|
|
|
/*
|
|
|
|
* MJPEG encoder
|
|
|
|
* Copyright (c) 2016 William Ma, Ted Ying, Jerry Jiang
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/avassert.h"
|
|
|
|
#include "libavutil/qsort.h"
|
|
|
|
#include "mjpegenc_huffman.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Comparison function for two PTables by prob
|
|
|
|
*
|
|
|
|
* @param a First PTable to compare
|
|
|
|
* @param b Second PTable to compare
|
|
|
|
* @return < 0 for less than, 0 for equals, > 0 for greater than
|
|
|
|
*/
|
|
|
|
static int compare_by_prob(const void *a, const void *b)
|
|
|
|
{
|
|
|
|
PTable a_val = *(PTable *) a;
|
|
|
|
PTable b_val = *(PTable *) b;
|
|
|
|
return a_val.prob - b_val.prob;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Comparison function for two HuffTables by length
|
|
|
|
*
|
|
|
|
* @param a First HuffTable to compare
|
|
|
|
* @param b Second HuffTable to compare
|
|
|
|
* @return < 0 for less than, 0 for equals, > 0 for greater than
|
|
|
|
*/
|
|
|
|
static int compare_by_length(const void *a, const void *b)
|
|
|
|
{
|
|
|
|
HuffTable a_val = *(HuffTable *) a;
|
|
|
|
HuffTable b_val = *(HuffTable *) b;
|
|
|
|
return a_val.length - b_val.length;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes the length of the Huffman encoding for each distinct input value.
|
|
|
|
* Uses package merge algorithm as follows:
|
|
|
|
* 1. start with an empty list, lets call it list(0), set i = 0
|
|
|
|
* 2. add 1 entry to list(i) for each symbol we have and give each a score equal to the probability of the respective symbol
|
|
|
|
* 3. merge the 2 symbols of least score and put them in list(i+1), and remove them from list(i). The new score will be the sum of the 2 scores
|
|
|
|
* 4. if there is more than 1 symbol left in the current list(i), then goto 3
|
|
|
|
* 5. i++
|
|
|
|
* 6. if i < 16 goto 2
|
|
|
|
* 7. select the n-1 elements in the last list with the lowest score (n = the number of symbols)
|
|
|
|
* 8. the length of the huffman code for symbol s will be equal to the number of times the symbol occurs in the select elements
|
|
|
|
* Go to guru.multimedia.cx/small-tasks-for-ffmpeg/ for more details
|
|
|
|
*
|
|
|
|
* All probabilities should be positive integers. The output is sorted by code,
|
|
|
|
* not by length.
|
|
|
|
*
|
|
|
|
* @param prob_table input array of a PTable for each distinct input value
|
|
|
|
* @param distincts output array of a HuffTable that will be populated by this function
|
|
|
|
* @param size size of the prob_table array
|
|
|
|
* @param max_length max length of an encoding
|
|
|
|
*/
|
|
|
|
void ff_mjpegenc_huffman_compute_bits(PTable *prob_table, HuffTable *distincts, int size, int max_length)
|
|
|
|
{
|
|
|
|
PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
|
|
|
|
|
|
|
|
int times, i, j, k;
|
|
|
|
|
|
|
|
int nbits[257] = {0};
|
|
|
|
|
|
|
|
int min;
|
|
|
|
|
|
|
|
av_assert0(max_length > 0);
|
|
|
|
|
|
|
|
to->nitems = 0;
|
|
|
|
from->nitems = 0;
|
|
|
|
to->item_idx[0] = 0;
|
|
|
|
from->item_idx[0] = 0;
|
|
|
|
AV_QSORT(prob_table, size, PTable, compare_by_prob);
|
|
|
|
|
|
|
|
for (times = 0; times <= max_length; times++) {
|
|
|
|
to->nitems = 0;
|
|
|
|
to->item_idx[0] = 0;
|
|
|
|
|
|
|
|
j = 0;
|
|
|
|
k = 0;
|
|
|
|
|
|
|
|
if (times < max_length) {
|
|
|
|
i = 0;
|
|
|
|
}
|
|
|
|
while (i < size || j + 1 < from->nitems) {
|
|
|
|
to->nitems++;
|
|
|
|
to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
|
|
|
|
if (i < size &&
|
|
|
|
(j + 1 >= from->nitems ||
|
|
|
|
prob_table[i].prob <
|
|
|
|
from->probability[j] + from->probability[j + 1])) {
|
|
|
|
to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
|
|
|
|
to->probability[to->nitems - 1] = prob_table[i].prob;
|
|
|
|
i++;
|
|
|
|
} else {
|
|
|
|
for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
|
|
|
|
to->items[to->item_idx[to->nitems]++] = from->items[k];
|
|
|
|
}
|
|
|
|
to->probability[to->nitems - 1] =
|
|
|
|
from->probability[j] + from->probability[j + 1];
|
|
|
|
j += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
temp = to;
|
|
|
|
to = from;
|
|
|
|
from = temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
|
|
|
|
for (i = 0; i < from->item_idx[min]; i++) {
|
|
|
|
nbits[from->items[i]]++;
|
|
|
|
}
|
|
|
|
// we don't want to return the 256 bit count (it was just in here to prevent
|
|
|
|
// all 1s encoding)
|
|
|
|
j = 0;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
if (nbits[i] > 0) {
|
|
|
|
distincts[j].code = i;
|
|
|
|
distincts[j].length = nbits[i];
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_mjpeg_encode_huffman_init(MJpegEncHuffmanContext *s)
|
|
|
|
{
|
|
|
|
memset(s->val_count, 0, sizeof(s->val_count));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Produces a Huffman encoding with a given input
|
|
|
|
*
|
|
|
|
* @param s input to encode
|
|
|
|
* @param bits output array where the ith character represents how many input values have i length encoding
|
|
|
|
* @param val output array of input values sorted by their encoded length
|
|
|
|
* @param max_nval maximum number of distinct input values
|
|
|
|
*/
|
|
|
|
void ff_mjpeg_encode_huffman_close(MJpegEncHuffmanContext *s, uint8_t bits[17],
|
|
|
|
uint8_t val[], int max_nval)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
int nval = 0;
|
|
|
|
PTable val_counts[257];
|
|
|
|
HuffTable distincts[256];
|
|
|
|
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
if (s->val_count[i]) nval++;
|
|
|
|
}
|
|
|
|
av_assert0 (nval <= max_nval);
|
|
|
|
|
|
|
|
j = 0;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
if (s->val_count[i]) {
|
|
|
|
val_counts[j].value = i;
|
|
|
|
val_counts[j].prob = s->val_count[i];
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
val_counts[j].value = 256;
|
|
|
|
val_counts[j].prob = 0;
|
|
|
|
ff_mjpegenc_huffman_compute_bits(val_counts, distincts, nval + 1, 16);
|
|
|
|
AV_QSORT(distincts, nval, HuffTable, compare_by_length);
|
|
|
|
|
|
|
|
memset(bits, 0, sizeof(bits[0]) * 17);
|
|
|
|
for (i = 0; i < nval; i++) {
|
|
|
|
val[i] = distincts[i].code;
|
|
|
|
bits[distincts[i].length]++;
|
|
|
|
}
|
|
|
|
}
|