff_ebur128_set_channel(FFEBUR128State * st, |
||||
unsigned int channel_number, int value) |
||||
{ |
||||
if (channel_number >= st->channels) { |
||||
return 1; |
||||
} |
||||
if (value == FF_EBUR128_DUAL_MONO && |
||||
(st->channels != 1 || channel_number != 0)) { |
||||
return 1; |
||||
} |
||||
st->d->channel_map[channel_number] = value; |
||||
return 0; |
||||
} |
||||
|
||||
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out); |
||||
#define FF_EBUR128_ADD_FRAMES_PLANAR(type) \ |
||||
void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs, \
|
||||
size_t frames, int stride) { \
|
||||
size_t src_index = 0; \
|
||||
while (frames > 0) { \
|
||||
if (frames >= st->d->needed_frames) { \
|
||||
ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride); \
|
||||
src_index += st->d->needed_frames * stride; \
|
||||
frames -= st->d->needed_frames; \
|
||||
st->d->audio_data_index += st->d->needed_frames * st->channels; \
|
||||
/* calculate the new gating block */ \
|
||||
if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) { \
|
||||
ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL); \
|
||||
} \
|
||||
if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \
|
||||
st->d->short_term_frame_counter += st->d->needed_frames; \
|
||||
if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
|
||||
double st_energy; \
|
||||
ebur128_energy_shortterm(st, &st_energy); \
|
||||
if (st_energy >= histogram_energy_boundaries[0]) { \
|
||||
++st->d->short_term_block_energy_histogram[ \
|
||||
find_histogram_index(st_energy)]; \
|
||||
} \
|
||||
st->d->short_term_frame_counter = st->d->samples_in_100ms * 20; \
|
||||
} \
|
||||
} \
|
||||
/* 100ms are needed for all blocks besides the first one */ \
|
||||
st->d->needed_frames = st->d->samples_in_100ms; \
|
||||
/* reset audio_data_index when buffer full */ \
|
||||
if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) { \
|
||||
st->d->audio_data_index = 0; \
|
||||
} \
|
||||
} else { \
|
||||
ebur128_filter_##type(st, srcs, src_index, frames, stride); \
|
||||
st->d->audio_data_index += frames * st->channels; \
|
||||
if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \
|
||||
st->d->short_term_frame_counter += frames; \
|
||||
} \
|
||||
st->d->needed_frames -= frames; \
|
||||
frames = 0; \
|
||||
} \
|
||||
} \
|
||||
} |
||||
FF_EBUR128_ADD_FRAMES_PLANAR(short) |
||||
FF_EBUR128_ADD_FRAMES_PLANAR(int) |
||||
FF_EBUR128_ADD_FRAMES_PLANAR(float) |
||||
FF_EBUR128_ADD_FRAMES_PLANAR(double) |
||||
#define FF_EBUR128_ADD_FRAMES(type) \ |
||||
void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src, \
|
||||
size_t frames) { \
|
||||
int i; \
|
||||
const type **buf = (const type**)st->d->data_ptrs; \
|
||||
for (i = 0; i < st->channels; i++) \
|
||||
buf[i] = src + i; \
|
||||
ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels); \
|
||||
} |
||||
FF_EBUR128_ADD_FRAMES(short) |
||||
FF_EBUR128_ADD_FRAMES(int) |
||||
FF_EBUR128_ADD_FRAMES(float) |
||||
FF_EBUR128_ADD_FRAMES(double) |
||||
|
||||
static int ebur128_calc_relative_threshold(FFEBUR128State * st, |
||||
size_t * above_thresh_counter, |
||||
double *relative_threshold) |
||||
{ |
||||
size_t i; |
||||
*relative_threshold = 0.0; |
||||
*above_thresh_counter = 0; |
||||
|
||||
for (i = 0; i < 1000; ++i) { |
||||
*relative_threshold += st->d->block_energy_histogram[i] * |
||||
histogram_energies[i]; |
||||
*above_thresh_counter += st->d->block_energy_histogram[i]; |
||||
} |
||||
|
||||
if (*above_thresh_counter != 0) { |
||||
*relative_threshold /= (double) *above_thresh_counter; |
||||
*relative_threshold *= RELATIVE_GATE_FACTOR; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size, |
||||
double *out) |
||||
{ |
||||
double gated_loudness = 0.0; |
||||
double relative_threshold; |
||||
size_t above_thresh_counter; |
||||
size_t i, j, start_index; |
||||
|
||||
for (i = 0; i < size; i++) { |
||||
if (sts[i] |
||||
&& (sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) { |
||||
return AVERROR(EINVAL); |
||||
} |
||||
} |
||||
|
||||
for (i = 0; i < size; i++) { |
||||
if (!sts[i]) |
||||
continue; |
||||
ebur128_calc_relative_threshold(sts[i], &above_thresh_counter, |
||||
&relative_threshold); |
||||
} |
||||
if (!above_thresh_counter) { |
||||
*out = -HUGE_VAL; |
||||
return 0; |
||||
} |
||||
|
||||
above_thresh_counter = 0; |
||||
if (relative_threshold < histogram_energy_boundaries[0]) { |
||||
start_index = 0; |
||||
} else { |
||||
start_index = find_histogram_index(relative_threshold); |
||||
if (relative_threshold > histogram_energies[start_index]) { |
||||
++start_index; |
||||
} |
||||
} |
||||
for (i = 0; i < size; i++) { |
||||
if (!sts[i]) |
||||
continue; |
||||
for (j = start_index; j < 1000; ++j) { |
||||
gated_loudness += sts[i]->d->block_energy_histogram[j] * |
||||
histogram_energies[j]; |
||||
above_thresh_counter += sts[i]->d->block_energy_histogram[j]; |
||||
} |
||||
} |
||||
if (!above_thresh_counter) { |
||||
*out = -HUGE_VAL; |
||||
return 0; |
||||
} |
||||
gated_loudness /= (double) above_thresh_counter; |
||||
*out = ebur128_energy_to_loudness(gated_loudness); |
||||
return 0; |
||||
} |
||||
|
||||
int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out) |
||||
{ |
||||
double relative_threshold; |
||||
size_t above_thresh_counter; |
||||
|
||||
if (st && (st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) |
||||
return AVERROR(EINVAL); |
||||
|
||||
ebur128_calc_relative_threshold(st, &above_thresh_counter, |
||||
&relative_threshold); |
||||
|
||||
if (!above_thresh_counter) { |
||||
*out = -70.0; |
||||
return 0; |
||||
} |
||||
|
||||
*out = ebur128_energy_to_loudness(relative_threshold); |
||||
return 0; |
||||
} |
||||
|
||||
int ff_ebur128_loudness_global(FFEBUR128State * st, double *out) |
||||
{ |
||||
return ebur128_gated_loudness(&st, 1, out); |
||||
} |
||||
|
||||
int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size, |
||||
double *out) |
||||
{ |
||||
return ebur128_gated_loudness(sts, size, out); |
||||
} |
||||
|
||||
static int ebur128_energy_in_interval(FFEBUR128State * st, |
||||
size_t interval_frames, double *out) |
||||
{ |
||||
if (interval_frames > st->d->audio_data_frames) { |
||||
return AVERROR(EINVAL); |
||||
} |
||||
ebur128_calc_gating_block(st, interval_frames, out); |
||||
return 0; |
||||
} |
||||
|
||||
static int ebur128_energy_shortterm(FFEBUR128State * st, double *out) |
||||
{ |
||||
return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30, |
||||
out); |
||||
} |
||||
|
||||
int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out) |
||||
{ |
||||
double energy; |
||||
int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4, |
||||
&energy); |
||||
if (error) { |
||||
return error; |
||||
} else if (energy <= 0.0) { |
||||
*out = -HUGE_VAL; |
||||
return 0; |
||||
} |
||||
*out = ebur128_energy_to_loudness(energy); |
||||
return 0; |
||||
} |
||||
|
||||
int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out) |
||||
{ |
||||
double energy; |
||||
int error = ebur128_energy_shortterm(st, &energy); |
||||
if (error) { |
||||
return error; |
||||
} else if (energy <= 0.0) { |
||||
*out = -HUGE_VAL; |
||||
return 0; |
||||
} |
||||
*out = ebur128_energy_to_loudness(energy); |
||||
return 0; |
||||
} |
||||
|
||||
int ff_ebur128_loudness_window(FFEBUR128State * st, |
||||
unsigned long window, double *out) |
||||
{ |
||||
double energy; |
||||
size_t interval_frames = st->samplerate * window / 1000; |
||||
int error = ebur128_energy_in_interval(st, interval_frames, &energy); |
||||
if (error) { |
||||
return error; |
||||
} else if (energy <= 0.0) { |
||||
*out = -HUGE_VAL; |
||||
return 0; |
||||
} |
||||
*out = ebur128_energy_to_loudness(energy); |
||||
return 0; |
||||
} |
||||
|
||||
/* EBU - TECH 3342 */ |
||||
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size, |
||||
double *out) |
||||
{ |
||||
size_t i, j; |
||||
size_t stl_size; |
||||
double stl_power, stl_integrated; |
||||
/* High and low percentile energy */ |
||||
double h_en, l_en; |
||||
unsigned long hist[1000] = { 0 }; |
||||
size_t percentile_low, percentile_high; |
||||
size_t index; |
||||
|
||||
for (i = 0; i < size; ++i) { |
||||
if (sts[i]) { |
||||
if ((sts[i]->mode & FF_EBUR128_MODE_LRA) != |
||||
FF_EBUR128_MODE_LRA) { |
||||
return AVERROR(EINVAL); |
||||
} |
||||
} |
||||
} |
||||
|
||||
stl_size = 0; |
||||
stl_power = 0.0; |
||||
for (i = 0; i < size; ++i) { |
||||
if (!sts[i]) |
||||
continue; |
||||
for (j = 0; j < 1000; ++j) { |
||||
hist[j] += sts[i]->d->short_term_block_energy_histogram[j]; |
||||
stl_size += sts[i]->d->short_term_block_energy_histogram[j]; |
||||
stl_power += sts[i]->d->short_term_block_energy_histogram[j] |
||||
* histogram_energies[j]; |
||||
} |
||||
} |
||||
if (!stl_size) { |
||||
*out = 0.0; |
||||
return 0; |
||||
} |
||||
|
||||
stl_power /= stl_size; |
||||
stl_integrated = MINUS_20DB * stl_power; |
||||
|
||||
if (stl_integrated < histogram_energy_boundaries[0]) { |
||||
index = 0; |
||||
} else { |
||||
index = find_histogram_index(stl_integrated); |
||||
if (stl_integrated > histogram_energies[index]) { |
||||
++index; |
||||
} |
||||
} |
||||
stl_size = 0; |
||||
for (j = index; j < 1000; ++j) { |
||||
stl_size += hist[j]; |
||||
} |
||||
if (!stl_size) { |
||||
*out = 0.0; |
||||
return 0; |
||||
} |
||||
|
||||
percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5); |
||||
percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5); |
||||
|
||||
stl_size = 0; |
||||
j = index; |
||||
while (stl_size <= percentile_low) { |
||||
stl_size += hist[j++]; |
||||
} |
||||
l_en = histogram_energies[j - 1]; |
||||
while (stl_size <= percentile_high) { |
||||
stl_size += hist[j++]; |
||||
} |
||||
h_en = histogram_energies[j - 1]; |
||||
*out = |
||||
ebur128_energy_to_loudness(h_en) - |
||||
ebur128_energy_to_loudness(l_en); |
||||
return 0; |
||||
} |
||||
|
||||
int ff_ebur128_loudness_range(FFEBUR128State * st, double *out) |
||||
{ |
||||
return ff_ebur128_loudness_range_multiple(&st, 1, out); |
||||
} |
||||
|
||||
int ff_ebur128_sample_peak(FFEBUR128State * st, |
||||
unsigned int channel_number, double *out) |
||||
{ |
||||
if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) != |
||||
FF_EBUR128_MODE_SAMPLE_PEAK) { |
||||
return AVERROR(EINVAL); |
||||
} else if (channel_number >= st->channels) { |
||||
return AVERROR(EINVAL); |
||||
} |
||||
*out = st->d->sample_peak[channel_number]; |
||||
return 0; |
||||
} |
@ -0,0 +1,296 @@ |
||||
/*
|
||||
* Copyright (c) 2011 Jan Kokemüller |
||||
* |
||||
* This file is part of FFmpeg. |
||||
* |
||||
* FFmpeg is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU Lesser General Public |
||||
* License as published by the Free Software Foundation; either |
||||
* version 2.1 of the License, or (at your option) any later version. |
||||
* |
||||
* FFmpeg is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||||
* Lesser General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU Lesser General Public |
||||
* License along with FFmpeg; if not, write to the Free Software |
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||||
* |
||||
* This file is based on libebur128 which is available at |
||||
* https://github.com/jiixyj/libebur128/
|
||||
* |
||||
*/ |
||||
|
||||
#ifndef AVFILTER_EBUR128_H |
||||
#define AVFILTER_EBUR128_H |
||||
|
||||
/** \file ebur128.h
|
||||
* \brief libebur128 - a library for loudness measurement according to |
||||
* the EBU R128 standard. |
||||
*/ |
||||
|
||||
#include <stddef.h> /* for size_t */ |
||||
|
||||
/** \enum channel
|
||||
* Use these values when setting the channel map with ebur128_set_channel(). |
||||
* See definitions in ITU R-REC-BS 1770-4 |
||||
*/ |
||||
enum channel { |
||||
FF_EBUR128_UNUSED = 0, /**< unused channel (for example LFE channel) */ |
||||
FF_EBUR128_LEFT, |
||||
FF_EBUR128_Mp030 = 1, /**< itu M+030 */ |
||||
FF_EBUR128_RIGHT, |
||||
FF_EBUR128_Mm030 = 2, /**< itu M-030 */ |
||||
FF_EBUR128_CENTER, |
||||
FF_EBUR128_Mp000 = 3, /**< itu M+000 */ |
||||
FF_EBUR128_LEFT_SURROUND, |
||||
FF_EBUR128_Mp110 = 4, /**< itu M+110 */ |
||||
FF_EBUR128_RIGHT_SURROUND, |
||||
FF_EBUR128_Mm110 = 5, /**< itu M-110 */ |
||||
FF_EBUR128_DUAL_MONO, /**< a channel that is counted twice */ |
||||
FF_EBUR128_MpSC, /**< itu M+SC */ |
||||
FF_EBUR128_MmSC, /**< itu M-SC */ |
||||
FF_EBUR128_Mp060, /**< itu M+060 */ |
||||
FF_EBUR128_Mm060, /**< itu M-060 */ |
||||
FF_EBUR128_Mp090, /**< itu M+090 */ |
||||
FF_EBUR128_Mm090, /**< itu M-090 */ |
||||
FF_EBUR128_Mp135, /**< itu M+135 */ |
||||
FF_EBUR128_Mm135, /**< itu M-135 */ |
||||
FF_EBUR128_Mp180, /**< itu M+180 */ |
||||
FF_EBUR128_Up000, /**< itu U+000 */ |
||||
FF_EBUR128_Up030, /**< itu U+030 */ |
||||
FF_EBUR128_Um030, /**< itu U-030 */ |
||||
FF_EBUR128_Up045, /**< itu U+045 */ |
||||
FF_EBUR128_Um045, /**< itu U-030 */ |
||||
FF_EBUR128_Up090, /**< itu U+090 */ |
||||
FF_EBUR128_Um090, /**< itu U-090 */ |
||||
FF_EBUR128_Up110, /**< itu U+110 */ |
||||
FF_EBUR128_Um110, /**< itu U-110 */ |
||||
FF_EBUR128_Up135, /**< itu U+135 */ |
||||
FF_EBUR128_Um135, /**< itu U-135 */ |
||||
FF_EBUR128_Up180, /**< itu U+180 */ |
||||
FF_EBUR128_Tp000, /**< itu T+000 */ |
||||
FF_EBUR128_Bp000, /**< itu B+000 */ |
||||
FF_EBUR128_Bp045, /**< itu B+045 */ |
||||
FF_EBUR128_Bm045 /**< itu B-045 */ |
||||
}; |
||||
|
||||
/** \enum mode
|
||||
* Use these values in ebur128_init (or'ed). Try to use the lowest possible |
||||
* modes that suit your needs, as performance will be better. |
||||
*/ |
||||
enum mode { |
||||
/** can call ebur128_loudness_momentary */ |
||||
FF_EBUR128_MODE_M = (1 << 0), |
||||
/** can call ebur128_loudness_shortterm */ |
||||
FF_EBUR128_MODE_S = (1 << 1) | FF_EBUR128_MODE_M, |
||||
/** can call ebur128_loudness_global_* and ebur128_relative_threshold */ |
||||
FF_EBUR128_MODE_I = (1 << 2) | FF_EBUR128_MODE_M, |
||||
/** can call ebur128_loudness_range */ |
||||
FF_EBUR128_MODE_LRA = (1 << 3) | FF_EBUR128_MODE_S, |
||||
/** can call ebur128_sample_peak */ |
||||
FF_EBUR128_MODE_SAMPLE_PEAK = (1 << 4) | FF_EBUR128_MODE_M, |
||||
}; |
||||
|
||||
/** forward declaration of FFEBUR128StateInternal */ |
||||
struct FFEBUR128StateInternal; |
||||
|
||||
/** \brief Contains information about the state of a loudness measurement.
|
||||
* |
||||
* You should not need to modify this struct directly. |
||||
*/ |
||||
typedef struct { |
||||
int mode; /**< The current mode. */ |
||||
unsigned int channels; /**< The number of channels. */ |
||||
unsigned long samplerate; /**< The sample rate. */ |
||||
struct FFEBUR128StateInternal *d; /**< Internal state. */ |
||||
} FFEBUR128State; |
||||
|
||||
/** \brief Initialize library state.
|
||||
* |
||||
* @param channels the number of channels. |
||||
* @param samplerate the sample rate. |
||||
* @param window set the maximum window size in ms, set to 0 for auto. |
||||
* @param mode see the mode enum for possible values. |
||||
* @return an initialized library state. |
||||
*/ |
||||
FFEBUR128State *ff_ebur128_init(unsigned int channels, |
||||
unsigned long samplerate, |
||||
unsigned long window, int mode); |
||||
|
||||
/** \brief Destroy library state.
|
||||
* |
||||
* @param st pointer to a library state. |
||||
*/ |
||||
void ff_ebur128_destroy(FFEBUR128State ** st); |
||||
|
||||
/** \brief Set channel type.
|
||||
* |
||||
* The default is: |
||||
* - 0 -> FF_EBUR128_LEFT |
||||
* - 1 -> FF_EBUR128_RIGHT |
||||
* - 2 -> FF_EBUR128_CENTER |
||||
* - 3 -> FF_EBUR128_UNUSED |
||||
* - 4 -> FF_EBUR128_LEFT_SURROUND |
||||
* - 5 -> FF_EBUR128_RIGHT_SURROUND |
||||
* |
||||
* @param st library state. |
||||
* @param channel_number zero based channel index. |
||||
* @param value channel type from the "channel" enum. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if invalid channel index. |
||||
*/ |
||||
int ff_ebur128_set_channel(FFEBUR128State * st, |
||||
unsigned int channel_number, int value); |
||||
|
||||
/** \brief Add frames to be processed.
|
||||
* |
||||
* @param st library state. |
||||
* @param src array of source frames. Channels must be interleaved. |
||||
* @param frames number of frames. Not number of samples! |
||||
*/ |
||||
void ff_ebur128_add_frames_short(FFEBUR128State * st, |
||||
const short *src, size_t frames); |
||||
/** \brief See \ref ebur128_add_frames_short */ |
||||
void ff_ebur128_add_frames_int(FFEBUR128State * st, |
||||
const int *src, size_t frames); |
||||
/** \brief See \ref ebur128_add_frames_short */ |
||||
void ff_ebur128_add_frames_float(FFEBUR128State * st, |
||||
const float *src, size_t frames); |
||||
/** \brief See \ref ebur128_add_frames_short */ |
||||
void ff_ebur128_add_frames_double(FFEBUR128State * st, |
||||
const double *src, size_t frames); |
||||
|
||||
/** \brief Add frames to be processed.
|
||||
* |
||||
* @param st library state. |
||||
* @param srcs array of source frame channel data pointers |
||||
* @param frames number of frames. Not number of samples! |
||||
* @param stride number of samples to skip to for the next sample of the same channel |
||||
*/ |
||||
void ff_ebur128_add_frames_planar_short(FFEBUR128State * st, |
||||
const short **srcs, |
||||
size_t frames, int stride); |
||||
/** \brief See \ref ebur128_add_frames_planar_short */ |
||||
void ff_ebur128_add_frames_planar_int(FFEBUR128State * st, |
||||
const int **srcs, |
||||
size_t frames, int stride); |
||||
/** \brief See \ref ebur128_add_frames_planar_short */ |
||||
void ff_ebur128_add_frames_planar_float(FFEBUR128State * st, |
||||
const float **srcs, |
||||
size_t frames, int stride); |
||||
/** \brief See \ref ebur128_add_frames_planar_short */ |
||||
void ff_ebur128_add_frames_planar_double(FFEBUR128State * st, |
||||
const double **srcs, |
||||
size_t frames, int stride); |
||||
|
||||
/** \brief Get global integrated loudness in LUFS.
|
||||
* |
||||
* @param st library state. |
||||
* @param out integrated loudness in LUFS. -HUGE_VAL if result is negative |
||||
* infinity. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_I" has not been set. |
||||
*/ |
||||
int ff_ebur128_loudness_global(FFEBUR128State * st, double *out); |
||||
/** \brief Get global integrated loudness in LUFS across multiple instances.
|
||||
* |
||||
* @param sts array of library states. |
||||
* @param size length of sts |
||||
* @param out integrated loudness in LUFS. -HUGE_VAL if result is negative |
||||
* infinity. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_I" has not been set. |
||||
*/ |
||||
int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, |
||||
size_t size, double *out); |
||||
|
||||
/** \brief Get momentary loudness (last 400ms) in LUFS.
|
||||
* |
||||
* @param st library state. |
||||
* @param out momentary loudness in LUFS. -HUGE_VAL if result is negative |
||||
* infinity. |
||||
* @return |
||||
* - 0 on success. |
||||
*/ |
||||
int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out); |
||||
/** \brief Get short-term loudness (last 3s) in LUFS.
|
||||
* |
||||
* @param st library state. |
||||
* @param out short-term loudness in LUFS. -HUGE_VAL if result is negative |
||||
* infinity. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_S" has not been set. |
||||
*/ |
||||
int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out); |
||||
|
||||
/** \brief Get loudness of the specified window in LUFS.
|
||||
* |
||||
* window must not be larger than the current window set in st. |
||||
* |
||||
* @param st library state. |
||||
* @param window window in ms to calculate loudness. |
||||
* @param out loudness in LUFS. -HUGE_VAL if result is negative infinity. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if window larger than current window in st. |
||||
*/ |
||||
int ff_ebur128_loudness_window(FFEBUR128State * st, |
||||
unsigned long window, double *out); |
||||
|
||||
/** \brief Get loudness range (LRA) of programme in LU.
|
||||
* |
||||
* Calculates loudness range according to EBU 3342. |
||||
* |
||||
* @param st library state. |
||||
* @param out loudness range (LRA) in LU. Will not be changed in case of |
||||
* error. AVERROR(EINVAL) will be returned in this case. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_LRA" has not been set. |
||||
*/ |
||||
int ff_ebur128_loudness_range(FFEBUR128State * st, double *out); |
||||
/** \brief Get loudness range (LRA) in LU across multiple instances.
|
||||
* |
||||
* Calculates loudness range according to EBU 3342. |
||||
* |
||||
* @param sts array of library states. |
||||
* @param size length of sts |
||||
* @param out loudness range (LRA) in LU. Will not be changed in case of |
||||
* error. AVERROR(EINVAL) will be returned in this case. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_LRA" has not been set. |
||||
*/ |
||||
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, |
||||
size_t size, double *out); |
||||
|
||||
/** \brief Get maximum sample peak of selected channel in float format.
|
||||
* |
||||
* @param st library state |
||||
* @param channel_number channel to analyse |
||||
* @param out maximum sample peak in float format (1.0 is 0 dBFS) |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_SAMPLE_PEAK" has not been set. |
||||
* - AVERROR(EINVAL) if invalid channel index. |
||||
*/ |
||||
int ff_ebur128_sample_peak(FFEBUR128State * st, |
||||
unsigned int channel_number, double *out); |
||||
|
||||
/** \brief Get relative threshold in LUFS.
|
||||
* |
||||
* @param st library state |
||||
* @param out relative threshold in LUFS. |
||||
* @return |
||||
* - 0 on success. |
||||
* - AVERROR(EINVAL) if mode "FF_EBUR128_MODE_I" has not been set. |
||||
*/ |
||||
int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out); |
||||
|
||||
#endif /* AVFILTER_EBUR128_H */ |
Loading…
Reference in new issue