You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4663 lines
169 KiB

/*
* The simplest mpeg encoder (well, it was the simplest!)
* Copyright (c) 2000,2001 Fabrice Bellard
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
*
* 4MV & hq & B-frame encoding stuff by Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
10 years ago
* non linear quantizers with large QPs and VBV with restrictive qmin fixes sponsored by NOA GmbH
*/
/**
* @file
* The simplest mpeg encoder (well, it was the simplest!).
*/
#include "config_components.h"
#include <stdint.h>
#include "libavutil/emms.h"
#include "libavutil/internal.h"
#include "libavutil/intmath.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "libavutil/thread.h"
#include "avcodec.h"
#include "encode.h"
#include "idctdsp.h"
#include "mpeg12codecs.h"
#include "mpeg12data.h"
#include "mpeg12enc.h"
#include "mpegvideo.h"
#include "mpegvideodata.h"
#include "mpegvideoenc.h"
#include "h261enc.h"
#include "h263.h"
#include "h263data.h"
#include "h263enc.h"
#include "mjpegenc_common.h"
#include "mathops.h"
#include "mpegutils.h"
#include "mjpegenc.h"
#include "speedhqenc.h"
#include "msmpeg4enc.h"
#include "pixblockdsp.h"
#include "qpeldsp.h"
#include "faandct.h"
#include "aandcttab.h"
#include "flvenc.h"
#include "mpeg4video.h"
#include "mpeg4videodata.h"
#include "mpeg4videoenc.h"
#include "internal.h"
#include "bytestream.h"
#include "wmv2enc.h"
#include "rv10enc.h"
#include "packet_internal.h"
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
#include "refstruct.h"
#include <limits.h>
#include "sp5x.h"
#define QUANT_BIAS_SHIFT 8
#define QMAT_SHIFT_MMX 16
#define QMAT_SHIFT 21
static int encode_picture(MpegEncContext *s, const AVPacket *pkt);
static int dct_quantize_refine(MpegEncContext *s, int16_t *block, int16_t *weight, int16_t *orig, int n, int qscale);
static int sse_mb(MpegEncContext *s);
static void denoise_dct_c(MpegEncContext *s, int16_t *block);
static int dct_quantize_c(MpegEncContext *s,
int16_t *block, int n,
int qscale, int *overflow);
static int dct_quantize_trellis_c(MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow);
static uint8_t default_mv_penalty[MAX_FCODE + 1][MAX_DMV * 2 + 1];
static uint8_t default_fcode_tab[MAX_MV * 2 + 1];
static const AVOption mpv_generic_options[] = {
FF_MPV_COMMON_OPTS
FF_MPV_COMMON_MOTION_EST_OPTS
{ NULL },
};
const AVClass ff_mpv_enc_class = {
.class_name = "generic mpegvideo encoder",
.item_name = av_default_item_name,
.option = mpv_generic_options,
.version = LIBAVUTIL_VERSION_INT,
};
void ff_convert_matrix(MpegEncContext *s, int (*qmat)[64],
uint16_t (*qmat16)[2][64],
const uint16_t *quant_matrix,
int bias, int qmin, int qmax, int intra)
{
FDCTDSPContext *fdsp = &s->fdsp;
int qscale;
int shift = 0;
for (qscale = qmin; qscale <= qmax; qscale++) {
int i;
int qscale2;
if (s->q_scale_type) qscale2 = ff_mpeg2_non_linear_qscale[qscale];
else qscale2 = qscale << 1;
if (fdsp->fdct == ff_jpeg_fdct_islow_8 ||
#if CONFIG_FAANDCT
fdsp->fdct == ff_faandct ||
#endif /* CONFIG_FAANDCT */
fdsp->fdct == ff_jpeg_fdct_islow_10) {
for (i = 0; i < 64; i++) {
const int j = s->idsp.idct_permutation[i];
int64_t den = (int64_t) qscale2 * quant_matrix[j];
/* 16 <= qscale * quant_matrix[i] <= 7905
* Assume x = ff_aanscales[i] * qscale * quant_matrix[i]
* 19952 <= x <= 249205026
* (1 << 36) / 19952 >= (1 << 36) / (x) >= (1 << 36) / 249205026
* 3444240 >= (1 << 36) / (x) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(2) << QMAT_SHIFT) / den);
}
} else if (fdsp->fdct == ff_fdct_ifast) {
for (i = 0; i < 64; i++) {
const int j = s->idsp.idct_permutation[i];
int64_t den = ff_aanscales[i] * (int64_t) qscale2 * quant_matrix[j];
/* 16 <= qscale * quant_matrix[i] <= 7905
* Assume x = ff_aanscales[i] * qscale * quant_matrix[i]
* 19952 <= x <= 249205026
* (1 << 36) / 19952 >= (1 << 36) / (x) >= (1 << 36) / 249205026
* 3444240 >= (1 << 36) / (x) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(2) << (QMAT_SHIFT + 14)) / den);
}
} else {
for (i = 0; i < 64; i++) {
const int j = s->idsp.idct_permutation[i];
int64_t den = (int64_t) qscale2 * quant_matrix[j];
/* We can safely suppose that 16 <= quant_matrix[i] <= 255
* Assume x = qscale * quant_matrix[i]
* So 16 <= x <= 7905
* so (1 << 19) / 16 >= (1 << 19) / (x) >= (1 << 19) / 7905
* so 32768 >= (1 << 19) / (x) >= 67 */
qmat[qscale][i] = (int)((UINT64_C(2) << QMAT_SHIFT) / den);
//qmat [qscale][i] = (1 << QMAT_SHIFT_MMX) /
// (qscale * quant_matrix[i]);
qmat16[qscale][0][i] = (2 << QMAT_SHIFT_MMX) / den;
if (qmat16[qscale][0][i] == 0 ||
qmat16[qscale][0][i] == 128 * 256)
qmat16[qscale][0][i] = 128 * 256 - 1;
qmat16[qscale][1][i] =
ROUNDED_DIV(bias * (1<<(16 - QUANT_BIAS_SHIFT)),
qmat16[qscale][0][i]);
}
}
for (i = intra; i < 64; i++) {
int64_t max = 8191;
if (fdsp->fdct == ff_fdct_ifast) {
max = (8191LL * ff_aanscales[i]) >> 14;
}
while (((max * qmat[qscale][i]) >> shift) > INT_MAX) {
shift++;
}
}
}
if (shift) {
av_log(s->avctx, AV_LOG_INFO,
"Warning, QMAT_SHIFT is larger than %d, overflows possible\n",
QMAT_SHIFT - shift);
}
}
static inline void update_qscale(MpegEncContext *s)
{
if (s->q_scale_type == 1 && 0) {
int i;
int bestdiff=INT_MAX;
int best = 1;
for (i = 0 ; i<FF_ARRAY_ELEMS(ff_mpeg2_non_linear_qscale); i++) {
int diff = FFABS((ff_mpeg2_non_linear_qscale[i]<<(FF_LAMBDA_SHIFT + 6)) - (int)s->lambda * 139);
if (ff_mpeg2_non_linear_qscale[i] < s->avctx->qmin ||
(ff_mpeg2_non_linear_qscale[i] > s->avctx->qmax && !s->vbv_ignore_qmax))
continue;
if (diff < bestdiff) {
bestdiff = diff;
best = i;
}
}
s->qscale = best;
} else {
s->qscale = (s->lambda * 139 + FF_LAMBDA_SCALE * 64) >>
(FF_LAMBDA_SHIFT + 7);
s->qscale = av_clip(s->qscale, s->avctx->qmin, s->vbv_ignore_qmax ? 31 : s->avctx->qmax);
}
s->lambda2 = (s->lambda * s->lambda + FF_LAMBDA_SCALE / 2) >>
FF_LAMBDA_SHIFT;
}
void ff_write_quant_matrix(PutBitContext *pb, uint16_t *matrix)
{
int i;
if (matrix) {
put_bits(pb, 1, 1);
for (i = 0; i < 64; i++) {
put_bits(pb, 8, matrix[ff_zigzag_direct[i]]);
}
} else
put_bits(pb, 1, 0);
}
/**
* init s->cur_pic.qscale_table from s->lambda_table
*/
static void init_qscale_tab(MpegEncContext *s)
{
int8_t * const qscale_table = s->cur_pic.qscale_table;
int i;
for (i = 0; i < s->mb_num; i++) {
unsigned int lam = s->lambda_table[s->mb_index2xy[i]];
int qp = (lam * 139 + FF_LAMBDA_SCALE * 64) >> (FF_LAMBDA_SHIFT + 7);
qscale_table[s->mb_index2xy[i]] = av_clip(qp, s->avctx->qmin,
s->avctx->qmax);
}
}
static void update_duplicate_context_after_me(MpegEncContext *dst,
const MpegEncContext *src)
{
#define COPY(a) dst->a= src->a
COPY(pict_type);
COPY(f_code);
COPY(b_code);
COPY(qscale);
COPY(lambda);
COPY(lambda2);
COPY(frame_pred_frame_dct); // FIXME don't set in encode_header
COPY(progressive_frame); // FIXME don't set in encode_header
COPY(partitioned_frame); // FIXME don't set in encode_header
#undef COPY
}
static void mpv_encode_init_static(void)
{
for (int i = -16; i < 16; i++)
default_fcode_tab[i + MAX_MV] = 1;
}
/**
* Set the given MpegEncContext to defaults for encoding.
* the changed fields will not depend upon the prior state of the MpegEncContext.
*/
static void mpv_encode_defaults(MpegEncContext *s)
{
static AVOnce init_static_once = AV_ONCE_INIT;
ff_mpv_common_defaults(s);
ff_thread_once(&init_static_once, mpv_encode_init_static);
s->me.mv_penalty = default_mv_penalty;
s->fcode_tab = default_fcode_tab;
s->input_picture_number = 0;
s->picture_in_gop_number = 0;
}
av_cold void ff_dct_encode_init(MpegEncContext *s)
{
s->dct_quantize = dct_quantize_c;
s->denoise_dct = denoise_dct_c;
#if ARCH_MIPS
ff_mpvenc_dct_init_mips(s);
#elif ARCH_X86
ff_dct_encode_init_x86(s);
#endif
if (s->avctx->trellis)
s->dct_quantize = dct_quantize_trellis_c;
}
static av_cold int me_cmp_init(MpegEncContext *s, AVCodecContext *avctx)
{
MECmpContext mecc;
me_cmp_func me_cmp[6];
int ret;
ff_me_cmp_init(&mecc, avctx);
ret = ff_me_init(&s->me, avctx, &mecc, 1);
if (ret < 0)
return ret;
ret = ff_set_cmp(&mecc, me_cmp, s->frame_skip_cmp, 1);
if (ret < 0)
return ret;
s->frame_skip_cmp_fn = me_cmp[1];
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
ret = ff_set_cmp(&mecc, me_cmp, avctx->ildct_cmp, 1);
if (ret < 0)
return ret;
if (!me_cmp[0] || !me_cmp[4])
return AVERROR(EINVAL);
s->ildct_cmp[0] = me_cmp[0];
s->ildct_cmp[1] = me_cmp[4];
}
s->sum_abs_dctelem = mecc.sum_abs_dctelem;
s->sse_cmp[0] = mecc.sse[0];
s->sse_cmp[1] = mecc.sse[1];
s->sad_cmp[0] = mecc.sad[0];
s->sad_cmp[1] = mecc.sad[1];
if (avctx->mb_cmp == FF_CMP_NSSE) {
s->n_sse_cmp[0] = mecc.nsse[0];
s->n_sse_cmp[1] = mecc.nsse[1];
} else {
s->n_sse_cmp[0] = mecc.sse[0];
s->n_sse_cmp[1] = mecc.sse[1];
}
return 0;
}
/* init video encoder */
av_cold int ff_mpv_encode_init(AVCodecContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
AVCPBProperties *cpb_props;
int i, ret;
int mb_array_size, mv_table_size;
mpv_encode_defaults(s);
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUVJ444P:
case AV_PIX_FMT_YUV444P:
s->chroma_format = CHROMA_444;
break;
case AV_PIX_FMT_YUVJ422P:
case AV_PIX_FMT_YUV422P:
s->chroma_format = CHROMA_422;
break;
case AV_PIX_FMT_YUVJ420P:
case AV_PIX_FMT_YUV420P:
default:
s->chroma_format = CHROMA_420;
break;
}
avctx->bits_per_raw_sample = av_clip(avctx->bits_per_raw_sample, 0, 8);
s->bit_rate = avctx->bit_rate;
s->width = avctx->width;
s->height = avctx->height;
if (avctx->gop_size > 600 &&
avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
av_log(avctx, AV_LOG_WARNING,
"keyframe interval too large!, reducing it from %d to %d\n",
avctx->gop_size, 600);
avctx->gop_size = 600;
}
s->gop_size = avctx->gop_size;
s->avctx = avctx;
if (avctx->max_b_frames > MAX_B_FRAMES) {
av_log(avctx, AV_LOG_ERROR, "Too many B-frames requested, maximum "
"is %d.\n", MAX_B_FRAMES);
avctx->max_b_frames = MAX_B_FRAMES;
} else if (avctx->max_b_frames < 0) {
av_log(avctx, AV_LOG_ERROR,
"max b frames must be 0 or positive for mpegvideo based encoders\n");
return AVERROR(EINVAL);
}
s->max_b_frames = avctx->max_b_frames;
s->codec_id = avctx->codec->id;
if (s->max_b_frames && !(avctx->codec->capabilities & AV_CODEC_CAP_DELAY)) {
av_log(avctx, AV_LOG_ERROR, "B-frames not supported by codec\n");
return AVERROR(EINVAL);
}
s->quarter_sample = (avctx->flags & AV_CODEC_FLAG_QPEL) != 0;
s->rtp_mode = !!s->rtp_payload_size;
s->intra_dc_precision = avctx->intra_dc_precision;
// workaround some differences between how applications specify dc precision
if (s->intra_dc_precision < 0) {
s->intra_dc_precision += 8;
} else if (s->intra_dc_precision >= 8)
s->intra_dc_precision -= 8;
if (s->intra_dc_precision < 0) {
av_log(avctx, AV_LOG_ERROR,
"intra dc precision must be positive, note some applications use"
" 0 and some 8 as base meaning 8bit, the value must not be smaller than that\n");
return AVERROR(EINVAL);
}
if (s->intra_dc_precision > (avctx->codec_id == AV_CODEC_ID_MPEG2VIDEO ? 3 : 0)) {
av_log(avctx, AV_LOG_ERROR, "intra dc precision too large\n");
return AVERROR(EINVAL);
}
s->user_specified_pts = AV_NOPTS_VALUE;
if (s->gop_size <= 1) {
s->intra_only = 1;
s->gop_size = 12;
} else {
s->intra_only = 0;
}
/* Fixed QSCALE */
s->fixed_qscale = !!(avctx->flags & AV_CODEC_FLAG_QSCALE);
s->adaptive_quant = (avctx->lumi_masking ||
avctx->dark_masking ||
avctx->temporal_cplx_masking ||
avctx->spatial_cplx_masking ||
avctx->p_masking ||
s->border_masking ||
(s->mpv_flags & FF_MPV_FLAG_QP_RD)) &&
!s->fixed_qscale;
s->loop_filter = !!(avctx->flags & AV_CODEC_FLAG_LOOP_FILTER);
if (avctx->rc_max_rate && !avctx->rc_buffer_size) {
switch(avctx->codec_id) {
case AV_CODEC_ID_MPEG1VIDEO:
case AV_CODEC_ID_MPEG2VIDEO:
avctx->rc_buffer_size = FFMAX(avctx->rc_max_rate, 15000000) * 112LL / 15000000 * 16384;
break;
case AV_CODEC_ID_MPEG4:
case AV_CODEC_ID_MSMPEG4V1:
case AV_CODEC_ID_MSMPEG4V2:
case AV_CODEC_ID_MSMPEG4V3:
if (avctx->rc_max_rate >= 15000000) {
avctx->rc_buffer_size = 320 + (avctx->rc_max_rate - 15000000LL) * (760-320) / (38400000 - 15000000);
} else if(avctx->rc_max_rate >= 2000000) {
avctx->rc_buffer_size = 80 + (avctx->rc_max_rate - 2000000LL) * (320- 80) / (15000000 - 2000000);
} else if(avctx->rc_max_rate >= 384000) {
avctx->rc_buffer_size = 40 + (avctx->rc_max_rate - 384000LL) * ( 80- 40) / ( 2000000 - 384000);
} else
avctx->rc_buffer_size = 40;
avctx->rc_buffer_size *= 16384;
break;
}
if (avctx->rc_buffer_size) {
av_log(avctx, AV_LOG_INFO, "Automatically choosing VBV buffer size of %d kbyte\n", avctx->rc_buffer_size/8192);
}
}
if ((!avctx->rc_max_rate) != (!avctx->rc_buffer_size)) {
av_log(avctx, AV_LOG_ERROR, "Either both buffer size and max rate or neither must be specified\n");
return AVERROR(EINVAL);
}
if (avctx->rc_min_rate && avctx->rc_max_rate != avctx->rc_min_rate) {
av_log(avctx, AV_LOG_INFO,
"Warning min_rate > 0 but min_rate != max_rate isn't recommended!\n");
}
if (avctx->rc_min_rate && avctx->rc_min_rate > avctx->bit_rate) {
av_log(avctx, AV_LOG_ERROR, "bitrate below min bitrate\n");
return AVERROR(EINVAL);
}
if (avctx->rc_max_rate && avctx->rc_max_rate < avctx->bit_rate) {
av_log(avctx, AV_LOG_ERROR, "bitrate above max bitrate\n");
return AVERROR(EINVAL);
}
if (avctx->rc_max_rate &&
avctx->rc_max_rate == avctx->bit_rate &&
avctx->rc_max_rate != avctx->rc_min_rate) {
av_log(avctx, AV_LOG_INFO,
"impossible bitrate constraints, this will fail\n");
}
if (avctx->rc_buffer_size &&
avctx->bit_rate * (int64_t)avctx->time_base.num >
avctx->rc_buffer_size * (int64_t)avctx->time_base.den) {
av_log(avctx, AV_LOG_ERROR, "VBV buffer too small for bitrate\n");
return AVERROR(EINVAL);
}
if (!s->fixed_qscale &&
avctx->bit_rate * av_q2d(avctx->time_base) >
avctx->bit_rate_tolerance) {
double nbt = avctx->bit_rate * av_q2d(avctx->time_base) * 5;
av_log(avctx, AV_LOG_WARNING,
"bitrate tolerance %d too small for bitrate %"PRId64", overriding\n", avctx->bit_rate_tolerance, avctx->bit_rate);
if (nbt <= INT_MAX) {
avctx->bit_rate_tolerance = nbt;
} else
avctx->bit_rate_tolerance = INT_MAX;
}
if (avctx->rc_max_rate &&
avctx->rc_min_rate == avctx->rc_max_rate &&
(s->codec_id == AV_CODEC_ID_MPEG1VIDEO ||
s->codec_id == AV_CODEC_ID_MPEG2VIDEO) &&
90000LL * (avctx->rc_buffer_size - 1) >
avctx->rc_max_rate * 0xFFFFLL) {
av_log(avctx, AV_LOG_INFO,
"Warning vbv_delay will be set to 0xFFFF (=VBR) as the "
"specified vbv buffer is too large for the given bitrate!\n");
}
if ((avctx->flags & AV_CODEC_FLAG_4MV) && s->codec_id != AV_CODEC_ID_MPEG4 &&
s->codec_id != AV_CODEC_ID_H263 && s->codec_id != AV_CODEC_ID_H263P &&
s->codec_id != AV_CODEC_ID_FLV1) {
av_log(avctx, AV_LOG_ERROR, "4MV not supported by codec\n");
return AVERROR(EINVAL);
}
if (s->obmc && avctx->mb_decision != FF_MB_DECISION_SIMPLE) {
av_log(avctx, AV_LOG_ERROR,
"OBMC is only supported with simple mb decision\n");
return AVERROR(EINVAL);
}
if (s->quarter_sample && s->codec_id != AV_CODEC_ID_MPEG4) {
av_log(avctx, AV_LOG_ERROR, "qpel not supported by codec\n");
return AVERROR(EINVAL);
}
if ((s->codec_id == AV_CODEC_ID_MPEG4 ||
s->codec_id == AV_CODEC_ID_H263 ||
s->codec_id == AV_CODEC_ID_H263P) &&
(avctx->sample_aspect_ratio.num > 255 ||
avctx->sample_aspect_ratio.den > 255)) {
av_log(avctx, AV_LOG_WARNING,
"Invalid pixel aspect ratio %i/%i, limit is 255/255 reducing\n",
avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den);
av_reduce(&avctx->sample_aspect_ratio.num, &avctx->sample_aspect_ratio.den,
avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den, 255);
}
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
if ((s->codec_id == AV_CODEC_ID_H263 ||
s->codec_id == AV_CODEC_ID_H263P) &&
(avctx->width > 2048 ||
avctx->height > 1152 )) {
av_log(avctx, AV_LOG_ERROR, "H.263 does not support resolutions above 2048x1152\n");
return AVERROR(EINVAL);
}
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
if ((s->codec_id == AV_CODEC_ID_H263 ||
s->codec_id == AV_CODEC_ID_H263P ||
s->codec_id == AV_CODEC_ID_RV20) &&
((avctx->width &3) ||
(avctx->height&3) )) {
av_log(avctx, AV_LOG_ERROR, "width and height must be a multiple of 4\n");
return AVERROR(EINVAL);
}
if (s->codec_id == AV_CODEC_ID_RV10 &&
(avctx->width &15 ||
avctx->height&15 )) {
av_log(avctx, AV_LOG_ERROR, "width and height must be a multiple of 16\n");
return AVERROR(EINVAL);
}
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
if ((s->codec_id == AV_CODEC_ID_WMV1 ||
s->codec_id == AV_CODEC_ID_WMV2) &&
avctx->width & 1) {
av_log(avctx, AV_LOG_ERROR, "width must be multiple of 2\n");
return AVERROR(EINVAL);
}
if ((avctx->flags & (AV_CODEC_FLAG_INTERLACED_DCT | AV_CODEC_FLAG_INTERLACED_ME)) &&
s->codec_id != AV_CODEC_ID_MPEG4 && s->codec_id != AV_CODEC_ID_MPEG2VIDEO) {
av_log(avctx, AV_LOG_ERROR, "interlacing not supported by codec\n");
return AVERROR(EINVAL);
}
if ((s->mpv_flags & FF_MPV_FLAG_CBP_RD) && !avctx->trellis) {
av_log(avctx, AV_LOG_ERROR, "CBP RD needs trellis quant\n");
return AVERROR(EINVAL);
}
if ((s->mpv_flags & FF_MPV_FLAG_QP_RD) &&
avctx->mb_decision != FF_MB_DECISION_RD) {
av_log(avctx, AV_LOG_ERROR, "QP RD needs mbd=rd\n");
return AVERROR(EINVAL);
}
if (s->scenechange_threshold < 1000000000 &&
(avctx->flags & AV_CODEC_FLAG_CLOSED_GOP)) {
av_log(avctx, AV_LOG_ERROR,
"closed gop with scene change detection are not supported yet, "
"set threshold to 1000000000\n");
return AVERROR_PATCHWELCOME;
}
if (avctx->flags & AV_CODEC_FLAG_LOW_DELAY) {
if (s->codec_id != AV_CODEC_ID_MPEG2VIDEO &&
avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) {
av_log(avctx, AV_LOG_ERROR,
"low delay forcing is only available for mpeg2, "
"set strict_std_compliance to 'unofficial' or lower in order to allow it\n");
return AVERROR(EINVAL);
}
if (s->max_b_frames != 0) {
av_log(avctx, AV_LOG_ERROR,
"B-frames cannot be used with low delay\n");
return AVERROR(EINVAL);
}
}
if (s->q_scale_type == 1) {
if (avctx->qmax > 28) {
av_log(avctx, AV_LOG_ERROR,
"non linear quant only supports qmax <= 28 currently\n");
return AVERROR_PATCHWELCOME;
}
}
if (avctx->slices > 1 &&
!(avctx->codec->capabilities & AV_CODEC_CAP_SLICE_THREADS)) {
av_log(avctx, AV_LOG_ERROR, "Multiple slices are not supported by this codec\n");
return AVERROR(EINVAL);
}
if (s->b_frame_strategy && (avctx->flags & AV_CODEC_FLAG_PASS2)) {
av_log(avctx, AV_LOG_INFO,
"notice: b_frame_strategy only affects the first pass\n");
s->b_frame_strategy = 0;
}
i = av_gcd(avctx->time_base.den, avctx->time_base.num);
if (i > 1) {
av_log(avctx, AV_LOG_INFO, "removing common factors from framerate\n");
avctx->time_base.den /= i;
avctx->time_base.num /= i;
//return -1;
}
if (s->mpeg_quant || s->codec_id == AV_CODEC_ID_MPEG1VIDEO || s->codec_id == AV_CODEC_ID_MPEG2VIDEO || s->codec_id == AV_CODEC_ID_MJPEG || s->codec_id == AV_CODEC_ID_AMV || s->codec_id == AV_CODEC_ID_SPEEDHQ) {
// (a + x * 3 / 8) / x
s->intra_quant_bias = 3 << (QUANT_BIAS_SHIFT - 3);
s->inter_quant_bias = 0;
} else {
s->intra_quant_bias = 0;
// (a - x / 4) / x
s->inter_quant_bias = -(1 << (QUANT_BIAS_SHIFT - 2));
}
if (avctx->qmin > avctx->qmax || avctx->qmin <= 0) {
av_log(avctx, AV_LOG_ERROR, "qmin and or qmax are invalid, they must be 0 < min <= max\n");
return AVERROR(EINVAL);
}
av_log(avctx, AV_LOG_DEBUG, "intra_quant_bias = %d inter_quant_bias = %d\n",s->intra_quant_bias,s->inter_quant_bias);
if (avctx->codec_id == AV_CODEC_ID_MPEG4 &&
avctx->time_base.den > (1 << 16) - 1) {
av_log(avctx, AV_LOG_ERROR,
"timebase %d/%d not supported by MPEG 4 standard, "
"the maximum admitted value for the timebase denominator "
"is %d\n", avctx->time_base.num, avctx->time_base.den,
(1 << 16) - 1);
return AVERROR(EINVAL);
}
s->time_increment_bits = av_log2(avctx->time_base.den - 1) + 1;
switch (avctx->codec->id) {
#if CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER
case AV_CODEC_ID_MPEG2VIDEO:
s->rtp_mode = 1;
/* fallthrough */
case AV_CODEC_ID_MPEG1VIDEO:
s->out_format = FMT_MPEG1;
s->low_delay = !!(avctx->flags & AV_CODEC_FLAG_LOW_DELAY);
avctx->delay = s->low_delay ? 0 : (s->max_b_frames + 1);
ff_mpeg1_encode_init(s);
break;
#endif
#if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
case AV_CODEC_ID_MJPEG:
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
case AV_CODEC_ID_AMV:
s->out_format = FMT_MJPEG;
s->intra_only = 1; /* force intra only for jpeg */
if ((ret = ff_mjpeg_encode_init(s)) < 0)
return ret;
avctx->delay = 0;
s->low_delay = 1;
break;
#endif
case AV_CODEC_ID_SPEEDHQ:
s->out_format = FMT_SPEEDHQ;
s->intra_only = 1; /* force intra only for SHQ */
if (!CONFIG_SPEEDHQ_ENCODER)
return AVERROR_ENCODER_NOT_FOUND;
if ((ret = ff_speedhq_encode_init(s)) < 0)
return ret;
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_H261:
if (!CONFIG_H261_ENCODER)
return AVERROR_ENCODER_NOT_FOUND;
ret = ff_h261_encode_init(s);
if (ret < 0)
return ret;
s->out_format = FMT_H261;
avctx->delay = 0;
s->low_delay = 1;
s->rtp_mode = 0; /* Sliced encoding not supported */
break;
case AV_CODEC_ID_H263:
if (!CONFIG_H263_ENCODER)
return AVERROR_ENCODER_NOT_FOUND;
if (ff_match_2uint16(ff_h263_format, FF_ARRAY_ELEMS(ff_h263_format),
s->width, s->height) == 8) {
av_log(avctx, AV_LOG_ERROR,
"The specified picture size of %dx%d is not valid for "
"the H.263 codec.\nValid sizes are 128x96, 176x144, "
"352x288, 704x576, and 1408x1152. "
"Try H.263+.\n", s->width, s->height);
return AVERROR(EINVAL);
}
s->out_format = FMT_H263;
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_H263P:
s->out_format = FMT_H263;
s->h263_plus = 1;
/* Fx */
s->h263_aic = (avctx->flags & AV_CODEC_FLAG_AC_PRED) ? 1 : 0;
s->modified_quant = s->h263_aic;
s->loop_filter = (avctx->flags & AV_CODEC_FLAG_LOOP_FILTER) ? 1 : 0;
s->unrestricted_mv = s->obmc || s->loop_filter || s->umvplus;
s->flipflop_rounding = 1;
/* /Fx */
/* These are just to be sure */
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_FLV1:
s->out_format = FMT_H263;
s->h263_flv = 2; /* format = 1; 11-bit codes */
s->unrestricted_mv = 1;
s->rtp_mode = 0; /* don't allow GOB */
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_RV10:
s->out_format = FMT_H263;
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_RV20:
s->out_format = FMT_H263;
avctx->delay = 0;
s->low_delay = 1;
s->modified_quant = 1;
s->h263_aic = 1;
s->h263_plus = 1;
s->loop_filter = 1;
s->unrestricted_mv = 0;
break;
case AV_CODEC_ID_MPEG4:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
s->flipflop_rounding = 1;
s->low_delay = s->max_b_frames ? 0 : 1;
avctx->delay = s->low_delay ? 0 : (s->max_b_frames + 1);
break;
case AV_CODEC_ID_MSMPEG4V2:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
s->msmpeg4_version = MSMP4_V2;
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_MSMPEG4V3:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
s->msmpeg4_version = MSMP4_V3;
s->flipflop_rounding = 1;
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_WMV1:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
s->msmpeg4_version = MSMP4_WMV1;
s->flipflop_rounding = 1;
avctx->delay = 0;
s->low_delay = 1;
break;
case AV_CODEC_ID_WMV2:
s->out_format = FMT_H263;
s->h263_pred = 1;
s->unrestricted_mv = 1;
s->msmpeg4_version = MSMP4_WMV2;
s->flipflop_rounding = 1;
avctx->delay = 0;
s->low_delay = 1;
break;
default:
return AVERROR(EINVAL);
}
avctx->has_b_frames = !s->low_delay;
s->encoding = 1;
s->progressive_frame =
s->progressive_sequence = !(avctx->flags & (AV_CODEC_FLAG_INTERLACED_DCT |
AV_CODEC_FLAG_INTERLACED_ME) ||
s->alternate_scan);
if (s->lmin > s->lmax) {
av_log(avctx, AV_LOG_WARNING, "Clipping lmin value to %d\n", s->lmax);
s->lmin = s->lmax;
}
/* init */
ff_mpv_idct_init(s);
if ((ret = ff_mpv_common_init(s)) < 0)
return ret;
ff_fdctdsp_init(&s->fdsp, avctx);
ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
ff_pixblockdsp_init(&s->pdsp, avctx);
ret = me_cmp_init(s, avctx);
if (ret < 0)
return ret;
if (!(avctx->stats_out = av_mallocz(256)) ||
!FF_ALLOCZ_TYPED_ARRAY(s->q_intra_matrix, 32) ||
!FF_ALLOCZ_TYPED_ARRAY(s->q_chroma_intra_matrix, 32) ||
!FF_ALLOCZ_TYPED_ARRAY(s->q_inter_matrix, 32) ||
!FF_ALLOCZ_TYPED_ARRAY(s->q_intra_matrix16, 32) ||
!FF_ALLOCZ_TYPED_ARRAY(s->q_chroma_intra_matrix16, 32) ||
!FF_ALLOCZ_TYPED_ARRAY(s->q_inter_matrix16, 32) ||
!FF_ALLOCZ_TYPED_ARRAY(s->input_picture, MAX_B_FRAMES + 1) ||
!FF_ALLOCZ_TYPED_ARRAY(s->reordered_input_picture, MAX_B_FRAMES + 1) ||
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
!(s->new_pic = av_frame_alloc()) ||
!(s->picture_pool = ff_mpv_alloc_pic_pool(0)))
return AVERROR(ENOMEM);
/* Allocate MV tables; the MV and MB tables will be copied
* to slice contexts by ff_update_duplicate_context(). */
mv_table_size = (s->mb_height + 2) * s->mb_stride + 1;
if (!FF_ALLOCZ_TYPED_ARRAY(s->p_mv_table_base, mv_table_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->b_forw_mv_table_base, mv_table_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->b_back_mv_table_base, mv_table_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->b_bidir_forw_mv_table_base, mv_table_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->b_bidir_back_mv_table_base, mv_table_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->b_direct_mv_table_base, mv_table_size))
return AVERROR(ENOMEM);
s->p_mv_table = s->p_mv_table_base + s->mb_stride + 1;
s->b_forw_mv_table = s->b_forw_mv_table_base + s->mb_stride + 1;
s->b_back_mv_table = s->b_back_mv_table_base + s->mb_stride + 1;
s->b_bidir_forw_mv_table = s->b_bidir_forw_mv_table_base + s->mb_stride + 1;
s->b_bidir_back_mv_table = s->b_bidir_back_mv_table_base + s->mb_stride + 1;
s->b_direct_mv_table = s->b_direct_mv_table_base + s->mb_stride + 1;
/* Allocate MB type table */
avcodec/mpegpicture: Move mb_var, mc_mb_var and mb_mean to MpegEncCtx These tables are only used by encoders and only for the current picture; ergo they need not be put into the picture at all, but rather into the encoder's context. They also don't need to be refcounted, because there is only one owner. In contrast to this, the earlier code refcounts them which incurs unnecessary overhead. These references are not unreferenced in ff_mpeg_unref_picture() (they are kept in order to have something like a buffer pool), so that several buffers are kept at the same time, although only one is needed, thereby wasting memory. The code also propagates references to other pictures not part of the pictures array (namely the copy of the current/next/last picture in the MpegEncContext which get references of their own). These references are not unreferenced in ff_mpeg_unref_picture() (the buffers are probably kept in order to have something like a pool), yet if the current picture is a B-frame, it gets unreferenced at the end of ff_mpv_encode_picture() and its slot in the picture array will therefore be reused the next time; but the copy of the current picture also still has its references and therefore these buffers will be made duplicated in order to make them writable in the next call to ff_mpv_encode_picture(). This is of course unnecessary. Finally, ff_find_unused_picture() is supposed to just return any unused picture and the code is supposed to work with it; yet for the vsynth*-mpeg4-adap tests the result depends upon the content of these buffers; given that this patchset changes the content of these buffers (the initial content is now the state of these buffers after encoding the last frame; before this patch the buffers used came from the last picture that occupied the same slot in the picture array) their ref-files needed to be changed. This points to a bug somewhere (if one removes the initialization, one gets uninitialized reads in adaptive_quantization in ratecontrol.c). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
3 years ago
mb_array_size = s->mb_stride * s->mb_height;
if (!FF_ALLOCZ_TYPED_ARRAY(s->mb_type, mb_array_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->lambda_table, mb_array_size) ||
!FF_ALLOC_TYPED_ARRAY (s->cplx_tab, mb_array_size) ||
!FF_ALLOC_TYPED_ARRAY (s->bits_tab, mb_array_size) ||
!FF_ALLOCZ_TYPED_ARRAY(s->mc_mb_var, mb_array_size) ||
avcodec/mpegpicture: Move mb_var, mc_mb_var and mb_mean to MpegEncCtx These tables are only used by encoders and only for the current picture; ergo they need not be put into the picture at all, but rather into the encoder's context. They also don't need to be refcounted, because there is only one owner. In contrast to this, the earlier code refcounts them which incurs unnecessary overhead. These references are not unreferenced in ff_mpeg_unref_picture() (they are kept in order to have something like a buffer pool), so that several buffers are kept at the same time, although only one is needed, thereby wasting memory. The code also propagates references to other pictures not part of the pictures array (namely the copy of the current/next/last picture in the MpegEncContext which get references of their own). These references are not unreferenced in ff_mpeg_unref_picture() (the buffers are probably kept in order to have something like a pool), yet if the current picture is a B-frame, it gets unreferenced at the end of ff_mpv_encode_picture() and its slot in the picture array will therefore be reused the next time; but the copy of the current picture also still has its references and therefore these buffers will be made duplicated in order to make them writable in the next call to ff_mpv_encode_picture(). This is of course unnecessary. Finally, ff_find_unused_picture() is supposed to just return any unused picture and the code is supposed to work with it; yet for the vsynth*-mpeg4-adap tests the result depends upon the content of these buffers; given that this patchset changes the content of these buffers (the initial content is now the state of these buffers after encoding the last frame; before this patch the buffers used came from the last picture that occupied the same slot in the picture array) their ref-files needed to be changed. This points to a bug somewhere (if one removes the initialization, one gets uninitialized reads in adaptive_quantization in ratecontrol.c). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
3 years ago
!FF_ALLOCZ_TYPED_ARRAY(s->mb_var, mb_array_size) ||
!(s->mb_mean = av_mallocz(mb_array_size)))
return AVERROR(ENOMEM);
#define ALLOCZ_ARRAYS(p, mult, numb) ((p) = av_calloc(numb, mult * sizeof(*(p))))
if (s->codec_id == AV_CODEC_ID_MPEG4 ||
(s->avctx->flags & AV_CODEC_FLAG_INTERLACED_ME)) {
int16_t (*tmp1)[2];
uint8_t *tmp2;
if (!(tmp1 = ALLOCZ_ARRAYS(s->b_field_mv_table_base, 8, mv_table_size)) ||
!(tmp2 = ALLOCZ_ARRAYS(s->b_field_select_table[0][0], 2 * 4, mv_table_size)) ||
!ALLOCZ_ARRAYS(s->p_field_select_table[0], 2 * 2, mv_table_size))
return AVERROR(ENOMEM);
s->p_field_select_table[1] = s->p_field_select_table[0] + 2 * mv_table_size;
tmp1 += s->mb_stride + 1;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++) {
s->b_field_mv_table[i][j][k] = tmp1;
tmp1 += mv_table_size;
}
s->b_field_select_table[i][j] = tmp2;
tmp2 += 2 * mv_table_size;
}
}
}
if (s->noise_reduction) {
if (!FF_ALLOCZ_TYPED_ARRAY(s->dct_offset, 2))
return AVERROR(ENOMEM);
}
ff_dct_encode_init(s);
if (s->mpeg_quant || s->codec_id == AV_CODEC_ID_MPEG2VIDEO) {
s->dct_unquantize_intra = s->dct_unquantize_mpeg2_intra;
s->dct_unquantize_inter = s->dct_unquantize_mpeg2_inter;
} else if (s->out_format == FMT_H263 || s->out_format == FMT_H261) {
s->dct_unquantize_intra = s->dct_unquantize_h263_intra;
s->dct_unquantize_inter = s->dct_unquantize_h263_inter;
} else {
s->dct_unquantize_intra = s->dct_unquantize_mpeg1_intra;
s->dct_unquantize_inter = s->dct_unquantize_mpeg1_inter;
}
if ((CONFIG_H263P_ENCODER || CONFIG_RV20_ENCODER) && s->modified_quant)
s->chroma_qscale_table = ff_h263_chroma_qscale_table;
if (s->slice_context_count > 1) {
s->rtp_mode = 1;
if (avctx->codec_id == AV_CODEC_ID_H263P)
s->h263_slice_structured = 1;
}
if (CONFIG_H263_ENCODER && s->out_format == FMT_H263) {
ff_h263_encode_init(s);
#if CONFIG_MSMPEG4ENC
if (s->msmpeg4_version != MSMP4_UNUSED)
ff_msmpeg4_encode_init(s);
#endif
}
/* init q matrix */
for (i = 0; i < 64; i++) {
int j = s->idsp.idct_permutation[i];
if (CONFIG_MPEG4_ENCODER && s->codec_id == AV_CODEC_ID_MPEG4 &&
s->mpeg_quant) {
s->intra_matrix[j] = ff_mpeg4_default_intra_matrix[i];
s->inter_matrix[j] = ff_mpeg4_default_non_intra_matrix[i];
} else if (s->out_format == FMT_H263 || s->out_format == FMT_H261) {
s->intra_matrix[j] =
s->inter_matrix[j] = ff_mpeg1_default_non_intra_matrix[i];
} else if (CONFIG_SPEEDHQ_ENCODER && s->codec_id == AV_CODEC_ID_SPEEDHQ) {
s->intra_matrix[j] =
s->inter_matrix[j] = ff_mpeg1_default_intra_matrix[i];
} else {
/* MPEG-1/2 */
s->chroma_intra_matrix[j] =
s->intra_matrix[j] = ff_mpeg1_default_intra_matrix[i];
s->inter_matrix[j] = ff_mpeg1_default_non_intra_matrix[i];
}
if (avctx->intra_matrix)
s->intra_matrix[j] = avctx->intra_matrix[i];
if (avctx->inter_matrix)
s->inter_matrix[j] = avctx->inter_matrix[i];
}
/* precompute matrix */
/* for mjpeg, we do include qscale in the matrix */
if (s->out_format != FMT_MJPEG) {
ff_convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16,
s->intra_matrix, s->intra_quant_bias, avctx->qmin,
31, 1);
ff_convert_matrix(s, s->q_inter_matrix, s->q_inter_matrix16,
s->inter_matrix, s->inter_quant_bias, avctx->qmin,
31, 0);
}
if ((ret = ff_rate_control_init(s)) < 0)
return ret;
if (s->b_frame_strategy == 2) {
for (i = 0; i < s->max_b_frames + 2; i++) {
s->tmp_frames[i] = av_frame_alloc();
if (!s->tmp_frames[i])
return AVERROR(ENOMEM);
s->tmp_frames[i]->format = AV_PIX_FMT_YUV420P;
s->tmp_frames[i]->width = s->width >> s->brd_scale;
s->tmp_frames[i]->height = s->height >> s->brd_scale;
ret = av_frame_get_buffer(s->tmp_frames[i], 0);
if (ret < 0)
return ret;
}
}
cpb_props = ff_encode_add_cpb_side_data(avctx);
if (!cpb_props)
return AVERROR(ENOMEM);
cpb_props->max_bitrate = avctx->rc_max_rate;
cpb_props->min_bitrate = avctx->rc_min_rate;
cpb_props->avg_bitrate = avctx->bit_rate;
cpb_props->buffer_size = avctx->rc_buffer_size;
return 0;
}
av_cold int ff_mpv_encode_end(AVCodecContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
int i;
ff_rate_control_uninit(&s->rc_context);
ff_mpv_common_end(s);
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_refstruct_pool_uninit(&s->picture_pool);
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
if (s->input_picture && s->reordered_input_picture) {
for (int i = 0; i < MAX_B_FRAMES + 1; i++) {
ff_refstruct_unref(&s->input_picture[i]);
ff_refstruct_unref(&s->reordered_input_picture[i]);
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->tmp_frames); i++)
av_frame_free(&s->tmp_frames[i]);
av_frame_free(&s->new_pic);
av_freep(&avctx->stats_out);
av_freep(&s->p_mv_table_base);
av_freep(&s->b_forw_mv_table_base);
av_freep(&s->b_back_mv_table_base);
av_freep(&s->b_bidir_forw_mv_table_base);
av_freep(&s->b_bidir_back_mv_table_base);
av_freep(&s->b_direct_mv_table_base);
av_freep(&s->b_field_mv_table_base);
av_freep(&s->b_field_select_table[0][0]);
av_freep(&s->p_field_select_table[0]);
av_freep(&s->mb_type);
av_freep(&s->lambda_table);
av_freep(&s->cplx_tab);
av_freep(&s->bits_tab);
if(s->q_chroma_intra_matrix != s->q_intra_matrix ) av_freep(&s->q_chroma_intra_matrix);
if(s->q_chroma_intra_matrix16 != s->q_intra_matrix16) av_freep(&s->q_chroma_intra_matrix16);
s->q_chroma_intra_matrix= NULL;
s->q_chroma_intra_matrix16= NULL;
av_freep(&s->q_intra_matrix);
av_freep(&s->q_inter_matrix);
av_freep(&s->q_intra_matrix16);
av_freep(&s->q_inter_matrix16);
av_freep(&s->input_picture);
av_freep(&s->reordered_input_picture);
av_freep(&s->dct_offset);
avcodec/mpegpicture: Move mb_var, mc_mb_var and mb_mean to MpegEncCtx These tables are only used by encoders and only for the current picture; ergo they need not be put into the picture at all, but rather into the encoder's context. They also don't need to be refcounted, because there is only one owner. In contrast to this, the earlier code refcounts them which incurs unnecessary overhead. These references are not unreferenced in ff_mpeg_unref_picture() (they are kept in order to have something like a buffer pool), so that several buffers are kept at the same time, although only one is needed, thereby wasting memory. The code also propagates references to other pictures not part of the pictures array (namely the copy of the current/next/last picture in the MpegEncContext which get references of their own). These references are not unreferenced in ff_mpeg_unref_picture() (the buffers are probably kept in order to have something like a pool), yet if the current picture is a B-frame, it gets unreferenced at the end of ff_mpv_encode_picture() and its slot in the picture array will therefore be reused the next time; but the copy of the current picture also still has its references and therefore these buffers will be made duplicated in order to make them writable in the next call to ff_mpv_encode_picture(). This is of course unnecessary. Finally, ff_find_unused_picture() is supposed to just return any unused picture and the code is supposed to work with it; yet for the vsynth*-mpeg4-adap tests the result depends upon the content of these buffers; given that this patchset changes the content of these buffers (the initial content is now the state of these buffers after encoding the last frame; before this patch the buffers used came from the last picture that occupied the same slot in the picture array) their ref-files needed to be changed. This points to a bug somewhere (if one removes the initialization, one gets uninitialized reads in adaptive_quantization in ratecontrol.c). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
3 years ago
av_freep(&s->mb_var);
av_freep(&s->mc_mb_var);
av_freep(&s->mb_mean);
return 0;
}
#define IS_ENCODER 1
#include "mpv_reconstruct_mb_template.c"
static void mpv_reconstruct_mb(MpegEncContext *s, int16_t block[12][64])
{
if (s->avctx->debug & FF_DEBUG_DCT_COEFF) {
/* print DCT coefficients */
av_log(s->avctx, AV_LOG_DEBUG, "DCT coeffs of MB at %dx%d:\n", s->mb_x, s->mb_y);
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 64; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "%5d",
block[i][s->idsp.idct_permutation[j]]);
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
}
mpv_reconstruct_mb_internal(s, block, 0, MAY_BE_MPEG12_H261);
}
static int get_sae(const uint8_t *src, int ref, int stride)
{
int x,y;
int acc = 0;
for (y = 0; y < 16; y++) {
for (x = 0; x < 16; x++) {
acc += FFABS(src[x + y * stride] - ref);
}
}
return acc;
}
static int get_intra_count(MpegEncContext *s, const uint8_t *src,
const uint8_t *ref, int stride)
{
int x, y, w, h;
int acc = 0;
w = s->width & ~15;
h = s->height & ~15;
for (y = 0; y < h; y += 16) {
for (x = 0; x < w; x += 16) {
int offset = x + y * stride;
int sad = s->sad_cmp[0](NULL, src + offset, ref + offset,
stride, 16);
int mean = (s->mpvencdsp.pix_sum(src + offset, stride) + 128) >> 8;
int sae = get_sae(src + offset, mean, stride);
acc += sae + 500 < sad;
}
}
return acc;
}
/**
* Allocates new buffers for an AVFrame and copies the properties
* from another AVFrame.
*/
static int prepare_picture(MpegEncContext *s, AVFrame *f, const AVFrame *props_frame)
{
AVCodecContext *avctx = s->avctx;
int ret;
f->width = avctx->width + 2 * EDGE_WIDTH;
f->height = avctx->height + 2 * EDGE_WIDTH;
ret = ff_encode_alloc_frame(avctx, f);
if (ret < 0)
return ret;
ret = ff_mpv_pic_check_linesize(avctx, f, &s->linesize, &s->uvlinesize);
if (ret < 0)
return ret;
for (int i = 0; f->data[i]; i++) {
int offset = (EDGE_WIDTH >> (i ? s->chroma_y_shift : 0)) *
f->linesize[i] +
(EDGE_WIDTH >> (i ? s->chroma_x_shift : 0));
f->data[i] += offset;
}
f->width = avctx->width;
f->height = avctx->height;
ret = av_frame_copy_props(f, props_frame);
if (ret < 0)
return ret;
return 0;
}
static int load_input_picture(MpegEncContext *s, const AVFrame *pic_arg)
{
MPVPicture *pic = NULL;
int64_t pts;
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
int display_picture_number = 0, ret;
int encoding_delay = s->max_b_frames ? s->max_b_frames
: (s->low_delay ? 0 : 1);
int flush_offset = 1;
int direct = 1;
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
av_assert1(!s->input_picture[0]);
if (pic_arg) {
pts = pic_arg->pts;
display_picture_number = s->input_picture_number++;
if (pts != AV_NOPTS_VALUE) {
if (s->user_specified_pts != AV_NOPTS_VALUE) {
int64_t last = s->user_specified_pts;
if (pts <= last) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid pts (%"PRId64") <= last (%"PRId64")\n",
pts, last);
return AVERROR(EINVAL);
}
if (!s->low_delay && display_picture_number == 1)
s->dts_delta = pts - last;
}
s->user_specified_pts = pts;
} else {
if (s->user_specified_pts != AV_NOPTS_VALUE) {
s->user_specified_pts =
pts = s->user_specified_pts + 1;
av_log(s->avctx, AV_LOG_INFO,
"Warning: AVFrame.pts=? trying to guess (%"PRId64")\n",
pts);
} else {
pts = display_picture_number;
}
}
if (pic_arg->linesize[0] != s->linesize ||
pic_arg->linesize[1] != s->uvlinesize ||
pic_arg->linesize[2] != s->uvlinesize)
direct = 0;
if ((s->width & 15) || (s->height & 15))
direct = 0;
if (((intptr_t)(pic_arg->data[0])) & (STRIDE_ALIGN-1))
direct = 0;
if (s->linesize & (STRIDE_ALIGN-1))
direct = 0;
ff_dlog(s->avctx, "%d %d %"PTRDIFF_SPECIFIER" %"PTRDIFF_SPECIFIER"\n", pic_arg->linesize[0],
pic_arg->linesize[1], s->linesize, s->uvlinesize);
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
pic = ff_refstruct_pool_get(s->picture_pool);
if (!pic)
return AVERROR(ENOMEM);
if (direct) {
if ((ret = av_frame_ref(pic->f, pic_arg)) < 0)
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
goto fail;
pic->shared = 1;
} else {
ret = prepare_picture(s, pic->f, pic_arg);
if (ret < 0)
goto fail;
for (int i = 0; i < 3; i++) {
ptrdiff_t src_stride = pic_arg->linesize[i];
ptrdiff_t dst_stride = i ? s->uvlinesize : s->linesize;
int h_shift = i ? s->chroma_x_shift : 0;
int v_shift = i ? s->chroma_y_shift : 0;
int w = AV_CEIL_RSHIFT(s->width , h_shift);
int h = AV_CEIL_RSHIFT(s->height, v_shift);
const uint8_t *src = pic_arg->data[i];
uint8_t *dst = pic->f->data[i];
int vpad = 16;
if ( s->codec_id == AV_CODEC_ID_MPEG2VIDEO
&& !s->progressive_sequence
&& FFALIGN(s->height, 32) - s->height > 16)
vpad = 32;
if (!s->avctx->rc_buffer_size)
dst += INPLACE_OFFSET;
if (src_stride == dst_stride)
memcpy(dst, src, src_stride * h - src_stride + w);
else {
int h2 = h;
uint8_t *dst2 = dst;
while (h2--) {
memcpy(dst2, src, w);
dst2 += dst_stride;
src += src_stride;
}
}
if ((s->width & 15) || (s->height & (vpad-1))) {
s->mpvencdsp.draw_edges(dst, dst_stride,
w, h,
16 >> h_shift,
vpad >> v_shift,
EDGE_BOTTOM);
}
}
emms_c();
}
pic->display_picture_number = display_picture_number;
pic->f->pts = pts; // we set this here to avoid modifying pic_arg
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
} else if (!s->reordered_input_picture[1]) {
/* Flushing: When the above check is true, the encoder is about to run
* out of frames to encode. Check if there are input_pictures left;
* if so, ensure s->input_picture[0] contains the first picture.
* A flush_offset != 1 will only happen if we did not receive enough
* input frames. */
for (flush_offset = 0; flush_offset < encoding_delay + 1; flush_offset++)
if (s->input_picture[flush_offset])
break;
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
encoding_delay -= flush_offset - 1;
}
/* shift buffer entries */
for (int i = flush_offset; i <= MAX_B_FRAMES; i++)
s->input_picture[i - flush_offset] = s->input_picture[i];
s->input_picture[encoding_delay] = pic;
return 0;
fail:
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_refstruct_unref(&pic);
return ret;
}
static int skip_check(MpegEncContext *s, const MPVPicture *p, const MPVPicture *ref)
{
int x, y, plane;
int score = 0;
int64_t score64 = 0;
for (plane = 0; plane < 3; plane++) {
const int stride = p->f->linesize[plane];
const int bw = plane ? 1 : 2;
for (y = 0; y < s->mb_height * bw; y++) {
for (x = 0; x < s->mb_width * bw; x++) {
int off = p->shared ? 0 : 16;
const uint8_t *dptr = p->f->data[plane] + 8 * (x + y * stride) + off;
const uint8_t *rptr = ref->f->data[plane] + 8 * (x + y * stride);
int v = s->frame_skip_cmp_fn(s, dptr, rptr, stride, 8);
switch (FFABS(s->frame_skip_exp)) {
case 0: score = FFMAX(score, v); break;
case 1: score += FFABS(v); break;
case 2: score64 += v * (int64_t)v; break;
case 3: score64 += FFABS(v * (int64_t)v * v); break;
case 4: score64 += (v * (int64_t)v) * (v * (int64_t)v); break;
}
}
}
}
emms_c();
if (score)
score64 = score;
if (s->frame_skip_exp < 0)
score64 = pow(score64 / (double)(s->mb_width * s->mb_height),
-1.0/s->frame_skip_exp);
if (score64 < s->frame_skip_threshold)
return 1;
if (score64 < ((s->frame_skip_factor * (int64_t) s->lambda) >> 8))
return 1;
return 0;
}
static int encode_frame(AVCodecContext *c, const AVFrame *frame, AVPacket *pkt)
{
int ret;
int size = 0;
ret = avcodec_send_frame(c, frame);
if (ret < 0)
return ret;
do {
ret = avcodec_receive_packet(c, pkt);
if (ret >= 0) {
size += pkt->size;
av_packet_unref(pkt);
} else if (ret < 0 && ret != AVERROR(EAGAIN) && ret != AVERROR_EOF)
return ret;
} while (ret >= 0);
return size;
}
static int estimate_best_b_count(MpegEncContext *s)
{
AVPacket *pkt;
const int scale = s->brd_scale;
int width = s->width >> scale;
int height = s->height >> scale;
int i, j, out_size, p_lambda, b_lambda, lambda2;
int64_t best_rd = INT64_MAX;
int best_b_count = -1;
int ret = 0;
av_assert0(scale >= 0 && scale <= 3);
pkt = av_packet_alloc();
if (!pkt)
return AVERROR(ENOMEM);
//emms_c();
p_lambda = s->last_lambda_for[AV_PICTURE_TYPE_P];
//p_lambda * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
b_lambda = s->last_lambda_for[AV_PICTURE_TYPE_B];
if (!b_lambda) // FIXME we should do this somewhere else
b_lambda = p_lambda;
lambda2 = (b_lambda * b_lambda + (1 << FF_LAMBDA_SHIFT) / 2) >>
FF_LAMBDA_SHIFT;
for (i = 0; i < s->max_b_frames + 2; i++) {
const MPVPicture *pre_input_ptr = i ? s->input_picture[i - 1] :
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->next_pic.ptr;
if (pre_input_ptr) {
const uint8_t *data[4];
memcpy(data, pre_input_ptr->f->data, sizeof(data));
if (!pre_input_ptr->shared && i) {
data[0] += INPLACE_OFFSET;
data[1] += INPLACE_OFFSET;
data[2] += INPLACE_OFFSET;
}
s->mpvencdsp.shrink[scale](s->tmp_frames[i]->data[0],
s->tmp_frames[i]->linesize[0],
data[0],
pre_input_ptr->f->linesize[0],
width, height);
s->mpvencdsp.shrink[scale](s->tmp_frames[i]->data[1],
s->tmp_frames[i]->linesize[1],
data[1],
pre_input_ptr->f->linesize[1],
width >> 1, height >> 1);
s->mpvencdsp.shrink[scale](s->tmp_frames[i]->data[2],
s->tmp_frames[i]->linesize[2],
data[2],
pre_input_ptr->f->linesize[2],
width >> 1, height >> 1);
}
}
for (j = 0; j < s->max_b_frames + 1; j++) {
AVCodecContext *c;
int64_t rd = 0;
if (!s->input_picture[j])
break;
c = avcodec_alloc_context3(NULL);
if (!c) {
ret = AVERROR(ENOMEM);
goto fail;
}
c->width = width;
c->height = height;
c->flags = AV_CODEC_FLAG_QSCALE | AV_CODEC_FLAG_PSNR;
c->flags |= s->avctx->flags & AV_CODEC_FLAG_QPEL;
c->mb_decision = s->avctx->mb_decision;
c->me_cmp = s->avctx->me_cmp;
c->mb_cmp = s->avctx->mb_cmp;
c->me_sub_cmp = s->avctx->me_sub_cmp;
c->pix_fmt = AV_PIX_FMT_YUV420P;
c->time_base = s->avctx->time_base;
c->max_b_frames = s->max_b_frames;
ret = avcodec_open2(c, s->avctx->codec, NULL);
if (ret < 0)
goto fail;
s->tmp_frames[0]->pict_type = AV_PICTURE_TYPE_I;
s->tmp_frames[0]->quality = 1 * FF_QP2LAMBDA;
out_size = encode_frame(c, s->tmp_frames[0], pkt);
if (out_size < 0) {
ret = out_size;
goto fail;
}
//rd += (out_size * lambda2) >> FF_LAMBDA_SHIFT;
for (i = 0; i < s->max_b_frames + 1; i++) {
int is_p = i % (j + 1) == j || i == s->max_b_frames;
s->tmp_frames[i + 1]->pict_type = is_p ?
AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_B;
s->tmp_frames[i + 1]->quality = is_p ? p_lambda : b_lambda;
out_size = encode_frame(c, s->tmp_frames[i + 1], pkt);
if (out_size < 0) {
ret = out_size;
goto fail;
}
rd += (out_size * (uint64_t)lambda2) >> (FF_LAMBDA_SHIFT - 3);
}
/* get the delayed frames */
out_size = encode_frame(c, NULL, pkt);
if (out_size < 0) {
ret = out_size;
goto fail;
}
rd += (out_size * (uint64_t)lambda2) >> (FF_LAMBDA_SHIFT - 3);
rd += c->error[0] + c->error[1] + c->error[2];
if (rd < best_rd) {
best_rd = rd;
best_b_count = j;
}
fail:
avcodec_free_context(&c);
av_packet_unref(pkt);
if (ret < 0) {
best_b_count = ret;
break;
}
}
av_packet_free(&pkt);
return best_b_count;
}
/**
* Determines whether an input picture is discarded or not
* and if not determines the length of the next chain of B frames
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
* and moves these pictures (including the P frame) into
* reordered_input_picture.
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
* input_picture[0] is always NULL when exiting this function, even on error;
* reordered_input_picture[0] is always NULL when exiting this function on error.
*/
static int set_bframe_chain_length(MpegEncContext *s)
{
/* Either nothing to do or can't do anything */
if (s->reordered_input_picture[0] || !s->input_picture[0])
return 0;
/* set next picture type & ordering */
if (s->frame_skip_threshold || s->frame_skip_factor) {
if (s->picture_in_gop_number < s->gop_size &&
s->next_pic.ptr &&
skip_check(s, s->input_picture[0], s->next_pic.ptr)) {
// FIXME check that the gop check above is +-1 correct
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_refstruct_unref(&s->input_picture[0]);
ff_vbv_update(s, 0);
return 0;
}
}
if (/*s->picture_in_gop_number >= s->gop_size ||*/
!s->next_pic.ptr || s->intra_only) {
s->reordered_input_picture[0] = s->input_picture[0];
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->input_picture[0] = NULL;
s->reordered_input_picture[0]->f->pict_type = AV_PICTURE_TYPE_I;
s->reordered_input_picture[0]->coded_picture_number =
s->coded_picture_number++;
} else {
int b_frames = 0;
if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
for (int i = 0; i < s->max_b_frames + 1; i++) {
int pict_num = s->input_picture[0]->display_picture_number + i;
if (pict_num >= s->rc_context.num_entries)
break;
if (!s->input_picture[i]) {
s->rc_context.entry[pict_num - 1].new_pict_type = AV_PICTURE_TYPE_P;
break;
}
s->input_picture[i]->f->pict_type =
s->rc_context.entry[pict_num].new_pict_type;
}
}
if (s->b_frame_strategy == 0) {
b_frames = s->max_b_frames;
while (b_frames && !s->input_picture[b_frames])
b_frames--;
} else if (s->b_frame_strategy == 1) {
int i;
for (i = 1; i < s->max_b_frames + 1; i++) {
if (s->input_picture[i] &&
s->input_picture[i]->b_frame_score == 0) {
s->input_picture[i]->b_frame_score =
get_intra_count(s,
s->input_picture[i ]->f->data[0],
s->input_picture[i - 1]->f->data[0],
s->linesize) + 1;
}
}
for (i = 0; i < s->max_b_frames + 1; i++) {
if (!s->input_picture[i] ||
s->input_picture[i]->b_frame_score - 1 >
s->mb_num / s->b_sensitivity)
break;
}
b_frames = FFMAX(0, i - 1);
/* reset scores */
for (i = 0; i < b_frames + 1; i++) {
s->input_picture[i]->b_frame_score = 0;
}
} else if (s->b_frame_strategy == 2) {
b_frames = estimate_best_b_count(s);
if (b_frames < 0) {
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_refstruct_unref(&s->input_picture[0]);
return b_frames;
}
}
emms_c();
for (int i = b_frames - 1; i >= 0; i--) {
int type = s->input_picture[i]->f->pict_type;
if (type && type != AV_PICTURE_TYPE_B)
b_frames = i;
}
if (s->input_picture[b_frames]->f->pict_type == AV_PICTURE_TYPE_B &&
b_frames == s->max_b_frames) {
av_log(s->avctx, AV_LOG_ERROR,
"warning, too many B-frames in a row\n");
}
if (s->picture_in_gop_number + b_frames >= s->gop_size) {
if ((s->mpv_flags & FF_MPV_FLAG_STRICT_GOP) &&
s->gop_size > s->picture_in_gop_number) {
b_frames = s->gop_size - s->picture_in_gop_number - 1;
} else {
if (s->avctx->flags & AV_CODEC_FLAG_CLOSED_GOP)
b_frames = 0;
s->input_picture[b_frames]->f->pict_type = AV_PICTURE_TYPE_I;
}
}
if ((s->avctx->flags & AV_CODEC_FLAG_CLOSED_GOP) && b_frames &&
s->input_picture[b_frames]->f->pict_type == AV_PICTURE_TYPE_I)
b_frames--;
s->reordered_input_picture[0] = s->input_picture[b_frames];
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->input_picture[b_frames] = NULL;
if (s->reordered_input_picture[0]->f->pict_type != AV_PICTURE_TYPE_I)
s->reordered_input_picture[0]->f->pict_type = AV_PICTURE_TYPE_P;
s->reordered_input_picture[0]->coded_picture_number =
s->coded_picture_number++;
for (int i = 0; i < b_frames; i++) {
s->reordered_input_picture[i + 1] = s->input_picture[i];
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->input_picture[i] = NULL;
s->reordered_input_picture[i + 1]->f->pict_type =
AV_PICTURE_TYPE_B;
s->reordered_input_picture[i + 1]->coded_picture_number =
s->coded_picture_number++;
}
}
return 0;
}
static int select_input_picture(MpegEncContext *s)
{
int ret;
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
av_assert1(!s->reordered_input_picture[0]);
for (int i = 1; i <= MAX_B_FRAMES; i++)
s->reordered_input_picture[i - 1] = s->reordered_input_picture[i];
s->reordered_input_picture[MAX_B_FRAMES] = NULL;
ret = set_bframe_chain_length(s);
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
av_assert1(!s->input_picture[0]);
if (ret < 0)
return ret;
av_frame_unref(s->new_pic);
if (s->reordered_input_picture[0]) {
s->reordered_input_picture[0]->reference =
s->reordered_input_picture[0]->f->pict_type != AV_PICTURE_TYPE_B;
if (s->reordered_input_picture[0]->shared || s->avctx->rc_buffer_size) {
// input is a shared pix, so we can't modify it -> allocate a new
// one & ensure that the shared one is reuseable
av_frame_move_ref(s->new_pic, s->reordered_input_picture[0]->f);
ret = prepare_picture(s, s->reordered_input_picture[0]->f, s->new_pic);
if (ret < 0)
goto fail;
} else {
// input is not a shared pix -> reuse buffer for current_pix
ret = av_frame_ref(s->new_pic, s->reordered_input_picture[0]->f);
if (ret < 0)
goto fail;
for (int i = 0; i < MPV_MAX_PLANES; i++) {
if (s->new_pic->data[i])
s->new_pic->data[i] += INPLACE_OFFSET;
}
}
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr = s->reordered_input_picture[0];
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->reordered_input_picture[0] = NULL;
av_assert1(s->mb_width == s->buffer_pools.alloc_mb_width);
av_assert1(s->mb_height == s->buffer_pools.alloc_mb_height);
av_assert1(s->mb_stride == s->buffer_pools.alloc_mb_stride);
ret = ff_mpv_alloc_pic_accessories(s->avctx, &s->cur_pic,
&s->sc, &s->buffer_pools, s->mb_height);
if (ret < 0) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_mpv_unref_picture(&s->cur_pic);
return ret;
}
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->picture_number = s->cur_pic.ptr->display_picture_number;
}
return 0;
fail:
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_refstruct_unref(&s->reordered_input_picture[0]);
return ret;
}
static void frame_end(MpegEncContext *s)
{
if (s->unrestricted_mv &&
s->cur_pic.reference &&
!s->intra_only) {
int hshift = s->chroma_x_shift;
int vshift = s->chroma_y_shift;
s->mpvencdsp.draw_edges(s->cur_pic.data[0],
s->cur_pic.linesize[0],
s->h_edge_pos, s->v_edge_pos,
EDGE_WIDTH, EDGE_WIDTH,
EDGE_TOP | EDGE_BOTTOM);
s->mpvencdsp.draw_edges(s->cur_pic.data[1],
s->cur_pic.linesize[1],
s->h_edge_pos >> hshift,
s->v_edge_pos >> vshift,
EDGE_WIDTH >> hshift,
EDGE_WIDTH >> vshift,
EDGE_TOP | EDGE_BOTTOM);
s->mpvencdsp.draw_edges(s->cur_pic.data[2],
s->cur_pic.linesize[2],
s->h_edge_pos >> hshift,
s->v_edge_pos >> vshift,
EDGE_WIDTH >> hshift,
EDGE_WIDTH >> vshift,
EDGE_TOP | EDGE_BOTTOM);
}
emms_c();
s->last_pict_type = s->pict_type;
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->last_lambda_for [s->pict_type] = s->cur_pic.ptr->f->quality;
if (s->pict_type!= AV_PICTURE_TYPE_B)
s->last_non_b_pict_type = s->pict_type;
}
static void update_noise_reduction(MpegEncContext *s)
{
int intra, i;
for (intra = 0; intra < 2; intra++) {
if (s->dct_count[intra] > (1 << 16)) {
for (i = 0; i < 64; i++) {
s->dct_error_sum[intra][i] >>= 1;
}
s->dct_count[intra] >>= 1;
}
for (i = 0; i < 64; i++) {
s->dct_offset[intra][i] = (s->noise_reduction *
s->dct_count[intra] +
s->dct_error_sum[intra][i] / 2) /
(s->dct_error_sum[intra][i] + 1);
}
}
}
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
static void frame_start(MpegEncContext *s)
{
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr->f->pict_type = s->pict_type;
if (s->pict_type != AV_PICTURE_TYPE_B) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_mpv_replace_picture(&s->last_pic, &s->next_pic);
ff_mpv_replace_picture(&s->next_pic, &s->cur_pic);
}
if (s->dct_error_sum) {
av_assert2(s->noise_reduction && s->encoding);
update_noise_reduction(s);
}
}
int ff_mpv_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pic_arg, int *got_packet)
{
MpegEncContext *s = avctx->priv_data;
int stuffing_count, ret;
int context_count = s->slice_context_count;
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_mpv_unref_picture(&s->cur_pic);
s->vbv_ignore_qmax = 0;
s->picture_in_gop_number++;
if (load_input_picture(s, pic_arg) < 0)
return -1;
if (select_input_picture(s) < 0) {
return -1;
}
/* output? */
if (s->new_pic->data[0]) {
int growing_buffer = context_count == 1 && !s->data_partitioning;
size_t pkt_size = 10000 + s->mb_width * s->mb_height *
(growing_buffer ? 64 : (MAX_MB_BYTES + 100));
if (CONFIG_MJPEG_ENCODER && avctx->codec_id == AV_CODEC_ID_MJPEG) {
ret = ff_mjpeg_add_icc_profile_size(avctx, s->new_pic, &pkt_size);
if (ret < 0)
return ret;
}
if ((ret = ff_alloc_packet(avctx, pkt, pkt_size)) < 0)
return ret;
pkt->size = avctx->internal->byte_buffer_size - AV_INPUT_BUFFER_PADDING_SIZE;
if (s->mb_info) {
s->mb_info_ptr = av_packet_new_side_data(pkt,
AV_PKT_DATA_H263_MB_INFO,
s->mb_width*s->mb_height*12);
if (!s->mb_info_ptr)
return AVERROR(ENOMEM);
s->prev_mb_info = s->last_mb_info = s->mb_info_size = 0;
}
s->pict_type = s->new_pic->pict_type;
//emms_c();
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
frame_start(s);
vbv_retry:
ret = encode_picture(s, pkt);
if (growing_buffer) {
av_assert0(s->pb.buf == avctx->internal->byte_buffer);
pkt->data = s->pb.buf;
pkt->size = avctx->internal->byte_buffer_size;
}
if (ret < 0)
return -1;
frame_end(s);
if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) && s->out_format == FMT_MJPEG)
ff_mjpeg_encode_picture_trailer(&s->pb, s->header_bits);
if (avctx->rc_buffer_size) {
RateControlContext *rcc = &s->rc_context;
int max_size = FFMAX(rcc->buffer_index * avctx->rc_max_available_vbv_use, rcc->buffer_index - 500);
int hq = (avctx->mb_decision == FF_MB_DECISION_RD || avctx->trellis);
int min_step = hq ? 1 : (1<<(FF_LAMBDA_SHIFT + 7))/139;
if (put_bits_count(&s->pb) > max_size &&
s->lambda < s->lmax) {
s->next_lambda = FFMAX(s->lambda + min_step, s->lambda *
(s->qscale + 1) / s->qscale);
if (s->adaptive_quant) {
int i;
for (i = 0; i < s->mb_height * s->mb_stride; i++)
s->lambda_table[i] =
FFMAX(s->lambda_table[i] + min_step,
s->lambda_table[i] * (s->qscale + 1) /
s->qscale);
}
s->mb_skipped = 0; // done in frame_start()
// done in encode_picture() so we must undo it
if (s->pict_type == AV_PICTURE_TYPE_P) {
s->no_rounding ^= s->flipflop_rounding;
}
if (s->pict_type != AV_PICTURE_TYPE_B) {
s->time_base = s->last_time_base;
s->last_non_b_time = s->time - s->pp_time;
}
s->vbv_ignore_qmax = 1;
av_log(avctx, AV_LOG_VERBOSE, "reencoding frame due to VBV\n");
goto vbv_retry;
}
av_assert0(avctx->rc_max_rate);
}
if (avctx->flags & AV_CODEC_FLAG_PASS1)
ff_write_pass1_stats(s);
for (int i = 0; i < MPV_MAX_PLANES; i++)
avctx->error[i] += s->encoding_error[i];
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_side_data_set_encoder_stats(pkt, s->cur_pic.ptr->f->quality,
s->encoding_error,
(avctx->flags&AV_CODEC_FLAG_PSNR) ? MPV_MAX_PLANES : 0,
s->pict_type);
if (avctx->flags & AV_CODEC_FLAG_PASS1)
assert(put_bits_count(&s->pb) == s->header_bits + s->mv_bits +
s->misc_bits + s->i_tex_bits +
s->p_tex_bits);
flush_put_bits(&s->pb);
s->frame_bits = put_bits_count(&s->pb);
stuffing_count = ff_vbv_update(s, s->frame_bits);
s->stuffing_bits = 8*stuffing_count;
if (stuffing_count) {
if (put_bytes_left(&s->pb, 0) < stuffing_count + 50) {
av_log(avctx, AV_LOG_ERROR, "stuffing too large\n");
return -1;
}
switch (s->codec_id) {
case AV_CODEC_ID_MPEG1VIDEO:
case AV_CODEC_ID_MPEG2VIDEO:
while (stuffing_count--) {
put_bits(&s->pb, 8, 0);
}
break;
case AV_CODEC_ID_MPEG4:
put_bits(&s->pb, 16, 0);
put_bits(&s->pb, 16, 0x1C3);
stuffing_count -= 4;
while (stuffing_count--) {
put_bits(&s->pb, 8, 0xFF);
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "vbv buffer overflow\n");
s->stuffing_bits = 0;
}
flush_put_bits(&s->pb);
s->frame_bits = put_bits_count(&s->pb);
}
/* update MPEG-1/2 vbv_delay for CBR */
if (avctx->rc_max_rate &&
avctx->rc_min_rate == avctx->rc_max_rate &&
s->out_format == FMT_MPEG1 &&
90000LL * (avctx->rc_buffer_size - 1) <=
avctx->rc_max_rate * 0xFFFFLL) {
AVCPBProperties *props;
size_t props_size;
int vbv_delay, min_delay;
double inbits = avctx->rc_max_rate *
av_q2d(avctx->time_base);
int minbits = s->frame_bits - 8 *
(s->vbv_delay_pos - 1);
double bits = s->rc_context.buffer_index + minbits - inbits;
uint8_t *const vbv_delay_ptr = s->pb.buf + s->vbv_delay_pos;
if (bits < 0)
av_log(avctx, AV_LOG_ERROR,
"Internal error, negative bits\n");
av_assert1(s->repeat_first_field == 0);
vbv_delay = bits * 90000 / avctx->rc_max_rate;
min_delay = (minbits * 90000LL + avctx->rc_max_rate - 1) /
avctx->rc_max_rate;
vbv_delay = FFMAX(vbv_delay, min_delay);
av_assert0(vbv_delay < 0xFFFF);
vbv_delay_ptr[0] &= 0xF8;
vbv_delay_ptr[0] |= vbv_delay >> 13;
vbv_delay_ptr[1] = vbv_delay >> 5;
vbv_delay_ptr[2] &= 0x07;
vbv_delay_ptr[2] |= vbv_delay << 3;
props = av_cpb_properties_alloc(&props_size);
if (!props)
return AVERROR(ENOMEM);
props->vbv_delay = vbv_delay * 300;
ret = av_packet_add_side_data(pkt, AV_PKT_DATA_CPB_PROPERTIES,
(uint8_t*)props, props_size);
if (ret < 0) {
av_freep(&props);
return ret;
}
}
s->total_bits += s->frame_bits;
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
pkt->pts = s->cur_pic.ptr->f->pts;
pkt->duration = s->cur_pic.ptr->f->duration;
if (!s->low_delay && s->pict_type != AV_PICTURE_TYPE_B) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
if (!s->cur_pic.ptr->coded_picture_number)
pkt->dts = pkt->pts - s->dts_delta;
else
pkt->dts = s->reordered_pts;
s->reordered_pts = pkt->pts;
} else
pkt->dts = pkt->pts;
// the no-delay case is handled in generic code
if (avctx->codec->capabilities & AV_CODEC_CAP_DELAY) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ret = ff_encode_reordered_opaque(avctx, pkt, s->cur_pic.ptr->f);
if (ret < 0)
return ret;
}
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
if (s->cur_pic.ptr->f->flags & AV_FRAME_FLAG_KEY)
pkt->flags |= AV_PKT_FLAG_KEY;
if (s->mb_info)
av_packet_shrink_side_data(pkt, AV_PKT_DATA_H263_MB_INFO, s->mb_info_size);
} else {
s->frame_bits = 0;
}
avcodec/mpegpicture: Make MPVPicture refcounted Up until now, an initialized MpegEncContext had an array of MPVPictures (way more than were ever needed) and the MPVPicture* contained in the MPVWorkPictures as well as the input_picture and reordered_input_picture arrays (for the encoder) pointed into this array. Several of the pointers could point to the same slot and because there was no reference counting involved, one had to check for aliasing before unreferencing. Furthermore, given that these pointers were not ownership pointers the pointers were often simply reset without unreferencing the slot (happened e.g. for the RV30 and RV40 decoders) or there were moved without resetting the src pointer (happened for the encoders where the entries in the input_picture and reordered_input_picture arrays were not reset). Instead actually releasing these pictures was performed by looping over the whole array and checking which one of the entries needed to be kept. Given that the array had way too many slots (36), this meant that more than 30 MPVPictures have been unnecessarily unreferenced in every ff_mpv_frame_start(); something similar happened for the encoder. This commit changes this by making the MPVPictures refcounted via the RefStruct API. The MPVPictures itself are part of a pool so that this does not entail constant allocations; instead, the amount of allocations actually goes down, because the earlier code used such a large array of MPVPictures (36 entries) and allocated an AVFrame for every one of these on every ff_mpv_common_init(). In fact, the pool is only freed when closing the codec, so that reinitializations don't lead to new allocations (this avoids having to sync the pool in update_thread_context). Making MPVPictures refcounted also has another key benefit: It makes it possible to directly share them across threads (when using frame-threaded decoding), eliminating ugly code with underlying av_frame_ref()'s; sharing these pictures can't fail any more. The pool is allocated in ff_mpv_decode_init() for decoders, which therefore can fail now. This and the fact that the pool is not unreferenced in ff_mpv_common_end() also necessitated to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP flag. *: This also means that there is no good reason any more for ff_mpv_common_frame_size_change() to exist. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_mpv_unref_picture(&s->cur_pic);
av_assert1((s->frame_bits & 7) == 0);
pkt->size = s->frame_bits / 8;
*got_packet = !!pkt->size;
return 0;
}
static inline void dct_single_coeff_elimination(MpegEncContext *s,
int n, int threshold)
{
static const char tab[64] = {
3, 2, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
int score = 0;
int run = 0;
int i;
int16_t *block = s->block[n];
const int last_index = s->block_last_index[n];
int skip_dc;
if (threshold < 0) {
skip_dc = 0;
threshold = -threshold;
} else
skip_dc = 1;
/* Are all we could set to zero already zero? */
if (last_index <= skip_dc - 1)
return;
for (i = 0; i <= last_index; i++) {
const int j = s->intra_scantable.permutated[i];
const int level = FFABS(block[j]);
if (level == 1) {
if (skip_dc && i == 0)
continue;
score += tab[run];
run = 0;
} else if (level > 1) {
return;
} else {
run++;
}
}
if (score >= threshold)
return;
for (i = skip_dc; i <= last_index; i++) {
const int j = s->intra_scantable.permutated[i];
block[j] = 0;
}
if (block[0])
s->block_last_index[n] = 0;
else
s->block_last_index[n] = -1;
}
static inline void clip_coeffs(MpegEncContext *s, int16_t *block,
int last_index)
{
int i;
const int maxlevel = s->max_qcoeff;
const int minlevel = s->min_qcoeff;
int overflow = 0;
if (s->mb_intra) {
i = 1; // skip clipping of intra dc
} else
i = 0;
for (; i <= last_index; i++) {
const int j = s->intra_scantable.permutated[i];
int level = block[j];
if (level > maxlevel) {
level = maxlevel;
overflow++;
} else if (level < minlevel) {
level = minlevel;
overflow++;
}
block[j] = level;
}
if (overflow && s->avctx->mb_decision == FF_MB_DECISION_SIMPLE)
av_log(s->avctx, AV_LOG_INFO,
"warning, clipping %d dct coefficients to %d..%d\n",
overflow, minlevel, maxlevel);
}
static void get_visual_weight(int16_t *weight, const uint8_t *ptr, int stride)
{
int x, y;
// FIXME optimize
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++) {
int x2, y2;
int sum = 0;
int sqr = 0;
int count = 0;
for (y2 = FFMAX(y - 1, 0); y2 < FFMIN(8, y + 2); y2++) {
for (x2= FFMAX(x - 1, 0); x2 < FFMIN(8, x + 2); x2++) {
int v = ptr[x2 + y2 * stride];
sum += v;
sqr += v * v;
count++;
}
}
weight[x + 8 * y]= (36 * ff_sqrt(count * sqr - sum * sum)) / count;
}
}
}
static av_always_inline void encode_mb_internal(MpegEncContext *s,
int motion_x, int motion_y,
int mb_block_height,
int mb_block_width,
int mb_block_count,
int chroma_x_shift,
int chroma_y_shift,
int chroma_format)
{
/* Interlaced DCT is only possible with MPEG-2 and MPEG-4
* and neither of these encoders currently supports 444. */
#define INTERLACED_DCT(s) ((chroma_format == CHROMA_420 || chroma_format == CHROMA_422) && \
(s)->avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT)
int16_t weight[12][64];
int16_t orig[12][64];
const int mb_x = s->mb_x;
const int mb_y = s->mb_y;
int i;
int skip_dct[12];
int dct_offset = s->linesize * 8; // default for progressive frames
int uv_dct_offset = s->uvlinesize * 8;
const uint8_t *ptr_y, *ptr_cb, *ptr_cr;
ptrdiff_t wrap_y, wrap_c;
for (i = 0; i < mb_block_count; i++)
skip_dct[i] = s->skipdct;
if (s->adaptive_quant) {
const int last_qp = s->qscale;
const int mb_xy = mb_x + mb_y * s->mb_stride;
s->lambda = s->lambda_table[mb_xy];
s->lambda2 = (s->lambda * s->lambda + FF_LAMBDA_SCALE / 2) >>
FF_LAMBDA_SHIFT;
if (!(s->mpv_flags & FF_MPV_FLAG_QP_RD)) {
s->dquant = s->cur_pic.qscale_table[mb_xy] - last_qp;
if (s->out_format == FMT_H263) {
s->dquant = av_clip(s->dquant, -2, 2);
if (s->codec_id == AV_CODEC_ID_MPEG4) {
if (!s->mb_intra) {
if (s->pict_type == AV_PICTURE_TYPE_B) {
if (s->dquant & 1 || s->mv_dir & MV_DIRECT)
s->dquant = 0;
}
if (s->mv_type == MV_TYPE_8X8)
s->dquant = 0;
}
}
}
}
ff_set_qscale(s, last_qp + s->dquant);
} else if (s->mpv_flags & FF_MPV_FLAG_QP_RD)
ff_set_qscale(s, s->qscale + s->dquant);
wrap_y = s->linesize;
wrap_c = s->uvlinesize;
ptr_y = s->new_pic->data[0] +
(mb_y * 16 * wrap_y) + mb_x * 16;
ptr_cb = s->new_pic->data[1] +
(mb_y * mb_block_height * wrap_c) + mb_x * mb_block_width;
ptr_cr = s->new_pic->data[2] +
(mb_y * mb_block_height * wrap_c) + mb_x * mb_block_width;
if((mb_x * 16 + 16 > s->width || mb_y * 16 + 16 > s->height) && s->codec_id != AV_CODEC_ID_AMV){
uint8_t *ebuf = s->sc.edge_emu_buffer + 38 * wrap_y;
int cw = (s->width + chroma_x_shift) >> chroma_x_shift;
int ch = (s->height + chroma_y_shift) >> chroma_y_shift;
s->vdsp.emulated_edge_mc(ebuf, ptr_y,
wrap_y, wrap_y,
16, 16, mb_x * 16, mb_y * 16,
s->width, s->height);
ptr_y = ebuf;
s->vdsp.emulated_edge_mc(ebuf + 16 * wrap_y, ptr_cb,
wrap_c, wrap_c,
mb_block_width, mb_block_height,
mb_x * mb_block_width, mb_y * mb_block_height,
cw, ch);
ptr_cb = ebuf + 16 * wrap_y;
s->vdsp.emulated_edge_mc(ebuf + 16 * wrap_y + 16, ptr_cr,
wrap_c, wrap_c,
mb_block_width, mb_block_height,
mb_x * mb_block_width, mb_y * mb_block_height,
cw, ch);
ptr_cr = ebuf + 16 * wrap_y + 16;
}
if (s->mb_intra) {
if (INTERLACED_DCT(s)) {
int progressive_score, interlaced_score;
s->interlaced_dct = 0;
progressive_score = s->ildct_cmp[1](s, ptr_y, NULL, wrap_y, 8) +
s->ildct_cmp[1](s, ptr_y + wrap_y * 8,
NULL, wrap_y, 8) - 400;
if (progressive_score > 0) {
interlaced_score = s->ildct_cmp[1](s, ptr_y,
NULL, wrap_y * 2, 8) +
s->ildct_cmp[1](s, ptr_y + wrap_y,
NULL, wrap_y * 2, 8);
if (progressive_score > interlaced_score) {
s->interlaced_dct = 1;
dct_offset = wrap_y;
uv_dct_offset = wrap_c;
wrap_y <<= 1;
if (chroma_format == CHROMA_422 ||
chroma_format == CHROMA_444)
wrap_c <<= 1;
}
}
}
s->pdsp.get_pixels(s->block[0], ptr_y, wrap_y);
s->pdsp.get_pixels(s->block[1], ptr_y + 8, wrap_y);
s->pdsp.get_pixels(s->block[2], ptr_y + dct_offset, wrap_y);
s->pdsp.get_pixels(s->block[3], ptr_y + dct_offset + 8, wrap_y);
if (s->avctx->flags & AV_CODEC_FLAG_GRAY) {
skip_dct[4] = 1;
skip_dct[5] = 1;
} else {
s->pdsp.get_pixels(s->block[4], ptr_cb, wrap_c);
s->pdsp.get_pixels(s->block[5], ptr_cr, wrap_c);
if (chroma_format == CHROMA_422) {
s->pdsp.get_pixels(s->block[6], ptr_cb + uv_dct_offset, wrap_c);
s->pdsp.get_pixels(s->block[7], ptr_cr + uv_dct_offset, wrap_c);
} else if (chroma_format == CHROMA_444) {
s->pdsp.get_pixels(s->block[ 6], ptr_cb + 8, wrap_c);
s->pdsp.get_pixels(s->block[ 7], ptr_cr + 8, wrap_c);
s->pdsp.get_pixels(s->block[ 8], ptr_cb + uv_dct_offset, wrap_c);
s->pdsp.get_pixels(s->block[ 9], ptr_cr + uv_dct_offset, wrap_c);
s->pdsp.get_pixels(s->block[10], ptr_cb + uv_dct_offset + 8, wrap_c);
s->pdsp.get_pixels(s->block[11], ptr_cr + uv_dct_offset + 8, wrap_c);
}
}
} else {
op_pixels_func (*op_pix)[4];
qpel_mc_func (*op_qpix)[16];
uint8_t *dest_y, *dest_cb, *dest_cr;
dest_y = s->dest[0];
dest_cb = s->dest[1];
dest_cr = s->dest[2];
if ((!s->no_rounding) || s->pict_type == AV_PICTURE_TYPE_B) {
op_pix = s->hdsp.put_pixels_tab;
op_qpix = s->qdsp.put_qpel_pixels_tab;
} else {
op_pix = s->hdsp.put_no_rnd_pixels_tab;
op_qpix = s->qdsp.put_no_rnd_qpel_pixels_tab;
}
if (s->mv_dir & MV_DIR_FORWARD) {
ff_mpv_motion(s, dest_y, dest_cb, dest_cr, 0,
s->last_pic.data,
op_pix, op_qpix);
op_pix = s->hdsp.avg_pixels_tab;
op_qpix = s->qdsp.avg_qpel_pixels_tab;
}
if (s->mv_dir & MV_DIR_BACKWARD) {
ff_mpv_motion(s, dest_y, dest_cb, dest_cr, 1,
s->next_pic.data,
op_pix, op_qpix);
}
if (INTERLACED_DCT(s)) {
int progressive_score, interlaced_score;
s->interlaced_dct = 0;
progressive_score = s->ildct_cmp[0](s, dest_y, ptr_y, wrap_y, 8) +
s->ildct_cmp[0](s, dest_y + wrap_y * 8,
ptr_y + wrap_y * 8,
wrap_y, 8) - 400;
if (s->avctx->ildct_cmp == FF_CMP_VSSE)
progressive_score -= 400;
if (progressive_score > 0) {
interlaced_score = s->ildct_cmp[0](s, dest_y, ptr_y,
wrap_y * 2, 8) +
s->ildct_cmp[0](s, dest_y + wrap_y,
ptr_y + wrap_y,
wrap_y * 2, 8);
if (progressive_score > interlaced_score) {
s->interlaced_dct = 1;
dct_offset = wrap_y;
uv_dct_offset = wrap_c;
wrap_y <<= 1;
if (chroma_format == CHROMA_422)
wrap_c <<= 1;
}
}
}
s->pdsp.diff_pixels(s->block[0], ptr_y, dest_y, wrap_y);
s->pdsp.diff_pixels(s->block[1], ptr_y + 8, dest_y + 8, wrap_y);
s->pdsp.diff_pixels(s->block[2], ptr_y + dct_offset,
dest_y + dct_offset, wrap_y);
s->pdsp.diff_pixels(s->block[3], ptr_y + dct_offset + 8,
dest_y + dct_offset + 8, wrap_y);
if (s->avctx->flags & AV_CODEC_FLAG_GRAY) {
skip_dct[4] = 1;
skip_dct[5] = 1;
} else {
s->pdsp.diff_pixels(s->block[4], ptr_cb, dest_cb, wrap_c);
s->pdsp.diff_pixels(s->block[5], ptr_cr, dest_cr, wrap_c);
if (!chroma_y_shift) { /* 422 */
s->pdsp.diff_pixels(s->block[6], ptr_cb + uv_dct_offset,
dest_cb + uv_dct_offset, wrap_c);
s->pdsp.diff_pixels(s->block[7], ptr_cr + uv_dct_offset,
dest_cr + uv_dct_offset, wrap_c);
}
}
/* pre quantization */
avcodec/mpegpicture: Move mb_var, mc_mb_var and mb_mean to MpegEncCtx These tables are only used by encoders and only for the current picture; ergo they need not be put into the picture at all, but rather into the encoder's context. They also don't need to be refcounted, because there is only one owner. In contrast to this, the earlier code refcounts them which incurs unnecessary overhead. These references are not unreferenced in ff_mpeg_unref_picture() (they are kept in order to have something like a buffer pool), so that several buffers are kept at the same time, although only one is needed, thereby wasting memory. The code also propagates references to other pictures not part of the pictures array (namely the copy of the current/next/last picture in the MpegEncContext which get references of their own). These references are not unreferenced in ff_mpeg_unref_picture() (the buffers are probably kept in order to have something like a pool), yet if the current picture is a B-frame, it gets unreferenced at the end of ff_mpv_encode_picture() and its slot in the picture array will therefore be reused the next time; but the copy of the current picture also still has its references and therefore these buffers will be made duplicated in order to make them writable in the next call to ff_mpv_encode_picture(). This is of course unnecessary. Finally, ff_find_unused_picture() is supposed to just return any unused picture and the code is supposed to work with it; yet for the vsynth*-mpeg4-adap tests the result depends upon the content of these buffers; given that this patchset changes the content of these buffers (the initial content is now the state of these buffers after encoding the last frame; before this patch the buffers used came from the last picture that occupied the same slot in the picture array) their ref-files needed to be changed. This points to a bug somewhere (if one removes the initialization, one gets uninitialized reads in adaptive_quantization in ratecontrol.c). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
3 years ago
if (s->mc_mb_var[s->mb_stride * mb_y + mb_x] < 2 * s->qscale * s->qscale) {
// FIXME optimize
if (s->sad_cmp[1](NULL, ptr_y, dest_y, wrap_y, 8) < 20 * s->qscale)
skip_dct[0] = 1;
if (s->sad_cmp[1](NULL, ptr_y + 8, dest_y + 8, wrap_y, 8) < 20 * s->qscale)
skip_dct[1] = 1;
if (s->sad_cmp[1](NULL, ptr_y + dct_offset, dest_y + dct_offset,
wrap_y, 8) < 20 * s->qscale)
skip_dct[2] = 1;
if (s->sad_cmp[1](NULL, ptr_y + dct_offset + 8, dest_y + dct_offset + 8,
wrap_y, 8) < 20 * s->qscale)
skip_dct[3] = 1;
if (s->sad_cmp[1](NULL, ptr_cb, dest_cb, wrap_c, 8) < 20 * s->qscale)
skip_dct[4] = 1;
if (s->sad_cmp[1](NULL, ptr_cr, dest_cr, wrap_c, 8) < 20 * s->qscale)
skip_dct[5] = 1;
if (!chroma_y_shift) { /* 422 */
if (s->sad_cmp[1](NULL, ptr_cb + uv_dct_offset,
dest_cb + uv_dct_offset,
wrap_c, 8) < 20 * s->qscale)
skip_dct[6] = 1;
if (s->sad_cmp[1](NULL, ptr_cr + uv_dct_offset,
dest_cr + uv_dct_offset,
wrap_c, 8) < 20 * s->qscale)
skip_dct[7] = 1;
}
}
}
if (s->quantizer_noise_shaping) {
if (!skip_dct[0])
get_visual_weight(weight[0], ptr_y , wrap_y);
if (!skip_dct[1])
get_visual_weight(weight[1], ptr_y + 8, wrap_y);
if (!skip_dct[2])
get_visual_weight(weight[2], ptr_y + dct_offset , wrap_y);
if (!skip_dct[3])
get_visual_weight(weight[3], ptr_y + dct_offset + 8, wrap_y);
if (!skip_dct[4])
get_visual_weight(weight[4], ptr_cb , wrap_c);
if (!skip_dct[5])
get_visual_weight(weight[5], ptr_cr , wrap_c);
if (!chroma_y_shift) { /* 422 */
if (!skip_dct[6])
get_visual_weight(weight[6], ptr_cb + uv_dct_offset,
wrap_c);
if (!skip_dct[7])
get_visual_weight(weight[7], ptr_cr + uv_dct_offset,
wrap_c);
}
memcpy(orig[0], s->block[0], sizeof(int16_t) * 64 * mb_block_count);
}
/* DCT & quantize */
av_assert2(s->out_format != FMT_MJPEG || s->qscale == 8);
{
for (i = 0; i < mb_block_count; i++) {
if (!skip_dct[i]) {
int overflow;
s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, s->qscale, &overflow);
// FIXME we could decide to change to quantizer instead of
// clipping
// JS: I don't think that would be a good idea it could lower
// quality instead of improve it. Just INTRADC clipping
// deserves changes in quantizer
if (overflow)
clip_coeffs(s, s->block[i], s->block_last_index[i]);
} else
s->block_last_index[i] = -1;
}
if (s->quantizer_noise_shaping) {
for (i = 0; i < mb_block_count; i++) {
if (!skip_dct[i]) {
s->block_last_index[i] =
dct_quantize_refine(s, s->block[i], weight[i],
orig[i], i, s->qscale);
}
}
}
if (s->luma_elim_threshold && !s->mb_intra)
for (i = 0; i < 4; i++)
dct_single_coeff_elimination(s, i, s->luma_elim_threshold);
if (s->chroma_elim_threshold && !s->mb_intra)
for (i = 4; i < mb_block_count; i++)
dct_single_coeff_elimination(s, i, s->chroma_elim_threshold);
if (s->mpv_flags & FF_MPV_FLAG_CBP_RD) {
for (i = 0; i < mb_block_count; i++) {
if (s->block_last_index[i] == -1)
s->coded_score[i] = INT_MAX / 256;
}
}
}
if ((s->avctx->flags & AV_CODEC_FLAG_GRAY) && s->mb_intra) {
s->block_last_index[4] =
s->block_last_index[5] = 0;
s->block[4][0] =
s->block[5][0] = (1024 + s->c_dc_scale / 2) / s->c_dc_scale;
if (!chroma_y_shift) { /* 422 / 444 */
for (i=6; i<12; i++) {
s->block_last_index[i] = 0;
s->block[i][0] = s->block[4][0];
}
}
}
// non c quantize code returns incorrect block_last_index FIXME
if (s->alternate_scan && s->dct_quantize != dct_quantize_c) {
for (i = 0; i < mb_block_count; i++) {
int j;
if (s->block_last_index[i] > 0) {
for (j = 63; j > 0; j--) {
if (s->block[i][s->intra_scantable.permutated[j]])
break;
}
s->block_last_index[i] = j;
}
}
}
/* huffman encode */
switch(s->codec_id){ //FIXME funct ptr could be slightly faster
case AV_CODEC_ID_MPEG1VIDEO:
case AV_CODEC_ID_MPEG2VIDEO:
if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER)
ff_mpeg1_encode_mb(s, s->block, motion_x, motion_y);
break;
case AV_CODEC_ID_MPEG4:
if (CONFIG_MPEG4_ENCODER)
ff_mpeg4_encode_mb(s, s->block, motion_x, motion_y);
break;
case AV_CODEC_ID_MSMPEG4V2:
case AV_CODEC_ID_MSMPEG4V3:
case AV_CODEC_ID_WMV1:
if (CONFIG_MSMPEG4ENC)
ff_msmpeg4_encode_mb(s, s->block, motion_x, motion_y);
break;
case AV_CODEC_ID_WMV2:
if (CONFIG_WMV2_ENCODER)
ff_wmv2_encode_mb(s, s->block, motion_x, motion_y);
break;
case AV_CODEC_ID_H261:
if (CONFIG_H261_ENCODER)
ff_h261_encode_mb(s, s->block, motion_x, motion_y);
break;
case AV_CODEC_ID_H263:
case AV_CODEC_ID_H263P:
case AV_CODEC_ID_FLV1:
case AV_CODEC_ID_RV10:
case AV_CODEC_ID_RV20:
if (CONFIG_H263_ENCODER)
ff_h263_encode_mb(s, s->block, motion_x, motion_y);
break;
#if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
case AV_CODEC_ID_MJPEG:
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
case AV_CODEC_ID_AMV:
ff_mjpeg_encode_mb(s, s->block);
break;
#endif
case AV_CODEC_ID_SPEEDHQ:
if (CONFIG_SPEEDHQ_ENCODER)
ff_speedhq_encode_mb(s, s->block);
break;
default:
av_assert1(0);
}
}
static void encode_mb(MpegEncContext *s, int motion_x, int motion_y)
{
if (s->chroma_format == CHROMA_420)
encode_mb_internal(s, motion_x, motion_y, 8, 8, 6, 1, 1, CHROMA_420);
else if (s->chroma_format == CHROMA_422)
encode_mb_internal(s, motion_x, motion_y, 16, 8, 8, 1, 0, CHROMA_422);
else
encode_mb_internal(s, motion_x, motion_y, 16, 16, 12, 0, 0, CHROMA_444);
}
static inline void copy_context_before_encode(MpegEncContext *d,
const MpegEncContext *s)
{
int i;
memcpy(d->last_mv, s->last_mv, 2*2*2*sizeof(int)); //FIXME is memcpy faster than a loop?
/* MPEG-1 */
d->mb_skip_run= s->mb_skip_run;
for(i=0; i<3; i++)
d->last_dc[i] = s->last_dc[i];
/* statistics */
d->mv_bits= s->mv_bits;
d->i_tex_bits= s->i_tex_bits;
d->p_tex_bits= s->p_tex_bits;
d->i_count= s->i_count;
d->misc_bits= s->misc_bits;
d->last_bits= 0;
d->mb_skipped= 0;
d->qscale= s->qscale;
d->dquant= s->dquant;
d->esc3_level_length= s->esc3_level_length;
}
static inline void copy_context_after_encode(MpegEncContext *d,
const MpegEncContext *s)
{
int i;
memcpy(d->mv, s->mv, 2*4*2*sizeof(int));
memcpy(d->last_mv, s->last_mv, 2*2*2*sizeof(int)); //FIXME is memcpy faster than a loop?
/* MPEG-1 */
d->mb_skip_run= s->mb_skip_run;
for(i=0; i<3; i++)
d->last_dc[i] = s->last_dc[i];
/* statistics */
d->mv_bits= s->mv_bits;
d->i_tex_bits= s->i_tex_bits;
d->p_tex_bits= s->p_tex_bits;
d->i_count= s->i_count;
d->misc_bits= s->misc_bits;
d->mb_intra= s->mb_intra;
d->mb_skipped= s->mb_skipped;
d->mv_type= s->mv_type;
d->mv_dir= s->mv_dir;
d->pb= s->pb;
if(s->data_partitioning){
d->pb2= s->pb2;
d->tex_pb= s->tex_pb;
}
d->block= s->block;
for(i=0; i<8; i++)
d->block_last_index[i]= s->block_last_index[i];
d->interlaced_dct= s->interlaced_dct;
d->qscale= s->qscale;
d->esc3_level_length= s->esc3_level_length;
}
static void encode_mb_hq(MpegEncContext *s, MpegEncContext *backup, MpegEncContext *best,
PutBitContext pb[2], PutBitContext pb2[2], PutBitContext tex_pb[2],
int *dmin, int *next_block, int motion_x, int motion_y)
{
int score;
uint8_t *dest_backup[3];
copy_context_before_encode(s, backup);
s->block= s->blocks[*next_block];
s->pb= pb[*next_block];
if(s->data_partitioning){
s->pb2 = pb2 [*next_block];
s->tex_pb= tex_pb[*next_block];
}
if(*next_block){
memcpy(dest_backup, s->dest, sizeof(s->dest));
s->dest[0] = s->sc.rd_scratchpad;
s->dest[1] = s->sc.rd_scratchpad + 16*s->linesize;
s->dest[2] = s->sc.rd_scratchpad + 16*s->linesize + 8;
av_assert0(s->linesize >= 32); //FIXME
}
encode_mb(s, motion_x, motion_y);
score= put_bits_count(&s->pb);
if(s->data_partitioning){
score+= put_bits_count(&s->pb2);
score+= put_bits_count(&s->tex_pb);
}
if(s->avctx->mb_decision == FF_MB_DECISION_RD){
mpv_reconstruct_mb(s, s->block);
score *= s->lambda2;
score += sse_mb(s) << FF_LAMBDA_SHIFT;
}
if(*next_block){
memcpy(s->dest, dest_backup, sizeof(s->dest));
}
if(score<*dmin){
*dmin= score;
*next_block^=1;
copy_context_after_encode(best, s);
}
}
static int sse(MpegEncContext *s, const uint8_t *src1, const uint8_t *src2, int w, int h, int stride){
const uint32_t *sq = ff_square_tab + 256;
int acc=0;
int x,y;
if(w==16 && h==16)
return s->sse_cmp[0](NULL, src1, src2, stride, 16);
else if(w==8 && h==8)
return s->sse_cmp[1](NULL, src1, src2, stride, 8);
for(y=0; y<h; y++){
for(x=0; x<w; x++){
acc+= sq[src1[x + y*stride] - src2[x + y*stride]];
}
}
av_assert2(acc>=0);
return acc;
}
static int sse_mb(MpegEncContext *s){
int w= 16;
int h= 16;
int chroma_mb_w = w >> s->chroma_x_shift;
int chroma_mb_h = h >> s->chroma_y_shift;
if(s->mb_x*16 + 16 > s->width ) w= s->width - s->mb_x*16;
if(s->mb_y*16 + 16 > s->height) h= s->height- s->mb_y*16;
if(w==16 && h==16)
return s->n_sse_cmp[0](s, s->new_pic->data[0] + s->mb_x * 16 + s->mb_y * s->linesize * 16,
s->dest[0], s->linesize, 16) +
s->n_sse_cmp[1](s, s->new_pic->data[1] + s->mb_x * chroma_mb_w + s->mb_y * s->uvlinesize * chroma_mb_h,
s->dest[1], s->uvlinesize, chroma_mb_h) +
s->n_sse_cmp[1](s, s->new_pic->data[2] + s->mb_x * chroma_mb_w + s->mb_y * s->uvlinesize * chroma_mb_h,
s->dest[2], s->uvlinesize, chroma_mb_h);
else
return sse(s, s->new_pic->data[0] + s->mb_x * 16 + s->mb_y * s->linesize * 16,
s->dest[0], w, h, s->linesize) +
sse(s, s->new_pic->data[1] + s->mb_x * chroma_mb_w + s->mb_y * s->uvlinesize * chroma_mb_h,
s->dest[1], w >> s->chroma_x_shift, h >> s->chroma_y_shift, s->uvlinesize) +
sse(s, s->new_pic->data[2] + s->mb_x * chroma_mb_w + s->mb_y * s->uvlinesize * chroma_mb_h,
s->dest[2], w >> s->chroma_x_shift, h >> s->chroma_y_shift, s->uvlinesize);
}
static int pre_estimate_motion_thread(AVCodecContext *c, void *arg){
MpegEncContext *s= *(void**)arg;
s->me.pre_pass=1;
s->me.dia_size= s->avctx->pre_dia_size;
s->first_slice_line=1;
for(s->mb_y= s->end_mb_y-1; s->mb_y >= s->start_mb_y; s->mb_y--) {
for(s->mb_x=s->mb_width-1; s->mb_x >=0 ;s->mb_x--) {
ff_pre_estimate_p_frame_motion(s, s->mb_x, s->mb_y);
}
s->first_slice_line=0;
}
s->me.pre_pass=0;
return 0;
}
static int estimate_motion_thread(AVCodecContext *c, void *arg){
MpegEncContext *s= *(void**)arg;
s->me.dia_size= s->avctx->dia_size;
s->first_slice_line=1;
for(s->mb_y= s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x=0; //for block init below
ff_init_block_index(s);
for(s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
s->block_index[0]+=2;
s->block_index[1]+=2;
s->block_index[2]+=2;
s->block_index[3]+=2;
/* compute motion vector & mb_type and store in context */
if(s->pict_type==AV_PICTURE_TYPE_B)
ff_estimate_b_frame_motion(s, s->mb_x, s->mb_y);
else
ff_estimate_p_frame_motion(s, s->mb_x, s->mb_y);
}
s->first_slice_line=0;
}
return 0;
}
static int mb_var_thread(AVCodecContext *c, void *arg){
MpegEncContext *s= *(void**)arg;
int mb_x, mb_y;
for(mb_y=s->start_mb_y; mb_y < s->end_mb_y; mb_y++) {
for(mb_x=0; mb_x < s->mb_width; mb_x++) {
int xx = mb_x * 16;
int yy = mb_y * 16;
const uint8_t *pix = s->new_pic->data[0] + (yy * s->linesize) + xx;
int varc;
int sum = s->mpvencdsp.pix_sum(pix, s->linesize);
varc = (s->mpvencdsp.pix_norm1(pix, s->linesize) -
(((unsigned) sum * sum) >> 8) + 500 + 128) >> 8;
avcodec/mpegpicture: Move mb_var, mc_mb_var and mb_mean to MpegEncCtx These tables are only used by encoders and only for the current picture; ergo they need not be put into the picture at all, but rather into the encoder's context. They also don't need to be refcounted, because there is only one owner. In contrast to this, the earlier code refcounts them which incurs unnecessary overhead. These references are not unreferenced in ff_mpeg_unref_picture() (they are kept in order to have something like a buffer pool), so that several buffers are kept at the same time, although only one is needed, thereby wasting memory. The code also propagates references to other pictures not part of the pictures array (namely the copy of the current/next/last picture in the MpegEncContext which get references of their own). These references are not unreferenced in ff_mpeg_unref_picture() (the buffers are probably kept in order to have something like a pool), yet if the current picture is a B-frame, it gets unreferenced at the end of ff_mpv_encode_picture() and its slot in the picture array will therefore be reused the next time; but the copy of the current picture also still has its references and therefore these buffers will be made duplicated in order to make them writable in the next call to ff_mpv_encode_picture(). This is of course unnecessary. Finally, ff_find_unused_picture() is supposed to just return any unused picture and the code is supposed to work with it; yet for the vsynth*-mpeg4-adap tests the result depends upon the content of these buffers; given that this patchset changes the content of these buffers (the initial content is now the state of these buffers after encoding the last frame; before this patch the buffers used came from the last picture that occupied the same slot in the picture array) their ref-files needed to be changed. This points to a bug somewhere (if one removes the initialization, one gets uninitialized reads in adaptive_quantization in ratecontrol.c). Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
3 years ago
s->mb_var [s->mb_stride * mb_y + mb_x] = varc;
s->mb_mean[s->mb_stride * mb_y + mb_x] = (sum+128)>>8;
s->me.mb_var_sum_temp += varc;
}
}
return 0;
}
static void write_slice_end(MpegEncContext *s){
if(CONFIG_MPEG4_ENCODER && s->codec_id==AV_CODEC_ID_MPEG4){
if(s->partitioned_frame){
ff_mpeg4_merge_partitions(s);
}
ff_mpeg4_stuffing(&s->pb);
} else if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) &&
s->out_format == FMT_MJPEG) {
ff_mjpeg_encode_stuffing(s);
} else if (CONFIG_SPEEDHQ_ENCODER && s->out_format == FMT_SPEEDHQ) {
ff_speedhq_end_slice(s);
}
flush_put_bits(&s->pb);
if ((s->avctx->flags & AV_CODEC_FLAG_PASS1) && !s->partitioned_frame)
s->misc_bits+= get_bits_diff(s);
}
static void write_mb_info(MpegEncContext *s)
{
uint8_t *ptr = s->mb_info_ptr + s->mb_info_size - 12;
int offset = put_bits_count(&s->pb);
int mba = s->mb_x + s->mb_width * (s->mb_y % s->gob_index);
int gobn = s->mb_y / s->gob_index;
int pred_x, pred_y;
if (CONFIG_H263_ENCODER)
ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y);
bytestream_put_le32(&ptr, offset);
bytestream_put_byte(&ptr, s->qscale);
bytestream_put_byte(&ptr, gobn);
bytestream_put_le16(&ptr, mba);
bytestream_put_byte(&ptr, pred_x); /* hmv1 */
bytestream_put_byte(&ptr, pred_y); /* vmv1 */
/* 4MV not implemented */
bytestream_put_byte(&ptr, 0); /* hmv2 */
bytestream_put_byte(&ptr, 0); /* vmv2 */
}
static void update_mb_info(MpegEncContext *s, int startcode)
{
if (!s->mb_info)
return;
if (put_bytes_count(&s->pb, 0) - s->prev_mb_info >= s->mb_info) {
s->mb_info_size += 12;
s->prev_mb_info = s->last_mb_info;
}
if (startcode) {
s->prev_mb_info = put_bytes_count(&s->pb, 0);
/* This might have incremented mb_info_size above, and we return without
* actually writing any info into that slot yet. But in that case,
* this will be called again at the start of the after writing the
* start code, actually writing the mb info. */
return;
}
s->last_mb_info = put_bytes_count(&s->pb, 0);
if (!s->mb_info_size)
s->mb_info_size += 12;
write_mb_info(s);
}
int ff_mpv_reallocate_putbitbuffer(MpegEncContext *s, size_t threshold, size_t size_increase)
{
if (put_bytes_left(&s->pb, 0) < threshold
&& s->slice_context_count == 1
&& s->pb.buf == s->avctx->internal->byte_buffer) {
int lastgob_pos = s->ptr_lastgob - s->pb.buf;
uint8_t *new_buffer = NULL;
int new_buffer_size = 0;
if ((s->avctx->internal->byte_buffer_size + size_increase) >= INT_MAX/8) {
av_log(s->avctx, AV_LOG_ERROR, "Cannot reallocate putbit buffer\n");
return AVERROR(ENOMEM);
}
emms_c();
av_fast_padded_malloc(&new_buffer, &new_buffer_size,
s->avctx->internal->byte_buffer_size + size_increase);
if (!new_buffer)
return AVERROR(ENOMEM);
memcpy(new_buffer, s->avctx->internal->byte_buffer, s->avctx->internal->byte_buffer_size);
av_free(s->avctx->internal->byte_buffer);
s->avctx->internal->byte_buffer = new_buffer;
s->avctx->internal->byte_buffer_size = new_buffer_size;
rebase_put_bits(&s->pb, new_buffer, new_buffer_size);
s->ptr_lastgob = s->pb.buf + lastgob_pos;
}
if (put_bytes_left(&s->pb, 0) < threshold)
return AVERROR(EINVAL);
return 0;
}
static int encode_thread(AVCodecContext *c, void *arg){
MpegEncContext *s= *(void**)arg;
int mb_x, mb_y, mb_y_order;
int chr_h= 16>>s->chroma_y_shift;
int i, j;
MpegEncContext best_s = { 0 }, backup_s;
uint8_t bit_buf[2][MAX_MB_BYTES];
uint8_t bit_buf2[2][MAX_MB_BYTES];
uint8_t bit_buf_tex[2][MAX_MB_BYTES];
PutBitContext pb[2], pb2[2], tex_pb[2];
for(i=0; i<2; i++){
init_put_bits(&pb [i], bit_buf [i], MAX_MB_BYTES);
init_put_bits(&pb2 [i], bit_buf2 [i], MAX_MB_BYTES);
init_put_bits(&tex_pb[i], bit_buf_tex[i], MAX_MB_BYTES);
}
s->last_bits= put_bits_count(&s->pb);
s->mv_bits=0;
s->misc_bits=0;
s->i_tex_bits=0;
s->p_tex_bits=0;
s->i_count=0;
for(i=0; i<3; i++){
/* init last dc values */
/* note: quant matrix value (8) is implied here */
s->last_dc[i] = 128 << s->intra_dc_precision;
s->encoding_error[i] = 0;
}
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
if(s->codec_id==AV_CODEC_ID_AMV){
s->last_dc[0] = 128*8/13;
s->last_dc[1] = 128*8/14;
s->last_dc[2] = 128*8/14;
}
s->mb_skip_run = 0;
memset(s->last_mv, 0, sizeof(s->last_mv));
s->last_mv_dir = 0;
switch(s->codec_id){
case AV_CODEC_ID_H263:
case AV_CODEC_ID_H263P:
case AV_CODEC_ID_FLV1:
if (CONFIG_H263_ENCODER)
s->gob_index = H263_GOB_HEIGHT(s->height);
break;
case AV_CODEC_ID_MPEG4:
if(CONFIG_MPEG4_ENCODER && s->partitioned_frame)
ff_mpeg4_init_partitions(s);
break;
}
s->resync_mb_x=0;
s->resync_mb_y=0;
s->first_slice_line = 1;
s->ptr_lastgob = s->pb.buf;
for (mb_y_order = s->start_mb_y; mb_y_order < s->end_mb_y; mb_y_order++) {
if (CONFIG_SPEEDHQ_ENCODER && s->codec_id == AV_CODEC_ID_SPEEDHQ) {
int first_in_slice;
mb_y = ff_speedhq_mb_y_order_to_mb(mb_y_order, s->mb_height, &first_in_slice);
if (first_in_slice && mb_y_order != s->start_mb_y)
ff_speedhq_end_slice(s);
s->last_dc[0] = s->last_dc[1] = s->last_dc[2] = 1024 << s->intra_dc_precision;
} else {
mb_y = mb_y_order;
}
s->mb_x=0;
s->mb_y= mb_y;
ff_set_qscale(s, s->qscale);
ff_init_block_index(s);
for(mb_x=0; mb_x < s->mb_width; mb_x++) {
int xy= mb_y*s->mb_stride + mb_x; // removed const, H261 needs to adjust this
int mb_type= s->mb_type[xy];
// int d;
int dmin= INT_MAX;
int dir;
int size_increase = s->avctx->internal->byte_buffer_size/4
+ s->mb_width*MAX_MB_BYTES;
ff_mpv_reallocate_putbitbuffer(s, MAX_MB_BYTES, size_increase);
if (put_bytes_left(&s->pb, 0) < MAX_MB_BYTES){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
if(s->data_partitioning){
if (put_bytes_left(&s->pb2, 0) < MAX_MB_BYTES ||
put_bytes_left(&s->tex_pb, 0) < MAX_MB_BYTES) {
av_log(s->avctx, AV_LOG_ERROR, "encoded partitioned frame too large\n");
return -1;
}
}
s->mb_x = mb_x;
s->mb_y = mb_y; // moved into loop, can get changed by H.261
ff_update_block_index(s, 8, 0, s->chroma_x_shift);
if(CONFIG_H261_ENCODER && s->codec_id == AV_CODEC_ID_H261){
ff_h261_reorder_mb_index(s);
xy= s->mb_y*s->mb_stride + s->mb_x;
mb_type= s->mb_type[xy];
}
/* write gob / video packet header */
if(s->rtp_mode){
int current_packet_size, is_gob_start;
current_packet_size = put_bytes_count(&s->pb, 1)
- (s->ptr_lastgob - s->pb.buf);
is_gob_start = s->rtp_payload_size &&
current_packet_size >= s->rtp_payload_size &&
mb_y + mb_x > 0;
if(s->start_mb_y == mb_y && mb_y > 0 && mb_x==0) is_gob_start=1;
switch(s->codec_id){
case AV_CODEC_ID_H263:
case AV_CODEC_ID_H263P:
if(!s->h263_slice_structured)
if(s->mb_x || s->mb_y%s->gob_index) is_gob_start=0;
break;
case AV_CODEC_ID_MPEG2VIDEO:
if(s->mb_x==0 && s->mb_y!=0) is_gob_start=1;
case AV_CODEC_ID_MPEG1VIDEO:
if(s->mb_skip_run) is_gob_start=0;
break;
Merge commit '36ef5369ee9b336febc2c270f8718cec4476cb85' * commit '36ef5369ee9b336febc2c270f8718cec4476cb85': Replace all CODEC_ID_* with AV_CODEC_ID_* lavc: add AV prefix to codec ids. Conflicts: doc/APIchanges doc/examples/decoding_encoding.c doc/examples/muxing.c ffmpeg.c ffprobe.c ffserver.c libavcodec/8svx.c libavcodec/avcodec.h libavcodec/dnxhd_parser.c libavcodec/dvdsubdec.c libavcodec/error_resilience.c libavcodec/h263dec.c libavcodec/libvorbisenc.c libavcodec/mjpeg_parser.c libavcodec/mjpegenc.c libavcodec/mpeg12.c libavcodec/mpeg4videodec.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/pcm.c libavcodec/r210dec.c libavcodec/utils.c libavcodec/v210dec.c libavcodec/version.h libavdevice/alsa-audio-dec.c libavdevice/bktr.c libavdevice/v4l2.c libavformat/asfdec.c libavformat/asfenc.c libavformat/avformat.h libavformat/avidec.c libavformat/caf.c libavformat/electronicarts.c libavformat/flacdec.c libavformat/flvdec.c libavformat/flvenc.c libavformat/framecrcenc.c libavformat/img2.c libavformat/img2dec.c libavformat/img2enc.c libavformat/ipmovie.c libavformat/isom.c libavformat/matroska.c libavformat/matroskadec.c libavformat/matroskaenc.c libavformat/mov.c libavformat/movenc.c libavformat/mp3dec.c libavformat/mpeg.c libavformat/mpegts.c libavformat/mxf.c libavformat/mxfdec.c libavformat/mxfenc.c libavformat/nsvdec.c libavformat/nut.c libavformat/oggenc.c libavformat/pmpdec.c libavformat/rawdec.c libavformat/rawenc.c libavformat/riff.c libavformat/sdp.c libavformat/utils.c libavformat/vocenc.c libavformat/wtv.c libavformat/xmv.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
13 years ago
case AV_CODEC_ID_MJPEG:
if(s->mb_x==0 && s->mb_y!=0) is_gob_start=1;
break;
}
if(is_gob_start){
if(s->start_mb_y != mb_y || mb_x!=0){
write_slice_end(s);
if(CONFIG_MPEG4_ENCODER && s->codec_id==AV_CODEC_ID_MPEG4 && s->partitioned_frame){
ff_mpeg4_init_partitions(s);
}
}
av_assert2((put_bits_count(&s->pb)&7) == 0);
current_packet_size= put_bits_ptr(&s->pb) - s->ptr_lastgob;
if (s->error_rate && s->resync_mb_x + s->resync_mb_y > 0) {
int r = put_bytes_count(&s->pb, 0) + s->picture_number + 16 + s->mb_x + s->mb_y;
int d = 100 / s->error_rate;
if(r % d == 0){
current_packet_size=0;
s->pb.buf_ptr= s->ptr_lastgob;
av_assert1(put_bits_ptr(&s->pb) == s->ptr_lastgob);
}
}
switch(s->codec_id){
case AV_CODEC_ID_MPEG4:
if (CONFIG_MPEG4_ENCODER) {
ff_mpeg4_encode_video_packet_header(s);
ff_mpeg4_clean_buffers(s);
}
break;
case AV_CODEC_ID_MPEG1VIDEO:
case AV_CODEC_ID_MPEG2VIDEO:
if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER) {
ff_mpeg1_encode_slice_header(s);
ff_mpeg1_clean_buffers(s);
}
break;
case AV_CODEC_ID_H263:
case AV_CODEC_ID_H263P:
if (CONFIG_H263_ENCODER) {
update_mb_info(s, 1);
ff_h263_encode_gob_header(s, mb_y);
}
break;
}
if (s->avctx->flags & AV_CODEC_FLAG_PASS1) {
int bits= put_bits_count(&s->pb);
s->misc_bits+= bits - s->last_bits;
s->last_bits= bits;
}
s->ptr_lastgob += current_packet_size;
s->first_slice_line=1;
s->resync_mb_x=mb_x;
s->resync_mb_y=mb_y;
}
}
if( (s->resync_mb_x == s->mb_x)
&& s->resync_mb_y+1 == s->mb_y){
s->first_slice_line=0;
}
s->mb_skipped=0;
s->dquant=0; //only for QP_RD
update_mb_info(s, 0);
if (mb_type & (mb_type-1) || (s->mpv_flags & FF_MPV_FLAG_QP_RD)) { // more than 1 MB type possible or FF_MPV_FLAG_QP_RD
int next_block=0;
int pb_bits_count, pb2_bits_count, tex_pb_bits_count;
copy_context_before_encode(&backup_s, s);
backup_s.pb= s->pb;
best_s.data_partitioning= s->data_partitioning;
best_s.partitioned_frame= s->partitioned_frame;
if(s->data_partitioning){
backup_s.pb2= s->pb2;
backup_s.tex_pb= s->tex_pb;
}
if(mb_type&CANDIDATE_MB_TYPE_INTER){
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= 0;
s->mv[0][0][0] = s->p_mv_table[xy][0];
s->mv[0][0][1] = s->p_mv_table[xy][1];
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, s->mv[0][0][0], s->mv[0][0][1]);
}
if(mb_type&CANDIDATE_MB_TYPE_INTER_I){
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(i=0; i<2; i++){
j= s->field_select[0][i] = s->p_field_select_table[i][xy];
s->mv[0][i][0] = s->p_field_mv_table[i][j][xy][0];
s->mv[0][i][1] = s->p_field_mv_table[i][j][xy][1];
}
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if(mb_type&CANDIDATE_MB_TYPE_SKIPPED){
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= 0;
s->mv[0][0][0] = 0;
s->mv[0][0][1] = 0;
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, s->mv[0][0][0], s->mv[0][0][1]);
}
if(mb_type&CANDIDATE_MB_TYPE_INTER4V){
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_8X8;
s->mb_intra= 0;
for(i=0; i<4; i++){
s->mv[0][i][0] = s->cur_pic.motion_val[0][s->block_index[i]][0];
s->mv[0][i][1] = s->cur_pic.motion_val[0][s->block_index[i]][1];
}
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if(mb_type&CANDIDATE_MB_TYPE_FORWARD){
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= 0;
s->mv[0][0][0] = s->b_forw_mv_table[xy][0];
s->mv[0][0][1] = s->b_forw_mv_table[xy][1];
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, s->mv[0][0][0], s->mv[0][0][1]);
}
if(mb_type&CANDIDATE_MB_TYPE_BACKWARD){
s->mv_dir = MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= 0;
s->mv[1][0][0] = s->b_back_mv_table[xy][0];
s->mv[1][0][1] = s->b_back_mv_table[xy][1];
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, s->mv[1][0][0], s->mv[1][0][1]);
}
if(mb_type&CANDIDATE_MB_TYPE_BIDIR){
s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= 0;
s->mv[0][0][0] = s->b_bidir_forw_mv_table[xy][0];
s->mv[0][0][1] = s->b_bidir_forw_mv_table[xy][1];
s->mv[1][0][0] = s->b_bidir_back_mv_table[xy][0];
s->mv[1][0][1] = s->b_bidir_back_mv_table[xy][1];
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if(mb_type&CANDIDATE_MB_TYPE_FORWARD_I){
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(i=0; i<2; i++){
j= s->field_select[0][i] = s->b_field_select_table[0][i][xy];
s->mv[0][i][0] = s->b_field_mv_table[0][i][j][xy][0];
s->mv[0][i][1] = s->b_field_mv_table[0][i][j][xy][1];
}
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if(mb_type&CANDIDATE_MB_TYPE_BACKWARD_I){
s->mv_dir = MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(i=0; i<2; i++){
j= s->field_select[1][i] = s->b_field_select_table[1][i][xy];
s->mv[1][i][0] = s->b_field_mv_table[1][i][j][xy][0];
s->mv[1][i][1] = s->b_field_mv_table[1][i][j][xy][1];
}
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if(mb_type&CANDIDATE_MB_TYPE_BIDIR_I){
s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(dir=0; dir<2; dir++){
for(i=0; i<2; i++){
j= s->field_select[dir][i] = s->b_field_select_table[dir][i][xy];
s->mv[dir][i][0] = s->b_field_mv_table[dir][i][j][xy][0];
s->mv[dir][i][1] = s->b_field_mv_table[dir][i][j][xy][1];
}
}
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if(mb_type&CANDIDATE_MB_TYPE_INTRA){
s->mv_dir = 0;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= 1;
s->mv[0][0][0] = 0;
s->mv[0][0][1] = 0;
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
if(s->h263_pred || s->h263_aic){
if(best_s.mb_intra)
s->mbintra_table[mb_x + mb_y*s->mb_stride]=1;
else
ff_clean_intra_table_entries(s); //old mode?
}
}
if ((s->mpv_flags & FF_MPV_FLAG_QP_RD) && dmin < INT_MAX) {
if(best_s.mv_type==MV_TYPE_16X16){ //FIXME move 4mv after QPRD
const int last_qp= backup_s.qscale;
int qpi, qp, dc[6];
int16_t ac[6][16];
const int mvdir= (best_s.mv_dir&MV_DIR_BACKWARD) ? 1 : 0;
static const int dquant_tab[4]={-1,1,-2,2};
int storecoefs = s->mb_intra && s->dc_val[0];
av_assert2(backup_s.dquant == 0);
//FIXME intra
s->mv_dir= best_s.mv_dir;
s->mv_type = MV_TYPE_16X16;
s->mb_intra= best_s.mb_intra;
s->mv[0][0][0] = best_s.mv[0][0][0];
s->mv[0][0][1] = best_s.mv[0][0][1];
s->mv[1][0][0] = best_s.mv[1][0][0];
s->mv[1][0][1] = best_s.mv[1][0][1];
qpi = s->pict_type == AV_PICTURE_TYPE_B ? 2 : 0;
for(; qpi<4; qpi++){
int dquant= dquant_tab[qpi];
qp= last_qp + dquant;
if(qp < s->avctx->qmin || qp > s->avctx->qmax)
continue;
backup_s.dquant= dquant;
if(storecoefs){
for(i=0; i<6; i++){
dc[i]= s->dc_val[0][ s->block_index[i] ];
memcpy(ac[i], s->ac_val[0][s->block_index[i]], sizeof(int16_t)*16);
}
}
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, s->mv[mvdir][0][0], s->mv[mvdir][0][1]);
if(best_s.qscale != qp){
if(storecoefs){
for(i=0; i<6; i++){
s->dc_val[0][ s->block_index[i] ]= dc[i];
memcpy(s->ac_val[0][s->block_index[i]], ac[i], sizeof(int16_t)*16);
}
}
}
}
}
}
if(CONFIG_MPEG4_ENCODER && mb_type&CANDIDATE_MB_TYPE_DIRECT){
int mx= s->b_direct_mv_table[xy][0];
int my= s->b_direct_mv_table[xy][1];
backup_s.dquant = 0;
s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD | MV_DIRECT;
s->mb_intra= 0;
ff_mpeg4_set_direct_mv(s, mx, my);
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, mx, my);
}
if(CONFIG_MPEG4_ENCODER && mb_type&CANDIDATE_MB_TYPE_DIRECT0){
backup_s.dquant = 0;
s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD | MV_DIRECT;
s->mb_intra= 0;
ff_mpeg4_set_direct_mv(s, 0, 0);
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, 0, 0);
}
if (!best_s.mb_intra && s->mpv_flags & FF_MPV_FLAG_SKIP_RD) {
int coded=0;
for(i=0; i<6; i++)
coded |= s->block_last_index[i];
if(coded){
int mx,my;
memcpy(s->mv, best_s.mv, sizeof(s->mv));
if(CONFIG_MPEG4_ENCODER && best_s.mv_dir & MV_DIRECT){
mx=my=0; //FIXME find the one we actually used
ff_mpeg4_set_direct_mv(s, mx, my);
}else if(best_s.mv_dir&MV_DIR_BACKWARD){
mx= s->mv[1][0][0];
my= s->mv[1][0][1];
}else{
mx= s->mv[0][0][0];
my= s->mv[0][0][1];
}
s->mv_dir= best_s.mv_dir;
s->mv_type = best_s.mv_type;
s->mb_intra= 0;
/* s->mv[0][0][0] = best_s.mv[0][0][0];
s->mv[0][0][1] = best_s.mv[0][0][1];
s->mv[1][0][0] = best_s.mv[1][0][0];
s->mv[1][0][1] = best_s.mv[1][0][1];*/
backup_s.dquant= 0;
s->skipdct=1;
encode_mb_hq(s, &backup_s, &best_s, pb, pb2, tex_pb,
&dmin, &next_block, mx, my);
s->skipdct=0;
}
}
s->cur_pic.qscale_table[xy] = best_s.qscale;
copy_context_after_encode(s, &best_s);
pb_bits_count= put_bits_count(&s->pb);
flush_put_bits(&s->pb);
ff_copy_bits(&backup_s.pb, bit_buf[next_block^1], pb_bits_count);
s->pb= backup_s.pb;
if(s->data_partitioning){
pb2_bits_count= put_bits_count(&s->pb2);
flush_put_bits(&s->pb2);
ff_copy_bits(&backup_s.pb2, bit_buf2[next_block^1], pb2_bits_count);
s->pb2= backup_s.pb2;
tex_pb_bits_count= put_bits_count(&s->tex_pb);
flush_put_bits(&s->tex_pb);
ff_copy_bits(&backup_s.tex_pb, bit_buf_tex[next_block^1], tex_pb_bits_count);
s->tex_pb= backup_s.tex_pb;
}
s->last_bits= put_bits_count(&s->pb);
if (CONFIG_H263_ENCODER &&
s->out_format == FMT_H263 && s->pict_type!=AV_PICTURE_TYPE_B)
ff_h263_update_mb(s);
if(next_block==0){ //FIXME 16 vs linesize16
s->hdsp.put_pixels_tab[0][0](s->dest[0], s->sc.rd_scratchpad , s->linesize ,16);
s->hdsp.put_pixels_tab[1][0](s->dest[1], s->sc.rd_scratchpad + 16*s->linesize , s->uvlinesize, 8);
s->hdsp.put_pixels_tab[1][0](s->dest[2], s->sc.rd_scratchpad + 16*s->linesize + 8, s->uvlinesize, 8);
}
if(s->avctx->mb_decision == FF_MB_DECISION_BITS)
mpv_reconstruct_mb(s, s->block);
} else {
int motion_x = 0, motion_y = 0;
s->mv_type=MV_TYPE_16X16;
// only one MB-Type possible
switch(mb_type){
case CANDIDATE_MB_TYPE_INTRA:
s->mv_dir = 0;
s->mb_intra= 1;
motion_x= s->mv[0][0][0] = 0;
motion_y= s->mv[0][0][1] = 0;
break;
case CANDIDATE_MB_TYPE_INTER:
s->mv_dir = MV_DIR_FORWARD;
s->mb_intra= 0;
motion_x= s->mv[0][0][0] = s->p_mv_table[xy][0];
motion_y= s->mv[0][0][1] = s->p_mv_table[xy][1];
break;
case CANDIDATE_MB_TYPE_INTER_I:
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(i=0; i<2; i++){
j= s->field_select[0][i] = s->p_field_select_table[i][xy];
s->mv[0][i][0] = s->p_field_mv_table[i][j][xy][0];
s->mv[0][i][1] = s->p_field_mv_table[i][j][xy][1];
}
break;
case CANDIDATE_MB_TYPE_INTER4V:
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_8X8;
s->mb_intra= 0;
for(i=0; i<4; i++){
s->mv[0][i][0] = s->cur_pic.motion_val[0][s->block_index[i]][0];
s->mv[0][i][1] = s->cur_pic.motion_val[0][s->block_index[i]][1];
}
break;
case CANDIDATE_MB_TYPE_DIRECT:
if (CONFIG_MPEG4_ENCODER) {
s->mv_dir = MV_DIR_FORWARD|MV_DIR_BACKWARD|MV_DIRECT;
s->mb_intra= 0;
motion_x=s->b_direct_mv_table[xy][0];
motion_y=s->b_direct_mv_table[xy][1];
ff_mpeg4_set_direct_mv(s, motion_x, motion_y);
}
break;
case CANDIDATE_MB_TYPE_DIRECT0:
if (CONFIG_MPEG4_ENCODER) {
s->mv_dir = MV_DIR_FORWARD|MV_DIR_BACKWARD|MV_DIRECT;
s->mb_intra= 0;
ff_mpeg4_set_direct_mv(s, 0, 0);
}
break;
case CANDIDATE_MB_TYPE_BIDIR:
s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
s->mb_intra= 0;
s->mv[0][0][0] = s->b_bidir_forw_mv_table[xy][0];
s->mv[0][0][1] = s->b_bidir_forw_mv_table[xy][1];
s->mv[1][0][0] = s->b_bidir_back_mv_table[xy][0];
s->mv[1][0][1] = s->b_bidir_back_mv_table[xy][1];
break;
case CANDIDATE_MB_TYPE_BACKWARD:
s->mv_dir = MV_DIR_BACKWARD;
s->mb_intra= 0;
motion_x= s->mv[1][0][0] = s->b_back_mv_table[xy][0];
motion_y= s->mv[1][0][1] = s->b_back_mv_table[xy][1];
break;
case CANDIDATE_MB_TYPE_FORWARD:
s->mv_dir = MV_DIR_FORWARD;
s->mb_intra= 0;
motion_x= s->mv[0][0][0] = s->b_forw_mv_table[xy][0];
motion_y= s->mv[0][0][1] = s->b_forw_mv_table[xy][1];
break;
case CANDIDATE_MB_TYPE_FORWARD_I:
s->mv_dir = MV_DIR_FORWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(i=0; i<2; i++){
j= s->field_select[0][i] = s->b_field_select_table[0][i][xy];
s->mv[0][i][0] = s->b_field_mv_table[0][i][j][xy][0];
s->mv[0][i][1] = s->b_field_mv_table[0][i][j][xy][1];
}
break;
case CANDIDATE_MB_TYPE_BACKWARD_I:
s->mv_dir = MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(i=0; i<2; i++){
j= s->field_select[1][i] = s->b_field_select_table[1][i][xy];
s->mv[1][i][0] = s->b_field_mv_table[1][i][j][xy][0];
s->mv[1][i][1] = s->b_field_mv_table[1][i][j][xy][1];
}
break;
case CANDIDATE_MB_TYPE_BIDIR_I:
s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
s->mv_type = MV_TYPE_FIELD;
s->mb_intra= 0;
for(dir=0; dir<2; dir++){
for(i=0; i<2; i++){
j= s->field_select[dir][i] = s->b_field_select_table[dir][i][xy];
s->mv[dir][i][0] = s->b_field_mv_table[dir][i][j][xy][0];
s->mv[dir][i][1] = s->b_field_mv_table[dir][i][j][xy][1];
}
}
break;
default:
av_log(s->avctx, AV_LOG_ERROR, "illegal MB type\n");
}
encode_mb(s, motion_x, motion_y);
// RAL: Update last macroblock type
s->last_mv_dir = s->mv_dir;
if (CONFIG_H263_ENCODER &&
s->out_format == FMT_H263 && s->pict_type!=AV_PICTURE_TYPE_B)
ff_h263_update_mb(s);
mpv_reconstruct_mb(s, s->block);
}
/* clean the MV table in IPS frames for direct mode in B-frames */
if(s->mb_intra /* && I,P,S_TYPE */){
s->p_mv_table[xy][0]=0;
s->p_mv_table[xy][1]=0;
}
if (s->avctx->flags & AV_CODEC_FLAG_PSNR) {
int w= 16;
int h= 16;
if(s->mb_x*16 + 16 > s->width ) w= s->width - s->mb_x*16;
if(s->mb_y*16 + 16 > s->height) h= s->height- s->mb_y*16;
s->encoding_error[0] += sse(
s, s->new_pic->data[0] + s->mb_x*16 + s->mb_y*s->linesize*16,
s->dest[0], w, h, s->linesize);
s->encoding_error[1] += sse(
s, s->new_pic->data[1] + s->mb_x*8 + s->mb_y*s->uvlinesize*chr_h,
s->dest[1], w>>1, h>>s->chroma_y_shift, s->uvlinesize);
s->encoding_error[2] += sse(
s, s->new_pic->data[2] + s->mb_x*8 + s->mb_y*s->uvlinesize*chr_h,
s->dest[2], w>>1, h>>s->chroma_y_shift, s->uvlinesize);
}
if(s->loop_filter){
if(CONFIG_H263_ENCODER && s->out_format == FMT_H263)
ff_h263_loop_filter(s);
}
ff_dlog(s->avctx, "MB %d %d bits\n",
s->mb_x + s->mb_y * s->mb_stride, put_bits_count(&s->pb));
}
}
#if CONFIG_MSMPEG4ENC
//not beautiful here but we must write it before flushing so it has to be here
if (s->msmpeg4_version != MSMP4_UNUSED && s->msmpeg4_version < MSMP4_WMV1 &&
s->pict_type == AV_PICTURE_TYPE_I)
ff_msmpeg4_encode_ext_header(s);
#endif
write_slice_end(s);
return 0;
}
#define MERGE(field) dst->field += src->field; src->field=0
static void merge_context_after_me(MpegEncContext *dst, MpegEncContext *src){
MERGE(me.scene_change_score);
MERGE(me.mc_mb_var_sum_temp);
MERGE(me.mb_var_sum_temp);
}
static void merge_context_after_encode(MpegEncContext *dst, MpegEncContext *src){
int i;
MERGE(dct_count[0]); //note, the other dct vars are not part of the context
MERGE(dct_count[1]);
MERGE(mv_bits);
MERGE(i_tex_bits);
MERGE(p_tex_bits);
MERGE(i_count);
MERGE(misc_bits);
MERGE(encoding_error[0]);
MERGE(encoding_error[1]);
MERGE(encoding_error[2]);
if (dst->noise_reduction){
for(i=0; i<64; i++){
MERGE(dct_error_sum[0][i]);
MERGE(dct_error_sum[1][i]);
}
}
av_assert1(put_bits_count(&src->pb) % 8 ==0);
av_assert1(put_bits_count(&dst->pb) % 8 ==0);
ff_copy_bits(&dst->pb, src->pb.buf, put_bits_count(&src->pb));
flush_put_bits(&dst->pb);
}
static int estimate_qp(MpegEncContext *s, int dry_run){
if (s->next_lambda){
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr->f->quality = s->next_lambda;
if(!dry_run) s->next_lambda= 0;
} else if (!s->fixed_qscale) {
int quality = ff_rate_estimate_qscale(s, dry_run);
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr->f->quality = quality;
if (s->cur_pic.ptr->f->quality < 0)
return -1;
}
if(s->adaptive_quant){
init_qscale_tab(s);
switch(s->codec_id){
case AV_CODEC_ID_MPEG4:
if (CONFIG_MPEG4_ENCODER)
ff_clean_mpeg4_qscales(s);
break;
case AV_CODEC_ID_H263:
case AV_CODEC_ID_H263P:
case AV_CODEC_ID_FLV1:
if (CONFIG_H263_ENCODER)
ff_clean_h263_qscales(s);
break;
}
s->lambda= s->lambda_table[0];
//FIXME broken
}else
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->lambda = s->cur_pic.ptr->f->quality;
update_qscale(s);
return 0;
}
/* must be called before writing the header */
static void set_frame_distances(MpegEncContext * s){
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
av_assert1(s->cur_pic.ptr->f->pts != AV_NOPTS_VALUE);
s->time = s->cur_pic.ptr->f->pts * s->avctx->time_base.num;
if(s->pict_type==AV_PICTURE_TYPE_B){
s->pb_time= s->pp_time - (s->last_non_b_time - s->time);
av_assert1(s->pb_time > 0 && s->pb_time < s->pp_time);
}else{
s->pp_time= s->time - s->last_non_b_time;
s->last_non_b_time= s->time;
av_assert1(s->picture_number==0 || s->pp_time > 0);
}
}
static int encode_picture(MpegEncContext *s, const AVPacket *pkt)
{
int i, ret;
int bits;
int context_count = s->slice_context_count;
/* Reset the average MB variance */
s->me.mb_var_sum_temp =
s->me.mc_mb_var_sum_temp = 0;
/* we need to initialize some time vars before we can encode B-frames */
// RAL: Condition added for MPEG1VIDEO
if (s->out_format == FMT_MPEG1 || (s->h263_pred && s->msmpeg4_version == MSMP4_UNUSED))
set_frame_distances(s);
if(CONFIG_MPEG4_ENCODER && s->codec_id == AV_CODEC_ID_MPEG4)
ff_set_mpeg4_time(s);
s->me.scene_change_score=0;
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
// s->lambda= s->cur_pic.ptr->quality; //FIXME qscale / ... stuff for ME rate distortion
if(s->pict_type==AV_PICTURE_TYPE_I){
s->no_rounding = s->msmpeg4_version >= MSMP4_V3;
}else if(s->pict_type!=AV_PICTURE_TYPE_B){
s->no_rounding ^= s->flipflop_rounding;
}
if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
if (estimate_qp(s,1) < 0)
return -1;
ff_get_2pass_fcode(s);
} else if (!(s->avctx->flags & AV_CODEC_FLAG_QSCALE)) {
if(s->pict_type==AV_PICTURE_TYPE_B)
s->lambda= s->last_lambda_for[s->pict_type];
else
s->lambda= s->last_lambda_for[s->last_non_b_pict_type];
update_qscale(s);
}
if (s->out_format != FMT_MJPEG) {
if(s->q_chroma_intra_matrix != s->q_intra_matrix ) av_freep(&s->q_chroma_intra_matrix);
if(s->q_chroma_intra_matrix16 != s->q_intra_matrix16) av_freep(&s->q_chroma_intra_matrix16);
s->q_chroma_intra_matrix = s->q_intra_matrix;
s->q_chroma_intra_matrix16 = s->q_intra_matrix16;
}
ff_me_init_pic(s);
s->mb_intra=0; //for the rate distortion & bit compare functions
for (int i = 0; i < context_count; i++) {
MpegEncContext *const slice = s->thread_context[i];
uint8_t *start, *end;
int h;
if (i) {
ret = ff_update_duplicate_context(slice, s);
if (ret < 0)
return ret;
}
slice->me.temp = slice->me.scratchpad = slice->sc.scratchpad_buf;
h = s->mb_height;
start = pkt->data + (size_t)(((int64_t) pkt->size) * slice->start_mb_y / h);
end = pkt->data + (size_t)(((int64_t) pkt->size) * slice-> end_mb_y / h);
init_put_bits(&s->thread_context[i]->pb, start, end - start);
}
/* Estimate motion for every MB */
if(s->pict_type != AV_PICTURE_TYPE_I){
s->lambda = (s->lambda * s->me_penalty_compensation + 128) >> 8;
s->lambda2 = (s->lambda2 * (int64_t) s->me_penalty_compensation + 128) >> 8;
if (s->pict_type != AV_PICTURE_TYPE_B) {
if ((s->me_pre && s->last_non_b_pict_type == AV_PICTURE_TYPE_I) ||
s->me_pre == 2) {
s->avctx->execute(s->avctx, pre_estimate_motion_thread, &s->thread_context[0], NULL, context_count, sizeof(void*));
}
}
s->avctx->execute(s->avctx, estimate_motion_thread, &s->thread_context[0], NULL, context_count, sizeof(void*));
}else /* if(s->pict_type == AV_PICTURE_TYPE_I) */{
/* I-Frame */
for(i=0; i<s->mb_stride*s->mb_height; i++)
s->mb_type[i]= CANDIDATE_MB_TYPE_INTRA;
if(!s->fixed_qscale){
/* finding spatial complexity for I-frame rate control */
s->avctx->execute(s->avctx, mb_var_thread, &s->thread_context[0], NULL, context_count, sizeof(void*));
}
}
for(i=1; i<context_count; i++){
merge_context_after_me(s, s->thread_context[i]);
}
s->mc_mb_var_sum = s->me.mc_mb_var_sum_temp;
s->mb_var_sum = s->me. mb_var_sum_temp;
emms_c();
if (s->me.scene_change_score > s->scenechange_threshold &&
s->pict_type == AV_PICTURE_TYPE_P) {
s->pict_type= AV_PICTURE_TYPE_I;
for(i=0; i<s->mb_stride*s->mb_height; i++)
s->mb_type[i]= CANDIDATE_MB_TYPE_INTRA;
if (s->msmpeg4_version >= MSMP4_V3)
s->no_rounding=1;
ff_dlog(s, "Scene change detected, encoding as I Frame %"PRId64" %"PRId64"\n",
s->mb_var_sum, s->mc_mb_var_sum);
}
if(!s->umvplus){
if(s->pict_type==AV_PICTURE_TYPE_P || s->pict_type==AV_PICTURE_TYPE_S) {
s->f_code= ff_get_best_fcode(s, s->p_mv_table, CANDIDATE_MB_TYPE_INTER);
if (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_ME) {
int a,b;
a= ff_get_best_fcode(s, s->p_field_mv_table[0][0], CANDIDATE_MB_TYPE_INTER_I); //FIXME field_select
b= ff_get_best_fcode(s, s->p_field_mv_table[1][1], CANDIDATE_MB_TYPE_INTER_I);
s->f_code= FFMAX3(s->f_code, a, b);
}
ff_fix_long_p_mvs(s, s->intra_penalty ? CANDIDATE_MB_TYPE_INTER : CANDIDATE_MB_TYPE_INTRA);
ff_fix_long_mvs(s, NULL, 0, s->p_mv_table, s->f_code, CANDIDATE_MB_TYPE_INTER, !!s->intra_penalty);
if (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_ME) {
int j;
for(i=0; i<2; i++){
for(j=0; j<2; j++)
ff_fix_long_mvs(s, s->p_field_select_table[i], j,
s->p_field_mv_table[i][j], s->f_code, CANDIDATE_MB_TYPE_INTER_I, !!s->intra_penalty);
}
}
} else if (s->pict_type == AV_PICTURE_TYPE_B) {
int a, b;
a = ff_get_best_fcode(s, s->b_forw_mv_table, CANDIDATE_MB_TYPE_FORWARD);
b = ff_get_best_fcode(s, s->b_bidir_forw_mv_table, CANDIDATE_MB_TYPE_BIDIR);
s->f_code = FFMAX(a, b);
a = ff_get_best_fcode(s, s->b_back_mv_table, CANDIDATE_MB_TYPE_BACKWARD);
b = ff_get_best_fcode(s, s->b_bidir_back_mv_table, CANDIDATE_MB_TYPE_BIDIR);
s->b_code = FFMAX(a, b);
ff_fix_long_mvs(s, NULL, 0, s->b_forw_mv_table, s->f_code, CANDIDATE_MB_TYPE_FORWARD, 1);
ff_fix_long_mvs(s, NULL, 0, s->b_back_mv_table, s->b_code, CANDIDATE_MB_TYPE_BACKWARD, 1);
ff_fix_long_mvs(s, NULL, 0, s->b_bidir_forw_mv_table, s->f_code, CANDIDATE_MB_TYPE_BIDIR, 1);
ff_fix_long_mvs(s, NULL, 0, s->b_bidir_back_mv_table, s->b_code, CANDIDATE_MB_TYPE_BIDIR, 1);
if (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_ME) {
int dir, j;
for(dir=0; dir<2; dir++){
for(i=0; i<2; i++){
for(j=0; j<2; j++){
int type= dir ? (CANDIDATE_MB_TYPE_BACKWARD_I|CANDIDATE_MB_TYPE_BIDIR_I)
: (CANDIDATE_MB_TYPE_FORWARD_I |CANDIDATE_MB_TYPE_BIDIR_I);
ff_fix_long_mvs(s, s->b_field_select_table[dir][i], j,
s->b_field_mv_table[dir][i][j], dir ? s->b_code : s->f_code, type, 1);
}
}
}
}
}
}
if (estimate_qp(s, 0) < 0)
return -1;
if (s->qscale < 3 && s->max_qcoeff <= 128 &&
s->pict_type == AV_PICTURE_TYPE_I &&
!(s->avctx->flags & AV_CODEC_FLAG_QSCALE))
s->qscale= 3; //reduce clipping problems
if (s->out_format == FMT_MJPEG) {
const uint16_t * luma_matrix = ff_mpeg1_default_intra_matrix;
const uint16_t *chroma_matrix = ff_mpeg1_default_intra_matrix;
if (s->avctx->intra_matrix) {
chroma_matrix =
luma_matrix = s->avctx->intra_matrix;
}
if (s->avctx->chroma_intra_matrix)
chroma_matrix = s->avctx->chroma_intra_matrix;
/* for mjpeg, we do include qscale in the matrix */
for(i=1;i<64;i++){
int j = s->idsp.idct_permutation[i];
s->chroma_intra_matrix[j] = av_clip_uint8((chroma_matrix[i] * s->qscale) >> 3);
s-> intra_matrix[j] = av_clip_uint8(( luma_matrix[i] * s->qscale) >> 3);
}
s->y_dc_scale_table=
s->c_dc_scale_table = ff_mpeg12_dc_scale_table[s->intra_dc_precision];
s->chroma_intra_matrix[0] =
s->intra_matrix[0] = ff_mpeg12_dc_scale_table[s->intra_dc_precision][8];
ff_convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16,
s->intra_matrix, s->intra_quant_bias, 8, 8, 1);
ff_convert_matrix(s, s->q_chroma_intra_matrix, s->q_chroma_intra_matrix16,
s->chroma_intra_matrix, s->intra_quant_bias, 8, 8, 1);
s->qscale= 8;
if (s->codec_id == AV_CODEC_ID_AMV) {
static const uint8_t y[32] = {13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13};
static const uint8_t c[32] = {14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14};
for (int i = 1; i < 64; i++) {
int j = s->idsp.idct_permutation[ff_zigzag_direct[i]];
s->intra_matrix[j] = sp5x_qscale_five_quant_table[0][i];
s->chroma_intra_matrix[j] = sp5x_qscale_five_quant_table[1][i];
}
s->y_dc_scale_table = y;
s->c_dc_scale_table = c;
s->intra_matrix[0] = 13;
s->chroma_intra_matrix[0] = 14;
ff_convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16,
s->intra_matrix, s->intra_quant_bias, 8, 8, 1);
ff_convert_matrix(s, s->q_chroma_intra_matrix, s->q_chroma_intra_matrix16,
s->chroma_intra_matrix, s->intra_quant_bias, 8, 8, 1);
s->qscale = 8;
}
}
if (s->pict_type == AV_PICTURE_TYPE_I) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr->f->flags |= AV_FRAME_FLAG_KEY;
} else {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr->f->flags &= ~AV_FRAME_FLAG_KEY;
}
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->cur_pic.ptr->f->pict_type = s->pict_type;
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
if (s->cur_pic.ptr->f->flags & AV_FRAME_FLAG_KEY)
s->picture_in_gop_number=0;
s->mb_x = s->mb_y = 0;
s->last_bits= put_bits_count(&s->pb);
switch(s->out_format) {
#if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
case FMT_MJPEG:
ff_mjpeg_amv_encode_picture_header(s);
break;
#endif
case FMT_SPEEDHQ:
if (CONFIG_SPEEDHQ_ENCODER)
ff_speedhq_encode_picture_header(s);
break;
case FMT_H261:
if (CONFIG_H261_ENCODER)
ff_h261_encode_picture_header(s);
break;
case FMT_H263:
if (CONFIG_WMV2_ENCODER && s->codec_id == AV_CODEC_ID_WMV2)
ff_wmv2_encode_picture_header(s);
#if CONFIG_MSMPEG4ENC
else if (s->msmpeg4_version != MSMP4_UNUSED)
ff_msmpeg4_encode_picture_header(s);
#endif
else if (CONFIG_MPEG4_ENCODER && s->h263_pred) {
ret = ff_mpeg4_encode_picture_header(s);
if (ret < 0)
return ret;
} else if (CONFIG_RV10_ENCODER && s->codec_id == AV_CODEC_ID_RV10) {
ret = ff_rv10_encode_picture_header(s);
if (ret < 0)
return ret;
}
else if (CONFIG_RV20_ENCODER && s->codec_id == AV_CODEC_ID_RV20)
ff_rv20_encode_picture_header(s);
else if (CONFIG_FLV_ENCODER && s->codec_id == AV_CODEC_ID_FLV1)
ff_flv_encode_picture_header(s);
else if (CONFIG_H263_ENCODER)
ff_h263_encode_picture_header(s);
break;
case FMT_MPEG1:
if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER)
ff_mpeg1_encode_picture_header(s);
break;
default:
av_assert0(0);
}
bits= put_bits_count(&s->pb);
s->header_bits= bits - s->last_bits;
for(i=1; i<context_count; i++){
update_duplicate_context_after_me(s->thread_context[i], s);
}
s->avctx->execute(s->avctx, encode_thread, &s->thread_context[0], NULL, context_count, sizeof(void*));
for(i=1; i<context_count; i++){
if (s->pb.buf_end == s->thread_context[i]->pb.buf)
set_put_bits_buffer_size(&s->pb, FFMIN(s->thread_context[i]->pb.buf_end - s->pb.buf, INT_MAX/8-BUF_BITS));
merge_context_after_encode(s, s->thread_context[i]);
}
emms_c();
return 0;
}
static void denoise_dct_c(MpegEncContext *s, int16_t *block){
const int intra= s->mb_intra;
int i;
s->dct_count[intra]++;
for(i=0; i<64; i++){
int level= block[i];
if(level){
if(level>0){
s->dct_error_sum[intra][i] += level;
level -= s->dct_offset[intra][i];
if(level<0) level=0;
}else{
s->dct_error_sum[intra][i] -= level;
level += s->dct_offset[intra][i];
if(level>0) level=0;
}
block[i]= level;
}
}
}
static int dct_quantize_trellis_c(MpegEncContext *s,
int16_t *block, int n,
int qscale, int *overflow){
const int *qmat;
const uint16_t *matrix;
const uint8_t *scantable;
const uint8_t *perm_scantable;
int max=0;
unsigned int threshold1, threshold2;
int bias=0;
int run_tab[65];
int level_tab[65];
int score_tab[65];
int survivor[65];
int survivor_count;
int last_run=0;
int last_level=0;
int last_score= 0;
int last_i;
int coeff[2][64];
int coeff_count[64];
int qmul, qadd, start_i, last_non_zero, i, dc;
const int esc_length= s->ac_esc_length;
const uint8_t *length, *last_length;
const int lambda= s->lambda2 >> (FF_LAMBDA_SHIFT - 6);
int mpeg2_qscale;
s->fdsp.fdct(block);
if(s->dct_error_sum)
s->denoise_dct(s, block);
qmul= qscale*16;
qadd= ((qscale-1)|1)*8;
if (s->q_scale_type) mpeg2_qscale = ff_mpeg2_non_linear_qscale[qscale];
else mpeg2_qscale = qscale << 1;
if (s->mb_intra) {
int q;
scantable= s->intra_scantable.scantable;
perm_scantable= s->intra_scantable.permutated;
if (!s->h263_aic) {
if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
q = q << 3;
} else{
/* For AIC we skip quant/dequant of INTRADC */
q = 1 << 3;
qadd=0;
}
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
start_i = 1;
last_non_zero = 0;
qmat = n < 4 ? s->q_intra_matrix[qscale] : s->q_chroma_intra_matrix[qscale];
matrix = n < 4 ? s->intra_matrix : s->chroma_intra_matrix;
if(s->mpeg_quant || s->out_format == FMT_MPEG1 || s->out_format == FMT_MJPEG)
bias= 1<<(QMAT_SHIFT-1);
if (n > 3 && s->intra_chroma_ac_vlc_length) {
length = s->intra_chroma_ac_vlc_length;
last_length= s->intra_chroma_ac_vlc_last_length;
} else {
length = s->intra_ac_vlc_length;
last_length= s->intra_ac_vlc_last_length;
}
} else {
scantable= s->inter_scantable.scantable;
perm_scantable= s->inter_scantable.permutated;
start_i = 0;
last_non_zero = -1;
qmat = s->q_inter_matrix[qscale];
matrix = s->inter_matrix;
length = s->inter_ac_vlc_length;
last_length= s->inter_ac_vlc_last_length;
}
last_i= start_i;
threshold1= (1<<QMAT_SHIFT) - bias - 1;
threshold2= (threshold1<<1);
for(i=63; i>=start_i; i--) {
const int j = scantable[i];
int level = block[j] * qmat[j];
if(((unsigned)(level+threshold1))>threshold2){
last_non_zero = i;
break;
}
}
for(i=start_i; i<=last_non_zero; i++) {
const int j = scantable[i];
int level = block[j] * qmat[j];
// if( bias+level >= (1<<(QMAT_SHIFT - 3))
// || bias-level >= (1<<(QMAT_SHIFT - 3))){
if(((unsigned)(level+threshold1))>threshold2){
if(level>0){
level= (bias + level)>>QMAT_SHIFT;
coeff[0][i]= level;
coeff[1][i]= level-1;
// coeff[2][k]= level-2;
}else{
level= (bias - level)>>QMAT_SHIFT;
coeff[0][i]= -level;
coeff[1][i]= -level+1;
// coeff[2][k]= -level+2;
}
coeff_count[i]= FFMIN(level, 2);
av_assert2(coeff_count[i]);
max |=level;
}else{
coeff[0][i]= (level>>31)|1;
coeff_count[i]= 1;
}
}
*overflow= s->max_qcoeff < max; //overflow might have happened
if(last_non_zero < start_i){
memset(block + start_i, 0, (64-start_i)*sizeof(int16_t));
return last_non_zero;
}
score_tab[start_i]= 0;
survivor[0]= start_i;
survivor_count= 1;
for(i=start_i; i<=last_non_zero; i++){
int level_index, j, zero_distortion;
int dct_coeff= FFABS(block[ scantable[i] ]);
int best_score=256*256*256*120;
if (s->fdsp.fdct == ff_fdct_ifast)
dct_coeff= (dct_coeff*ff_inv_aanscales[ scantable[i] ]) >> 12;
zero_distortion= dct_coeff*dct_coeff;
for(level_index=0; level_index < coeff_count[i]; level_index++){
int distortion;
int level= coeff[level_index][i];
const int alevel= FFABS(level);
int unquant_coeff;
av_assert2(level);
if(s->out_format == FMT_H263 || s->out_format == FMT_H261){
unquant_coeff= alevel*qmul + qadd;
} else if(s->out_format == FMT_MJPEG) {
j = s->idsp.idct_permutation[scantable[i]];
unquant_coeff = alevel * matrix[j] * 8;
}else{ // MPEG-1
j = s->idsp.idct_permutation[scantable[i]]; // FIXME: optimize
if(s->mb_intra){
unquant_coeff = (int)( alevel * mpeg2_qscale * matrix[j]) >> 4;
unquant_coeff = (unquant_coeff - 1) | 1;
}else{
unquant_coeff = ((( alevel << 1) + 1) * mpeg2_qscale * ((int) matrix[j])) >> 5;
unquant_coeff = (unquant_coeff - 1) | 1;
}
unquant_coeff<<= 3;
}
distortion= (unquant_coeff - dct_coeff) * (unquant_coeff - dct_coeff) - zero_distortion;
level+=64;
if((level&(~127)) == 0){
for(j=survivor_count-1; j>=0; j--){
int run= i - survivor[j];
int score= distortion + length[UNI_AC_ENC_INDEX(run, level)]*lambda;
score += score_tab[i-run];
if(score < best_score){
best_score= score;
run_tab[i+1]= run;
level_tab[i+1]= level-64;
}
}
if(s->out_format == FMT_H263 || s->out_format == FMT_H261){
for(j=survivor_count-1; j>=0; j--){
int run= i - survivor[j];
int score= distortion + last_length[UNI_AC_ENC_INDEX(run, level)]*lambda;
score += score_tab[i-run];
if(score < last_score){
last_score= score;
last_run= run;
last_level= level-64;
last_i= i+1;
}
}
}
}else{
distortion += esc_length*lambda;
for(j=survivor_count-1; j>=0; j--){
int run= i - survivor[j];
int score= distortion + score_tab[i-run];
if(score < best_score){
best_score= score;
run_tab[i+1]= run;
level_tab[i+1]= level-64;
}
}
if(s->out_format == FMT_H263 || s->out_format == FMT_H261){
for(j=survivor_count-1; j>=0; j--){
int run= i - survivor[j];
int score= distortion + score_tab[i-run];
if(score < last_score){
last_score= score;
last_run= run;
last_level= level-64;
last_i= i+1;
}
}
}
}
}
score_tab[i+1]= best_score;
// Note: there is a vlc code in MPEG-4 which is 1 bit shorter then another one with a shorter run and the same level
if(last_non_zero <= 27){
for(; survivor_count; survivor_count--){
if(score_tab[ survivor[survivor_count-1] ] <= best_score)
break;
}
}else{
for(; survivor_count; survivor_count--){
if(score_tab[ survivor[survivor_count-1] ] <= best_score + lambda)
break;
}
}
survivor[ survivor_count++ ]= i+1;
}
if(s->out_format != FMT_H263 && s->out_format != FMT_H261){
last_score= 256*256*256*120;
for(i= survivor[0]; i<=last_non_zero + 1; i++){
int score= score_tab[i];
if (i)
score += lambda * 2; // FIXME more exact?
if(score < last_score){
last_score= score;
last_i= i;
last_level= level_tab[i];
last_run= run_tab[i];
}
}
}
s->coded_score[n] = last_score;
dc= FFABS(block[0]);
last_non_zero= last_i - 1;
memset(block + start_i, 0, (64-start_i)*sizeof(int16_t));
if(last_non_zero < start_i)
return last_non_zero;
if(last_non_zero == 0 && start_i == 0){
int best_level= 0;
int best_score= dc * dc;
for(i=0; i<coeff_count[0]; i++){
int level= coeff[i][0];
int alevel= FFABS(level);
int unquant_coeff, score, distortion;
if(s->out_format == FMT_H263 || s->out_format == FMT_H261){
unquant_coeff= (alevel*qmul + qadd)>>3;
} else{ // MPEG-1
unquant_coeff = ((( alevel << 1) + 1) * mpeg2_qscale * ((int) matrix[0])) >> 5;
unquant_coeff = (unquant_coeff - 1) | 1;
}
unquant_coeff = (unquant_coeff + 4) >> 3;
unquant_coeff<<= 3 + 3;
distortion= (unquant_coeff - dc) * (unquant_coeff - dc);
level+=64;
if((level&(~127)) == 0) score= distortion + last_length[UNI_AC_ENC_INDEX(0, level)]*lambda;
else score= distortion + esc_length*lambda;
if(score < best_score){
best_score= score;
best_level= level - 64;
}
}
block[0]= best_level;
s->coded_score[n] = best_score - dc*dc;
if(best_level == 0) return -1;
else return last_non_zero;
}
i= last_i;
av_assert2(last_level);
block[ perm_scantable[last_non_zero] ]= last_level;
i -= last_run + 1;
for(; i>start_i; i -= run_tab[i] + 1){
block[ perm_scantable[i-1] ]= level_tab[i];
}
return last_non_zero;
}
static int16_t basis[64][64];
static void build_basis(uint8_t *perm){
int i, j, x, y;
emms_c();
for(i=0; i<8; i++){
for(j=0; j<8; j++){
for(y=0; y<8; y++){
for(x=0; x<8; x++){
double s= 0.25*(1<<BASIS_SHIFT);
int index= 8*i + j;
int perm_index= perm[index];
if(i==0) s*= sqrt(0.5);
if(j==0) s*= sqrt(0.5);
basis[perm_index][8*x + y]= lrintf(s * cos((M_PI/8.0)*i*(x+0.5)) * cos((M_PI/8.0)*j*(y+0.5)));
}
}
}
}
}
static int dct_quantize_refine(MpegEncContext *s, //FIXME breaks denoise?
int16_t *block, int16_t *weight, int16_t *orig,
int n, int qscale){
int16_t rem[64];
LOCAL_ALIGNED_16(int16_t, d1, [64]);
const uint8_t *scantable;
const uint8_t *perm_scantable;
// unsigned int threshold1, threshold2;
// int bias=0;
int run_tab[65];
int prev_run=0;
int prev_level=0;
int qmul, qadd, start_i, last_non_zero, i, dc;
const uint8_t *length;
const uint8_t *last_length;
int lambda;
int rle_index, run, q = 1, sum; //q is only used when s->mb_intra is true
if(basis[0][0] == 0)
build_basis(s->idsp.idct_permutation);
qmul= qscale*2;
qadd= (qscale-1)|1;
if (s->mb_intra) {
scantable= s->intra_scantable.scantable;
perm_scantable= s->intra_scantable.permutated;
if (!s->h263_aic) {
if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
} else{
/* For AIC we skip quant/dequant of INTRADC */
q = 1;
qadd=0;
}
q <<= RECON_SHIFT-3;
/* note: block[0] is assumed to be positive */
dc= block[0]*q;
// block[0] = (block[0] + (q >> 1)) / q;
start_i = 1;
// if(s->mpeg_quant || s->out_format == FMT_MPEG1)
// bias= 1<<(QMAT_SHIFT-1);
if (n > 3 && s->intra_chroma_ac_vlc_length) {
length = s->intra_chroma_ac_vlc_length;
last_length= s->intra_chroma_ac_vlc_last_length;
} else {
length = s->intra_ac_vlc_length;
last_length= s->intra_ac_vlc_last_length;
}
} else {
scantable= s->inter_scantable.scantable;
perm_scantable= s->inter_scantable.permutated;
dc= 0;
start_i = 0;
length = s->inter_ac_vlc_length;
last_length= s->inter_ac_vlc_last_length;
}
last_non_zero = s->block_last_index[n];
dc += (1<<(RECON_SHIFT-1));
for(i=0; i<64; i++){
rem[i] = dc - (orig[i] << RECON_SHIFT); // FIXME use orig directly instead of copying to rem[]
}
sum=0;
for(i=0; i<64; i++){
int one= 36;
int qns=4;
int w;
w= FFABS(weight[i]) + qns*one;
w= 15 + (48*qns*one + w/2)/w; // 16 .. 63
weight[i] = w;
// w=weight[i] = (63*qns + (w/2)) / w;
av_assert2(w>0);
av_assert2(w<(1<<6));
sum += w*w;
}
lambda= sum*(uint64_t)s->lambda2 >> (FF_LAMBDA_SHIFT - 6 + 6 + 6 + 6);
run=0;
rle_index=0;
for(i=start_i; i<=last_non_zero; i++){
int j= perm_scantable[i];
const int level= block[j];
int coeff;
if(level){
if(level<0) coeff= qmul*level - qadd;
else coeff= qmul*level + qadd;
run_tab[rle_index++]=run;
run=0;
s->mpvencdsp.add_8x8basis(rem, basis[j], coeff);
}else{
run++;
}
}
for(;;){
int best_score = s->mpvencdsp.try_8x8basis(rem, weight, basis[0], 0);
int best_coeff=0;
int best_change=0;
int run2, best_unquant_change=0, analyze_gradient;
analyze_gradient = last_non_zero > 2 || s->quantizer_noise_shaping >= 3;
if(analyze_gradient){
for(i=0; i<64; i++){
int w= weight[i];
d1[i] = (rem[i]*w*w + (1<<(RECON_SHIFT+12-1)))>>(RECON_SHIFT+12);
}
s->fdsp.fdct(d1);
}
if(start_i){
const int level= block[0];
int change, old_coeff;
av_assert2(s->mb_intra);
old_coeff= q*level;
for(change=-1; change<=1; change+=2){
int new_level= level + change;
int score, new_coeff;
new_coeff= q*new_level;
if(new_coeff >= 2048 || new_coeff < 0)
continue;
score = s->mpvencdsp.try_8x8basis(rem, weight, basis[0],
new_coeff - old_coeff);
if(score<best_score){
best_score= score;
best_coeff= 0;
best_change= change;
best_unquant_change= new_coeff - old_coeff;
}
}
}
run=0;
rle_index=0;
run2= run_tab[rle_index++];
prev_level=0;
prev_run=0;
for(i=start_i; i<64; i++){
int j= perm_scantable[i];
const int level= block[j];
int change, old_coeff;
if(s->quantizer_noise_shaping < 3 && i > last_non_zero + 1)
break;
if(level){
if(level<0) old_coeff= qmul*level - qadd;
else old_coeff= qmul*level + qadd;
run2= run_tab[rle_index++]; //FIXME ! maybe after last
}else{
old_coeff=0;
run2--;
av_assert2(run2>=0 || i >= last_non_zero );
}
for(change=-1; change<=1; change+=2){
int new_level= level + change;
int score, new_coeff, unquant_change;
score=0;
if(s->quantizer_noise_shaping < 2 && FFABS(new_level) > FFABS(level))
continue;
if(new_level){
if(new_level<0) new_coeff= qmul*new_level - qadd;
else new_coeff= qmul*new_level + qadd;
if(new_coeff >= 2048 || new_coeff <= -2048)
continue;
//FIXME check for overflow
if(level){
if(level < 63 && level > -63){
if(i < last_non_zero)
score += length[UNI_AC_ENC_INDEX(run, new_level+64)]
- length[UNI_AC_ENC_INDEX(run, level+64)];
else
score += last_length[UNI_AC_ENC_INDEX(run, new_level+64)]
- last_length[UNI_AC_ENC_INDEX(run, level+64)];
}
}else{
av_assert2(FFABS(new_level)==1);
if(analyze_gradient){
int g= d1[ scantable[i] ];
if(g && (g^new_level) >= 0)
continue;
}
if(i < last_non_zero){
int next_i= i + run2 + 1;
int next_level= block[ perm_scantable[next_i] ] + 64;
if(next_level&(~127))
next_level= 0;
if(next_i < last_non_zero)
score += length[UNI_AC_ENC_INDEX(run, 65)]
+ length[UNI_AC_ENC_INDEX(run2, next_level)]
- length[UNI_AC_ENC_INDEX(run + run2 + 1, next_level)];
else
score += length[UNI_AC_ENC_INDEX(run, 65)]
+ last_length[UNI_AC_ENC_INDEX(run2, next_level)]
- last_length[UNI_AC_ENC_INDEX(run + run2 + 1, next_level)];
}else{
score += last_length[UNI_AC_ENC_INDEX(run, 65)];
if(prev_level){
score += length[UNI_AC_ENC_INDEX(prev_run, prev_level)]
- last_length[UNI_AC_ENC_INDEX(prev_run, prev_level)];
}
}
}
}else{
new_coeff=0;
av_assert2(FFABS(level)==1);
if(i < last_non_zero){
int next_i= i + run2 + 1;
int next_level= block[ perm_scantable[next_i] ] + 64;
if(next_level&(~127))
next_level= 0;
if(next_i < last_non_zero)
score += length[UNI_AC_ENC_INDEX(run + run2 + 1, next_level)]
- length[UNI_AC_ENC_INDEX(run2, next_level)]
- length[UNI_AC_ENC_INDEX(run, 65)];
else
score += last_length[UNI_AC_ENC_INDEX(run + run2 + 1, next_level)]
- last_length[UNI_AC_ENC_INDEX(run2, next_level)]
- length[UNI_AC_ENC_INDEX(run, 65)];
}else{
score += -last_length[UNI_AC_ENC_INDEX(run, 65)];
if(prev_level){
score += last_length[UNI_AC_ENC_INDEX(prev_run, prev_level)]
- length[UNI_AC_ENC_INDEX(prev_run, prev_level)];
}
}
}
score *= lambda;
unquant_change= new_coeff - old_coeff;
av_assert2((score < 100*lambda && score > -100*lambda) || lambda==0);
score += s->mpvencdsp.try_8x8basis(rem, weight, basis[j],
unquant_change);
if(score<best_score){
best_score= score;
best_coeff= i;
best_change= change;
best_unquant_change= unquant_change;
}
}
if(level){
prev_level= level + 64;
if(prev_level&(~127))
prev_level= 0;
prev_run= run;
run=0;
}else{
run++;
}
}
if(best_change){
int j= perm_scantable[ best_coeff ];
block[j] += best_change;
if(best_coeff > last_non_zero){
last_non_zero= best_coeff;
av_assert2(block[j]);
}else{
for(; last_non_zero>=start_i; last_non_zero--){
if(block[perm_scantable[last_non_zero]])
break;
}
}
run=0;
rle_index=0;
for(i=start_i; i<=last_non_zero; i++){
int j= perm_scantable[i];
const int level= block[j];
if(level){
run_tab[rle_index++]=run;
run=0;
}else{
run++;
}
}
s->mpvencdsp.add_8x8basis(rem, basis[j], best_unquant_change);
}else{
break;
}
}
return last_non_zero;
}
/**
* Permute an 8x8 block according to permutation.
* @param block the block which will be permuted according to
* the given permutation vector
* @param permutation the permutation vector
* @param last the last non zero coefficient in scantable order, used to
* speed the permutation up
* @param scantable the used scantable, this is only used to speed the
* permutation up, the block is not (inverse) permutated
* to scantable order!
*/
void ff_block_permute(int16_t *block, const uint8_t *permutation,
const uint8_t *scantable, int last)
{
int i;
int16_t temp[64];
if (last <= 0)
return;
//FIXME it is ok but not clean and might fail for some permutations
// if (permutation[1] == 1)
// return;
for (i = 0; i <= last; i++) {
const int j = scantable[i];
temp[j] = block[j];
block[j] = 0;
}
for (i = 0; i <= last; i++) {
const int j = scantable[i];
const int perm_j = permutation[j];
block[perm_j] = temp[j];
}
}
static int dct_quantize_c(MpegEncContext *s,
int16_t *block, int n,
int qscale, int *overflow)
{
int i, j, level, last_non_zero, q, start_i;
const int *qmat;
const uint8_t *scantable;
int bias;
int max=0;
unsigned int threshold1, threshold2;
s->fdsp.fdct(block);
if(s->dct_error_sum)
s->denoise_dct(s, block);
if (s->mb_intra) {
scantable= s->intra_scantable.scantable;
if (!s->h263_aic) {
if (n < 4)
q = s->y_dc_scale;
else
q = s->c_dc_scale;
q = q << 3;
} else
/* For AIC we skip quant/dequant of INTRADC */
q = 1 << 3;
/* note: block[0] is assumed to be positive */
block[0] = (block[0] + (q >> 1)) / q;
start_i = 1;
last_non_zero = 0;
qmat = n < 4 ? s->q_intra_matrix[qscale] : s->q_chroma_intra_matrix[qscale];
bias= s->intra_quant_bias*(1<<(QMAT_SHIFT - QUANT_BIAS_SHIFT));
} else {
scantable= s->inter_scantable.scantable;
start_i = 0;
last_non_zero = -1;
qmat = s->q_inter_matrix[qscale];
bias= s->inter_quant_bias*(1<<(QMAT_SHIFT - QUANT_BIAS_SHIFT));
}
threshold1= (1<<QMAT_SHIFT) - bias - 1;
threshold2= (threshold1<<1);
for(i=63;i>=start_i;i--) {
j = scantable[i];
level = block[j] * qmat[j];
if(((unsigned)(level+threshold1))>threshold2){
last_non_zero = i;
break;
}else{
block[j]=0;
}
}
for(i=start_i; i<=last_non_zero; i++) {
j = scantable[i];
level = block[j] * qmat[j];
// if( bias+level >= (1<<QMAT_SHIFT)
// || bias-level >= (1<<QMAT_SHIFT)){
if(((unsigned)(level+threshold1))>threshold2){
if(level>0){
level= (bias + level)>>QMAT_SHIFT;
block[j]= level;
}else{
level= (bias - level)>>QMAT_SHIFT;
block[j]= -level;
}
max |=level;
}else{
block[j]=0;
}
}
*overflow= s->max_qcoeff < max; //overflow might have happened
/* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
if (s->idsp.perm_type != FF_IDCT_PERM_NONE)
ff_block_permute(block, s->idsp.idct_permutation,
scantable, last_non_zero);
return last_non_zero;
}