|
|
|
/*
|
|
|
|
* LSP routines for ACELP-based codecs
|
|
|
|
*
|
|
|
|
* Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
|
|
|
|
* Copyright (c) 2008 Vladimir Voroshilov
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#define FRAC_BITS 14
|
|
|
|
#include "libavutil/macros.h"
|
|
|
|
#include "mathops.h"
|
|
|
|
#include "lsp.h"
|
|
|
|
#if ARCH_MIPS
|
|
|
|
#include "libavcodec/mips/lsp_mips.h"
|
|
|
|
#endif /* ARCH_MIPS */
|
|
|
|
#include "libavutil/avassert.h"
|
|
|
|
|
|
|
|
void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/* sort lsfq in ascending order. float bubble algorithm,
|
|
|
|
O(n) if data already sorted, O(n^2) - otherwise */
|
|
|
|
for(i=0; i<lp_order-1; i++)
|
|
|
|
for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
|
|
|
|
FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
|
|
|
|
|
|
|
|
for(i=0; i<lp_order; i++)
|
|
|
|
{
|
|
|
|
lsfq[i] = FFMAX(lsfq[i], lsfq_min);
|
|
|
|
lsfq_min = lsfq[i] + lsfq_min_distance;
|
|
|
|
}
|
|
|
|
lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float prev = 0.0;
|
|
|
|
for (i = 0; i < size; i++)
|
|
|
|
prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
|
|
|
|
static const int16_t tab_cos[65] =
|
|
|
|
{
|
|
|
|
32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860,
|
|
|
|
30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285,
|
|
|
|
23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014,
|
|
|
|
12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609,
|
|
|
|
1, -1607, -3211, -4808, -6393, -7962, -9513, -11040,
|
|
|
|
-12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
|
|
|
|
-23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
|
|
|
|
-30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int16_t ff_cos(uint16_t arg)
|
|
|
|
{
|
|
|
|
uint8_t offset= arg;
|
|
|
|
uint8_t ind = arg >> 8;
|
|
|
|
|
|
|
|
av_assert2(arg <= 0x3fff);
|
|
|
|
|
|
|
|
return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Convert LSF to LSP, lsp=cos(lsf) */
|
|
|
|
for(i=0; i<lp_order; i++)
|
|
|
|
// 20861 = 2.0 / PI in (0.15)
|
|
|
|
lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for(i = 0; i < lp_order; i++)
|
|
|
|
lsp[i] = cos(2.0 * M_PI * lsf[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief decodes polynomial coefficients from LSP
|
|
|
|
* @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
|
|
|
|
* @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
|
|
|
|
*/
|
|
|
|
static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
f[0] = 0x400000; // 1.0 in (3.22)
|
|
|
|
f[1] = -lsp[0] * 256; // *2 and (0.15) -> (3.22)
|
|
|
|
|
|
|
|
for(i=2; i<=lp_half_order; i++)
|
|
|
|
{
|
|
|
|
f[i] = f[i-2];
|
|
|
|
for(j=i; j>1; j--)
|
|
|
|
f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
|
|
|
|
|
|
|
|
f[1] -= lsp[2*i-2] * 256;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef ff_lsp2polyf
|
|
|
|
void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
|
|
|
|
{
|
|
|
|
f[0] = 1.0;
|
|
|
|
f[1] = -2 * lsp[0];
|
|
|
|
lsp -= 2;
|
|
|
|
for (int i = 2; i <= lp_half_order; i++) {
|
|
|
|
double val = -2 * lsp[2*i];
|
|
|
|
f[i] = val * f[i-1] + 2*f[i-2];
|
|
|
|
for (int j = i-1; j > 1; j--)
|
|
|
|
f[j] += f[j-1] * val + f[j-2];
|
|
|
|
f[1] += val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ff_lsp2polyf */
|
|
|
|
|
|
|
|
void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
|
|
|
|
int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
|
|
|
|
|
|
|
|
lsp2poly(f1, lsp , lp_half_order);
|
|
|
|
lsp2poly(f2, lsp+1, lp_half_order);
|
|
|
|
|
|
|
|
/* 3.2.6 of G.729, Equations 25 and 26*/
|
|
|
|
lp[0] = 4096;
|
|
|
|
for(i=1; i<lp_half_order+1; i++)
|
|
|
|
{
|
|
|
|
int ff1 = f1[i] + f1[i-1]; // (3.22)
|
|
|
|
int ff2 = f2[i] - f2[i-1]; // (3.22)
|
|
|
|
|
|
|
|
ff1 += 1 << 10; // for rounding
|
|
|
|
lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
|
|
|
|
lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
|
|
|
|
{
|
|
|
|
int lp_half_order = lp_order >> 1;
|
|
|
|
double buf[MAX_LP_HALF_ORDER + 1];
|
|
|
|
double pa[MAX_LP_HALF_ORDER + 1];
|
|
|
|
double *qa = buf + 1;
|
|
|
|
int i,j;
|
|
|
|
|
|
|
|
qa[-1] = 0.0;
|
|
|
|
|
|
|
|
ff_lsp2polyf(lsp , pa, lp_half_order );
|
|
|
|
ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
|
|
|
|
|
|
|
|
for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
|
|
|
|
double paf = pa[i] * (1 + lsp[lp_order - 1]);
|
|
|
|
double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
|
|
|
|
lp[i-1] = (paf + qaf) * 0.5;
|
|
|
|
lp[j-1] = (paf - qaf) * 0.5;
|
|
|
|
}
|
|
|
|
|
|
|
|
lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
|
|
|
|
pa[lp_half_order] * 0.5;
|
|
|
|
|
|
|
|
lp[lp_order - 1] = lsp[lp_order - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
|
|
|
|
{
|
|
|
|
int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
|
|
|
|
for(i=0; i<lp_order; i++)
|
|
|
|
#ifdef G729_BITEXACT
|
|
|
|
lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
|
|
|
|
#else
|
|
|
|
lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
|
|
|
|
|
|
|
|
/* LSP values for second subframe (3.2.5 of G.729)*/
|
|
|
|
ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
|
|
|
|
{
|
|
|
|
double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
|
|
|
|
float *lpc2 = lpc + (lp_half_order << 1) - 1;
|
|
|
|
|
|
|
|
av_assert2(lp_half_order <= MAX_LP_HALF_ORDER);
|
|
|
|
|
|
|
|
ff_lsp2polyf(lsp, pa, lp_half_order);
|
|
|
|
ff_lsp2polyf(lsp + 1, qa, lp_half_order);
|
|
|
|
|
|
|
|
while (lp_half_order--) {
|
|
|
|
double paf = pa[lp_half_order+1] + pa[lp_half_order];
|
|
|
|
double qaf = qa[lp_half_order+1] - qa[lp_half_order];
|
|
|
|
|
|
|
|
lpc [ lp_half_order] = 0.5*(paf+qaf);
|
|
|
|
lpc2[-lp_half_order] = 0.5*(paf-qaf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_sort_nearly_sorted_floats(float *vals, int len)
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
|
|
|
|
for (i = 0; i < len - 1; i++)
|
|
|
|
for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
|
|
|
|
FFSWAP(float, vals[j], vals[j+1]);
|
|
|
|
}
|