/*
* Copyright ( C ) 2011 - 2013 Michael Niedermayer ( michaelni @ gmx . at )
*
* This file is part of libswresample
*
* libswresample is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2.1 of the License , or ( at your option ) any later version .
*
* libswresample is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with libswresample ; if not , write to the Free Software
* Foundation , Inc . , 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 USA
*/
# include "libavutil/opt.h"
# include "swresample_internal.h"
# include "audioconvert.h"
# include "libavutil/avassert.h"
# include "libavutil/channel_layout.h"
# include <float.h>
# define C30DB M_SQRT2
# define C15DB 1.189207115
# define C__0DB 1.0
# define C_15DB 0.840896415
# define C_30DB M_SQRT1_2
# define C_45DB 0.594603558
# define C_60DB 0.5
# define ALIGN 32
//TODO split options array out?
# define OFFSET(x) offsetof(SwrContext,x)
# define PARAM AV_OPT_FLAG_AUDIO_PARAM
static const AVOption options [ ] = {
{ " ich " , " set input channel count " , OFFSET ( in . ch_count ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_CH_MAX , PARAM } ,
{ " in_channel_count " , " set input channel count " , OFFSET ( in . ch_count ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_CH_MAX , PARAM } ,
{ " och " , " set output channel count " , OFFSET ( out . ch_count ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_CH_MAX , PARAM } ,
{ " out_channel_count " , " set output channel count " , OFFSET ( out . ch_count ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_CH_MAX , PARAM } ,
{ " uch " , " set used channel count " , OFFSET ( used_ch_count ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_CH_MAX , PARAM } ,
{ " used_channel_count " , " set used channel count " , OFFSET ( used_ch_count ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_CH_MAX , PARAM } ,
{ " isr " , " set input sample rate " , OFFSET ( in_sample_rate ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , INT_MAX , PARAM } ,
{ " in_sample_rate " , " set input sample rate " , OFFSET ( in_sample_rate ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , INT_MAX , PARAM } ,
{ " osr " , " set output sample rate " , OFFSET ( out_sample_rate ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , INT_MAX , PARAM } ,
{ " out_sample_rate " , " set output sample rate " , OFFSET ( out_sample_rate ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , INT_MAX , PARAM } ,
{ " isf " , " set input sample format " , OFFSET ( in_sample_fmt ) , AV_OPT_TYPE_SAMPLE_FMT , { . i64 = AV_SAMPLE_FMT_NONE } , - 1 , AV_SAMPLE_FMT_NB - 1 , PARAM } ,
{ " in_sample_fmt " , " set input sample format " , OFFSET ( in_sample_fmt ) , AV_OPT_TYPE_SAMPLE_FMT , { . i64 = AV_SAMPLE_FMT_NONE } , - 1 , AV_SAMPLE_FMT_NB - 1 , PARAM } ,
{ " osf " , " set output sample format " , OFFSET ( out_sample_fmt ) , AV_OPT_TYPE_SAMPLE_FMT , { . i64 = AV_SAMPLE_FMT_NONE } , - 1 , AV_SAMPLE_FMT_NB - 1 , PARAM } ,
{ " out_sample_fmt " , " set output sample format " , OFFSET ( out_sample_fmt ) , AV_OPT_TYPE_SAMPLE_FMT , { . i64 = AV_SAMPLE_FMT_NONE } , - 1 , AV_SAMPLE_FMT_NB - 1 , PARAM } ,
{ " tsf " , " set internal sample format " , OFFSET ( int_sample_fmt ) , AV_OPT_TYPE_SAMPLE_FMT , { . i64 = AV_SAMPLE_FMT_NONE } , - 1 , AV_SAMPLE_FMT_NB - 1 , PARAM } ,
{ " internal_sample_fmt " , " set internal sample format " , OFFSET ( int_sample_fmt ) , AV_OPT_TYPE_SAMPLE_FMT , { . i64 = AV_SAMPLE_FMT_NONE } , - 1 , AV_SAMPLE_FMT_NB - 1 , PARAM } ,
{ " icl " , " set input channel layout " , OFFSET ( in_ch_layout ) , AV_OPT_TYPE_INT64 , { . i64 = 0 } , 0 , INT64_MAX , PARAM , " channel_layout " } ,
{ " in_channel_layout " , " set input channel layout " , OFFSET ( in_ch_layout ) , AV_OPT_TYPE_INT64 , { . i64 = 0 } , 0 , INT64_MAX , PARAM , " channel_layout " } ,
{ " ocl " , " set output channel layout " , OFFSET ( out_ch_layout ) , AV_OPT_TYPE_INT64 , { . i64 = 0 } , 0 , INT64_MAX , PARAM , " channel_layout " } ,
{ " out_channel_layout " , " set output channel layout " , OFFSET ( out_ch_layout ) , AV_OPT_TYPE_INT64 , { . i64 = 0 } , 0 , INT64_MAX , PARAM , " channel_layout " } ,
{ " clev " , " set center mix level " , OFFSET ( clev ) , AV_OPT_TYPE_FLOAT , { . dbl = C_30DB } , - 32 , 32 , PARAM } ,
{ " center_mix_level " , " set center mix level " , OFFSET ( clev ) , AV_OPT_TYPE_FLOAT , { . dbl = C_30DB } , - 32 , 32 , PARAM } ,
{ " slev " , " set surround mix level " , OFFSET ( slev ) , AV_OPT_TYPE_FLOAT , { . dbl = C_30DB } , - 32 , 32 , PARAM } ,
{ " surround_mix_level " , " set surround mix Level " , OFFSET ( slev ) , AV_OPT_TYPE_FLOAT , { . dbl = C_30DB } , - 32 , 32 , PARAM } ,
{ " lfe_mix_level " , " set LFE mix level " , OFFSET ( lfe_mix_level ) , AV_OPT_TYPE_FLOAT , { . dbl = 0 } , - 32 , 32 , PARAM } ,
{ " rmvol " , " set rematrix volume " , OFFSET ( rematrix_volume ) , AV_OPT_TYPE_FLOAT , { . dbl = 1.0 } , - 1000 , 1000 , PARAM } ,
{ " rematrix_volume " , " set rematrix volume " , OFFSET ( rematrix_volume ) , AV_OPT_TYPE_FLOAT , { . dbl = 1.0 } , - 1000 , 1000 , PARAM } ,
{ " flags " , " set flags " , OFFSET ( flags ) , AV_OPT_TYPE_FLAGS , { . i64 = 0 } , 0 , UINT_MAX , PARAM , " flags " } ,
{ " swr_flags " , " set flags " , OFFSET ( flags ) , AV_OPT_TYPE_FLAGS , { . i64 = 0 } , 0 , UINT_MAX , PARAM , " flags " } ,
{ " res " , " force resampling " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_FLAG_RESAMPLE } , INT_MIN , INT_MAX , PARAM , " flags " } ,
{ " dither_scale " , " set dither scale " , OFFSET ( dither . scale ) , AV_OPT_TYPE_FLOAT , { . dbl = 1 } , 0 , INT_MAX , PARAM } ,
{ " dither_method " , " set dither method " , OFFSET ( dither . method ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_DITHER_NB - 1 , PARAM , " dither_method " } ,
{ " rectangular " , " select rectangular dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_RECTANGULAR } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " triangular " , " select triangular dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_TRIANGULAR } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " triangular_hp " , " select triangular dither with high pass " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_TRIANGULAR_HIGHPASS } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " lipshitz " , " select lipshitz noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_LIPSHITZ } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " shibata " , " select shibata noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_SHIBATA } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " low_shibata " , " select low shibata noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_LOW_SHIBATA } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " high_shibata " , " select high shibata noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_HIGH_SHIBATA } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " f_weighted " , " select f-weighted noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_F_WEIGHTED } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " modified_e_weighted " , " select modified-e-weighted noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_MODIFIED_E_WEIGHTED } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " improved_e_weighted " , " select improved-e-weighted noise shaping dither " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_DITHER_NS_IMPROVED_E_WEIGHTED } , INT_MIN , INT_MAX , PARAM , " dither_method " } ,
{ " filter_size " , " set swr resampling filter size " , OFFSET ( filter_size ) , AV_OPT_TYPE_INT , { . i64 = 32 } , 0 , INT_MAX , PARAM } ,
{ " phase_shift " , " set swr resampling phase shift " , OFFSET ( phase_shift ) , AV_OPT_TYPE_INT , { . i64 = 10 } , 0 , 30 , PARAM } ,
{ " linear_interp " , " enable linear interpolation " , OFFSET ( linear_interp ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , 1 , PARAM } ,
{ " cutoff " , " set cutoff frequency ratio " , OFFSET ( cutoff ) , AV_OPT_TYPE_DOUBLE , { . dbl = 0. } , 0 , 1 , PARAM } ,
{ " resampler " , " set resampling Engine " , OFFSET ( engine ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , SWR_ENGINE_NB - 1 , PARAM , " resampler " } ,
{ " swr " , " select SW Resampler " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_ENGINE_SWR } , INT_MIN , INT_MAX , PARAM , " resampler " } ,
{ " soxr " , " select SoX Resampler " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_ENGINE_SOXR } , INT_MIN , INT_MAX , PARAM , " resampler " } ,
{ " precision " , " set soxr resampling precision (in bits) "
, OFFSET ( precision ) , AV_OPT_TYPE_DOUBLE , { . dbl = 20.0 } , 15.0 , 33.0 , PARAM } ,
{ " cheby " , " enable soxr Chebyshev passband & higher-precision irrational ratio approximation "
, OFFSET ( cheby ) , AV_OPT_TYPE_INT , { . i64 = 0 } , 0 , 1 , PARAM } ,
{ " min_comp " , " set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied "
, OFFSET ( min_compensation ) , AV_OPT_TYPE_FLOAT , { . dbl = FLT_MAX } , 0 , FLT_MAX , PARAM } ,
{ " min_hard_comp " , " set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data. "
, OFFSET ( min_hard_compensation ) , AV_OPT_TYPE_FLOAT , { . dbl = 0.1 } , 0 , INT_MAX , PARAM } ,
{ " comp_duration " , " set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps. "
, OFFSET ( soft_compensation_duration ) , AV_OPT_TYPE_FLOAT , { . dbl = 1 } , 0 , INT_MAX , PARAM } ,
{ " max_soft_comp " , " set maximum factor by which data is stretched/squeezed to make it match the timestamps. "
, OFFSET ( max_soft_compensation ) , AV_OPT_TYPE_FLOAT , { . dbl = 0 } , INT_MIN , INT_MAX , PARAM } ,
{ " async " , " simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second) "
, OFFSET ( async ) , AV_OPT_TYPE_FLOAT , { . dbl = 0 } , INT_MIN , INT_MAX , PARAM } ,
{ " matrix_encoding " , " set matrixed stereo encoding " , OFFSET ( matrix_encoding ) , AV_OPT_TYPE_INT , { . i64 = AV_MATRIX_ENCODING_NONE } , AV_MATRIX_ENCODING_NONE , AV_MATRIX_ENCODING_NB - 1 , PARAM , " matrix_encoding " } ,
{ " none " , " select none " , 0 , AV_OPT_TYPE_CONST , { . i64 = AV_MATRIX_ENCODING_NONE } , INT_MIN , INT_MAX , PARAM , " matrix_encoding " } ,
{ " dolby " , " select Dolby " , 0 , AV_OPT_TYPE_CONST , { . i64 = AV_MATRIX_ENCODING_DOLBY } , INT_MIN , INT_MAX , PARAM , " matrix_encoding " } ,
{ " dplii " , " select Dolby Pro Logic II " , 0 , AV_OPT_TYPE_CONST , { . i64 = AV_MATRIX_ENCODING_DPLII } , INT_MIN , INT_MAX , PARAM , " matrix_encoding " } ,
{ " filter_type " , " select swr filter type " , OFFSET ( filter_type ) , AV_OPT_TYPE_INT , { . i64 = SWR_FILTER_TYPE_KAISER } , SWR_FILTER_TYPE_CUBIC , SWR_FILTER_TYPE_KAISER , PARAM , " filter_type " } ,
{ " cubic " , " select cubic " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_FILTER_TYPE_CUBIC } , INT_MIN , INT_MAX , PARAM , " filter_type " } ,
{ " blackman_nuttall " , " select Blackman Nuttall Windowed Sinc " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL } , INT_MIN , INT_MAX , PARAM , " filter_type " } ,
{ " kaiser " , " select Kaiser Windowed Sinc " , 0 , AV_OPT_TYPE_CONST , { . i64 = SWR_FILTER_TYPE_KAISER } , INT_MIN , INT_MAX , PARAM , " filter_type " } ,
{ " kaiser_beta " , " set swr Kaiser Window Beta " , OFFSET ( kaiser_beta ) , AV_OPT_TYPE_INT , { . i64 = 9 } , 2 , 16 , PARAM } ,
{ 0 }
} ;
static const char * context_to_name ( void * ptr ) {
return " SWR " ;
}
static const AVClass av_class = {
. class_name = " SWResampler " ,
. item_name = context_to_name ,
. option = options ,
. version = LIBAVUTIL_VERSION_INT ,
. log_level_offset_offset = OFFSET ( log_level_offset ) ,
. parent_log_context_offset = OFFSET ( log_ctx ) ,
. category = AV_CLASS_CATEGORY_SWRESAMPLER ,
} ;
unsigned swresample_version ( void )
{
av_assert0 ( LIBSWRESAMPLE_VERSION_MICRO > = 100 ) ;
return LIBSWRESAMPLE_VERSION_INT ;
}
const char * swresample_configuration ( void )
{
return FFMPEG_CONFIGURATION ;
}
const char * swresample_license ( void )
{
# define LICENSE_PREFIX "libswresample license: "
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof ( LICENSE_PREFIX ) - 1 ;
}
int swr_set_channel_mapping ( struct SwrContext * s , const int * channel_map ) {
if ( ! s | | s - > in_convert ) // s needs to be allocated but not initialized
return AVERROR ( EINVAL ) ;
s - > channel_map = channel_map ;
return 0 ;
}
const AVClass * swr_get_class ( void )
{
return & av_class ;
}
av_cold struct SwrContext * swr_alloc ( void ) {
SwrContext * s = av_mallocz ( sizeof ( SwrContext ) ) ;
if ( s ) {
s - > av_class = & av_class ;
av_opt_set_defaults ( s ) ;
}
return s ;
}
struct SwrContext * swr_alloc_set_opts ( struct SwrContext * s ,
int64_t out_ch_layout , enum AVSampleFormat out_sample_fmt , int out_sample_rate ,
int64_t in_ch_layout , enum AVSampleFormat in_sample_fmt , int in_sample_rate ,
int log_offset , void * log_ctx ) {
if ( ! s ) s = swr_alloc ( ) ;
if ( ! s ) return NULL ;
s - > log_level_offset = log_offset ;
s - > log_ctx = log_ctx ;
av_opt_set_int ( s , " ocl " , out_ch_layout , 0 ) ;
av_opt_set_int ( s , " osf " , out_sample_fmt , 0 ) ;
av_opt_set_int ( s , " osr " , out_sample_rate , 0 ) ;
av_opt_set_int ( s , " icl " , in_ch_layout , 0 ) ;
av_opt_set_int ( s , " isf " , in_sample_fmt , 0 ) ;
av_opt_set_int ( s , " isr " , in_sample_rate , 0 ) ;
av_opt_set_int ( s , " tsf " , AV_SAMPLE_FMT_NONE , 0 ) ;
av_opt_set_int ( s , " ich " , av_get_channel_layout_nb_channels ( s - > in_ch_layout ) , 0 ) ;
av_opt_set_int ( s , " och " , av_get_channel_layout_nb_channels ( s - > out_ch_layout ) , 0 ) ;
av_opt_set_int ( s , " uch " , 0 , 0 ) ;
return s ;
}
static void set_audiodata_fmt ( AudioData * a , enum AVSampleFormat fmt ) {
a - > fmt = fmt ;
a - > bps = av_get_bytes_per_sample ( fmt ) ;
a - > planar = av_sample_fmt_is_planar ( fmt ) ;
}
static void free_temp ( AudioData * a ) {
av_free ( a - > data ) ;
memset ( a , 0 , sizeof ( * a ) ) ;
}
av_cold void swr_free ( SwrContext * * ss ) {
SwrContext * s = * ss ;
if ( s ) {
free_temp ( & s - > postin ) ;
free_temp ( & s - > midbuf ) ;
free_temp ( & s - > preout ) ;
free_temp ( & s - > in_buffer ) ;
free_temp ( & s - > silence ) ;
free_temp ( & s - > drop_temp ) ;
free_temp ( & s - > dither . noise ) ;
free_temp ( & s - > dither . temp ) ;
swri_audio_convert_free ( & s - > in_convert ) ;
swri_audio_convert_free ( & s - > out_convert ) ;
swri_audio_convert_free ( & s - > full_convert ) ;
if ( s - > resampler )
s - > resampler - > free ( & s - > resample ) ;
swri_rematrix_free ( s ) ;
}
av_freep ( ss ) ;
}
av_cold int swr_init ( struct SwrContext * s ) {
int ret ;
s - > in_buffer_index = 0 ;
s - > in_buffer_count = 0 ;
s - > resample_in_constraint = 0 ;
free_temp ( & s - > postin ) ;
free_temp ( & s - > midbuf ) ;
free_temp ( & s - > preout ) ;
free_temp ( & s - > in_buffer ) ;
free_temp ( & s - > silence ) ;
free_temp ( & s - > drop_temp ) ;
free_temp ( & s - > dither . noise ) ;
free_temp ( & s - > dither . temp ) ;
memset ( s - > in . ch , 0 , sizeof ( s - > in . ch ) ) ;
memset ( s - > out . ch , 0 , sizeof ( s - > out . ch ) ) ;
swri_audio_convert_free ( & s - > in_convert ) ;
swri_audio_convert_free ( & s - > out_convert ) ;
swri_audio_convert_free ( & s - > full_convert ) ;
swri_rematrix_free ( s ) ;
s - > flushed = 0 ;
if ( s - > in_sample_fmt > = AV_SAMPLE_FMT_NB ) {
av_log ( s , AV_LOG_ERROR , " Requested input sample format %d is invalid \n " , s - > in_sample_fmt ) ;
return AVERROR ( EINVAL ) ;
}
if ( s - > out_sample_fmt > = AV_SAMPLE_FMT_NB ) {
av_log ( s , AV_LOG_ERROR , " Requested output sample format %d is invalid \n " , s - > out_sample_fmt ) ;
return AVERROR ( EINVAL ) ;
}
if ( s - > int_sample_fmt = = AV_SAMPLE_FMT_NONE ) {
if ( av_get_planar_sample_fmt ( s - > in_sample_fmt ) < = AV_SAMPLE_FMT_S16P ) {
s - > int_sample_fmt = AV_SAMPLE_FMT_S16P ;
} else if ( av_get_planar_sample_fmt ( s - > in_sample_fmt ) < = AV_SAMPLE_FMT_FLTP ) {
s - > int_sample_fmt = AV_SAMPLE_FMT_FLTP ;
} else {
av_log ( s , AV_LOG_DEBUG , " Using double precision mode \n " ) ;
s - > int_sample_fmt = AV_SAMPLE_FMT_DBLP ;
}
}
if ( s - > int_sample_fmt ! = AV_SAMPLE_FMT_S16P
& & s - > int_sample_fmt ! = AV_SAMPLE_FMT_S32P
& & s - > int_sample_fmt ! = AV_SAMPLE_FMT_FLTP
& & s - > int_sample_fmt ! = AV_SAMPLE_FMT_DBLP ) {
av_log ( s , AV_LOG_ERROR , " Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported \n " , av_get_sample_fmt_name ( s - > int_sample_fmt ) ) ;
return AVERROR ( EINVAL ) ;
}
switch ( s - > engine ) {
# if CONFIG_LIBSOXR
extern struct Resampler const soxr_resampler ;
case SWR_ENGINE_SOXR : s - > resampler = & soxr_resampler ; break ;
# endif
case SWR_ENGINE_SWR : s - > resampler = & swri_resampler ; break ;
default :
av_log ( s , AV_LOG_ERROR , " Requested resampling engine is unavailable \n " ) ;
return AVERROR ( EINVAL ) ;
}
set_audiodata_fmt ( & s - > in , s - > in_sample_fmt ) ;
set_audiodata_fmt ( & s - > out , s - > out_sample_fmt ) ;
if ( s - > async ) {
if ( s - > min_compensation > = FLT_MAX / 2 )
s - > min_compensation = 0.001 ;
if ( s - > async > 1.0001 ) {
s - > max_soft_compensation = s - > async / ( double ) s - > in_sample_rate ;
}
}
if ( s - > out_sample_rate ! = s - > in_sample_rate | | ( s - > flags & SWR_FLAG_RESAMPLE ) ) {
s - > resample = s - > resampler - > init ( s - > resample , s - > out_sample_rate , s - > in_sample_rate , s - > filter_size , s - > phase_shift , s - > linear_interp , s - > cutoff , s - > int_sample_fmt , s - > filter_type , s - > kaiser_beta , s - > precision , s - > cheby ) ;
} else
s - > resampler - > free ( & s - > resample ) ;
if ( s - > int_sample_fmt ! = AV_SAMPLE_FMT_S16P
& & s - > int_sample_fmt ! = AV_SAMPLE_FMT_S32P
& & s - > int_sample_fmt ! = AV_SAMPLE_FMT_FLTP
& & s - > int_sample_fmt ! = AV_SAMPLE_FMT_DBLP
& & s - > resample ) {
av_log ( s , AV_LOG_ERROR , " Resampling only supported with internal s16/s32/flt/dbl \n " ) ;
return - 1 ;
}
if ( ! s - > used_ch_count )
s - > used_ch_count = s - > in . ch_count ;
if ( s - > used_ch_count & & s - > in_ch_layout & & s - > used_ch_count ! = av_get_channel_layout_nb_channels ( s - > in_ch_layout ) ) {
av_log ( s , AV_LOG_WARNING , " Input channel layout has a different number of channels than the number of used channels, ignoring layout \n " ) ;
s - > in_ch_layout = 0 ;
}
if ( ! s - > in_ch_layout )
s - > in_ch_layout = av_get_default_channel_layout ( s - > used_ch_count ) ;
if ( ! s - > out_ch_layout )
s - > out_ch_layout = av_get_default_channel_layout ( s - > out . ch_count ) ;
s - > rematrix = s - > out_ch_layout ! = s - > in_ch_layout | | s - > rematrix_volume ! = 1.0 | |
s - > rematrix_custom ;
# define RSC 1 //FIXME finetune
if ( ! s - > in . ch_count )
s - > in . ch_count = av_get_channel_layout_nb_channels ( s - > in_ch_layout ) ;
if ( ! s - > used_ch_count )
s - > used_ch_count = s - > in . ch_count ;
if ( ! s - > out . ch_count )
s - > out . ch_count = av_get_channel_layout_nb_channels ( s - > out_ch_layout ) ;
if ( ! s - > in . ch_count ) {
av_assert0 ( ! s - > in_ch_layout ) ;
av_log ( s , AV_LOG_ERROR , " Input channel count and layout are unset \n " ) ;
return - 1 ;
}
if ( ( ! s - > out_ch_layout | | ! s - > in_ch_layout ) & & s - > used_ch_count ! = s - > out . ch_count & & ! s - > rematrix_custom ) {
char l1 [ 1024 ] , l2 [ 1024 ] ;
av_get_channel_layout_string ( l1 , sizeof ( l1 ) , s - > in . ch_count , s - > in_ch_layout ) ;
av_get_channel_layout_string ( l2 , sizeof ( l2 ) , s - > out . ch_count , s - > out_ch_layout ) ;
av_log ( s , AV_LOG_ERROR , " Rematrix is needed between %s and %s "
" but there is not enough information to do it \n " , l1 , l2 ) ;
return - 1 ;
}
av_assert0 ( s - > used_ch_count ) ;
av_assert0 ( s - > out . ch_count ) ;
s - > resample_first = RSC * s - > out . ch_count / s - > in . ch_count - RSC < s - > out_sample_rate / ( float ) s - > in_sample_rate - 1.0 ;
s - > in_buffer = s - > in ;
s - > silence = s - > in ;
s - > drop_temp = s - > out ;
if ( ! s - > resample & & ! s - > rematrix & & ! s - > channel_map & & ! s - > dither . method ) {
s - > full_convert = swri_audio_convert_alloc ( s - > out_sample_fmt ,
s - > in_sample_fmt , s - > in . ch_count , NULL , 0 ) ;
return 0 ;
}
s - > in_convert = swri_audio_convert_alloc ( s - > int_sample_fmt ,
s - > in_sample_fmt , s - > used_ch_count , s - > channel_map , 0 ) ;
s - > out_convert = swri_audio_convert_alloc ( s - > out_sample_fmt ,
s - > int_sample_fmt , s - > out . ch_count , NULL , 0 ) ;
if ( ! s - > in_convert | | ! s - > out_convert )
return AVERROR ( ENOMEM ) ;
s - > postin = s - > in ;
s - > preout = s - > out ;
s - > midbuf = s - > in ;
if ( s - > channel_map ) {
s - > postin . ch_count =
s - > midbuf . ch_count = s - > used_ch_count ;
if ( s - > resample )
s - > in_buffer . ch_count = s - > used_ch_count ;
}
if ( ! s - > resample_first ) {
s - > midbuf . ch_count = s - > out . ch_count ;
if ( s - > resample )
s - > in_buffer . ch_count = s - > out . ch_count ;
}
set_audiodata_fmt ( & s - > postin , s - > int_sample_fmt ) ;
set_audiodata_fmt ( & s - > midbuf , s - > int_sample_fmt ) ;
set_audiodata_fmt ( & s - > preout , s - > int_sample_fmt ) ;
if ( s - > resample ) {
set_audiodata_fmt ( & s - > in_buffer , s - > int_sample_fmt ) ;
}
if ( ( ret = swri_dither_init ( s , s - > out_sample_fmt , s - > int_sample_fmt ) ) < 0 )
return ret ;
if ( s - > rematrix | | s - > dither . method )
return swri_rematrix_init ( s ) ;
return 0 ;
}
int swri_realloc_audio ( AudioData * a , int count ) {
int i , countb ;
AudioData old ;
if ( count < 0 | | count > INT_MAX / 2 / a - > bps / a - > ch_count )
return AVERROR ( EINVAL ) ;
if ( a - > count > = count )
return 0 ;
count * = 2 ;
countb = FFALIGN ( count * a - > bps , ALIGN ) ;
old = * a ;
av_assert0 ( a - > bps ) ;
av_assert0 ( a - > ch_count ) ;
a - > data = av_mallocz ( countb * a - > ch_count ) ;
if ( ! a - > data )
return AVERROR ( ENOMEM ) ;
for ( i = 0 ; i < a - > ch_count ; i + + ) {
a - > ch [ i ] = a - > data + i * ( a - > planar ? countb : a - > bps ) ;
if ( a - > planar ) memcpy ( a - > ch [ i ] , old . ch [ i ] , a - > count * a - > bps ) ;
}
if ( ! a - > planar ) memcpy ( a - > ch [ 0 ] , old . ch [ 0 ] , a - > count * a - > ch_count * a - > bps ) ;
av_free ( old . data ) ;
a - > count = count ;
return 1 ;
}
static void copy ( AudioData * out , AudioData * in ,
int count ) {
av_assert0 ( out - > planar = = in - > planar ) ;
av_assert0 ( out - > bps = = in - > bps ) ;
av_assert0 ( out - > ch_count = = in - > ch_count ) ;
if ( out - > planar ) {
int ch ;
for ( ch = 0 ; ch < out - > ch_count ; ch + + )
memcpy ( out - > ch [ ch ] , in - > ch [ ch ] , count * out - > bps ) ;
} else
memcpy ( out - > ch [ 0 ] , in - > ch [ 0 ] , count * out - > ch_count * out - > bps ) ;
}
static void fill_audiodata ( AudioData * out , uint8_t * in_arg [ SWR_CH_MAX ] ) {
int i ;
if ( ! in_arg ) {
memset ( out - > ch , 0 , sizeof ( out - > ch ) ) ;
} else if ( out - > planar ) {
for ( i = 0 ; i < out - > ch_count ; i + + )
out - > ch [ i ] = in_arg [ i ] ;
} else {
for ( i = 0 ; i < out - > ch_count ; i + + )
out - > ch [ i ] = in_arg [ 0 ] + i * out - > bps ;
}
}
static void reversefill_audiodata ( AudioData * out , uint8_t * in_arg [ SWR_CH_MAX ] ) {
int i ;
if ( out - > planar ) {
for ( i = 0 ; i < out - > ch_count ; i + + )
in_arg [ i ] = out - > ch [ i ] ;
} else {
in_arg [ 0 ] = out - > ch [ 0 ] ;
}
}
/**
*
* out may be equal in .
*/
static void buf_set ( AudioData * out , AudioData * in , int count ) {
int ch ;
if ( in - > planar ) {
for ( ch = 0 ; ch < out - > ch_count ; ch + + )
out - > ch [ ch ] = in - > ch [ ch ] + count * out - > bps ;
} else {
for ( ch = out - > ch_count - 1 ; ch > = 0 ; ch - - )
out - > ch [ ch ] = in - > ch [ 0 ] + ( ch + count * out - > ch_count ) * out - > bps ;
}
}
/**
*
* @ return number of samples output per channel
*/
static int resample ( SwrContext * s , AudioData * out_param , int out_count ,
const AudioData * in_param , int in_count ) {
AudioData in , out , tmp ;
int ret_sum = 0 ;
int border = 0 ;
av_assert1 ( s - > in_buffer . ch_count = = in_param - > ch_count ) ;
av_assert1 ( s - > in_buffer . planar = = in_param - > planar ) ;
av_assert1 ( s - > in_buffer . fmt = = in_param - > fmt ) ;
tmp = out = * out_param ;
in = * in_param ;
do {
int ret , size , consumed ;
if ( ! s - > resample_in_constraint & & s - > in_buffer_count ) {
buf_set ( & tmp , & s - > in_buffer , s - > in_buffer_index ) ;
ret = s - > resampler - > multiple_resample ( s - > resample , & out , out_count , & tmp , s - > in_buffer_count , & consumed ) ;
out_count - = ret ;
ret_sum + = ret ;
buf_set ( & out , & out , ret ) ;
s - > in_buffer_count - = consumed ;
s - > in_buffer_index + = consumed ;
if ( ! in_count )
break ;
if ( s - > in_buffer_count < = border ) {
buf_set ( & in , & in , - s - > in_buffer_count ) ;
in_count + = s - > in_buffer_count ;
s - > in_buffer_count = 0 ;
s - > in_buffer_index = 0 ;
border = 0 ;
}
}
if ( ( s - > flushed | | in_count ) & & ! s - > in_buffer_count ) {
s - > in_buffer_index = 0 ;
ret = s - > resampler - > multiple_resample ( s - > resample , & out , out_count , & in , in_count , & consumed ) ;
out_count - = ret ;
ret_sum + = ret ;
buf_set ( & out , & out , ret ) ;
in_count - = consumed ;
buf_set ( & in , & in , consumed ) ;
}
//TODO is this check sane considering the advanced copy avoidance below
size = s - > in_buffer_index + s - > in_buffer_count + in_count ;
if ( size > s - > in_buffer . count
& & s - > in_buffer_count + in_count < = s - > in_buffer_index ) {
buf_set ( & tmp , & s - > in_buffer , s - > in_buffer_index ) ;
copy ( & s - > in_buffer , & tmp , s - > in_buffer_count ) ;
s - > in_buffer_index = 0 ;
} else
if ( ( ret = swri_realloc_audio ( & s - > in_buffer , size ) ) < 0 )
return ret ;
if ( in_count ) {
int count = in_count ;
if ( s - > in_buffer_count & & s - > in_buffer_count + 2 < count & & out_count ) count = s - > in_buffer_count + 2 ;
buf_set ( & tmp , & s - > in_buffer , s - > in_buffer_index + s - > in_buffer_count ) ;
copy ( & tmp , & in , /*in_*/ count ) ;
s - > in_buffer_count + = count ;
in_count - = count ;
border + = count ;
buf_set ( & in , & in , count ) ;
s - > resample_in_constraint = 0 ;
if ( s - > in_buffer_count ! = count | | in_count )
continue ;
}
break ;
} while ( 1 ) ;
s - > resample_in_constraint = ! ! out_count ;
return ret_sum ;
}
static int swr_convert_internal ( struct SwrContext * s , AudioData * out , int out_count ,
AudioData * in , int in_count ) {
AudioData * postin , * midbuf , * preout ;
int ret /*, in_max*/ ;
AudioData preout_tmp , midbuf_tmp ;
if ( s - > full_convert ) {
av_assert0 ( ! s - > resample ) ;
swri_audio_convert ( s - > full_convert , out , in , in_count ) ;
return out_count ;
}
// in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
// in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
if ( ( ret = swri_realloc_audio ( & s - > postin , in_count ) ) < 0 )
return ret ;
if ( s - > resample_first ) {
av_assert0 ( s - > midbuf . ch_count = = s - > used_ch_count ) ;
if ( ( ret = swri_realloc_audio ( & s - > midbuf , out_count ) ) < 0 )
return ret ;
} else {
av_assert0 ( s - > midbuf . ch_count = = s - > out . ch_count ) ;
if ( ( ret = swri_realloc_audio ( & s - > midbuf , in_count ) ) < 0 )
return ret ;
}
if ( ( ret = swri_realloc_audio ( & s - > preout , out_count ) ) < 0 )
return ret ;
postin = & s - > postin ;
midbuf_tmp = s - > midbuf ;
midbuf = & midbuf_tmp ;
preout_tmp = s - > preout ;
preout = & preout_tmp ;
if ( s - > int_sample_fmt = = s - > in_sample_fmt & & s - > in . planar & & ! s - > channel_map )
postin = in ;
if ( s - > resample_first ? ! s - > resample : ! s - > rematrix )
midbuf = postin ;
if ( s - > resample_first ? ! s - > rematrix : ! s - > resample )
preout = midbuf ;
if ( s - > int_sample_fmt = = s - > out_sample_fmt & & s - > out . planar ) {
if ( preout = = in ) {
out_count = FFMIN ( out_count , in_count ) ; //TODO check at the end if this is needed or redundant
av_assert0 ( s - > in . planar ) ; //we only support planar internally so it has to be, we support copying non planar though
copy ( out , in , out_count ) ;
return out_count ;
}
else if ( preout = = postin ) preout = midbuf = postin = out ;
else if ( preout = = midbuf ) preout = midbuf = out ;
else preout = out ;
}
if ( in ! = postin ) {
swri_audio_convert ( s - > in_convert , postin , in , in_count ) ;
}
if ( s - > resample_first ) {
if ( postin ! = midbuf )
out_count = resample ( s , midbuf , out_count , postin , in_count ) ;
if ( midbuf ! = preout )
swri_rematrix ( s , preout , midbuf , out_count , preout = = out ) ;
} else {
if ( postin ! = midbuf )
swri_rematrix ( s , midbuf , postin , in_count , midbuf = = out ) ;
if ( midbuf ! = preout )
out_count = resample ( s , preout , out_count , midbuf , in_count ) ;
}
if ( preout ! = out & & out_count ) {
AudioData * conv_src = preout ;
if ( s - > dither . method ) {
int ch ;
int dither_count = FFMAX ( out_count , 1 < < 16 ) ;
if ( preout = = in ) {
conv_src = & s - > dither . temp ;
if ( ( ret = swri_realloc_audio ( & s - > dither . temp , dither_count ) ) < 0 )
return ret ;
}
if ( ( ret = swri_realloc_audio ( & s - > dither . noise , dither_count ) ) < 0 )
return ret ;
if ( ret )
for ( ch = 0 ; ch < s - > dither . noise . ch_count ; ch + + )
swri_get_dither ( s , s - > dither . noise . ch [ ch ] , s - > dither . noise . count , 12345678913579 < < ch , s - > dither . noise . fmt ) ;
av_assert0 ( s - > dither . noise . ch_count = = preout - > ch_count ) ;
if ( s - > dither . noise_pos + out_count > s - > dither . noise . count )
s - > dither . noise_pos = 0 ;
if ( s - > dither . method < SWR_DITHER_NS ) {
if ( s - > mix_2_1_simd ) {
int len1 = out_count & ~ 15 ;
int off = len1 * preout - > bps ;
if ( len1 )
for ( ch = 0 ; ch < preout - > ch_count ; ch + + )
s - > mix_2_1_simd ( conv_src - > ch [ ch ] , preout - > ch [ ch ] , s - > dither . noise . ch [ ch ] + s - > dither . noise . bps * s - > dither . noise_pos , s - > native_one , 0 , 0 , len1 ) ;
if ( out_count ! = len1 )
for ( ch = 0 ; ch < preout - > ch_count ; ch + + )
s - > mix_2_1_f ( conv_src - > ch [ ch ] + off , preout - > ch [ ch ] + off , s - > dither . noise . ch [ ch ] + s - > dither . noise . bps * s - > dither . noise_pos + off + len1 , s - > native_one , 0 , 0 , out_count - len1 ) ;
} else {
for ( ch = 0 ; ch < preout - > ch_count ; ch + + )
s - > mix_2_1_f ( conv_src - > ch [ ch ] , preout - > ch [ ch ] , s - > dither . noise . ch [ ch ] + s - > dither . noise . bps * s - > dither . noise_pos , s - > native_one , 0 , 0 , out_count ) ;
}
} else {
switch ( s - > int_sample_fmt ) {
case AV_SAMPLE_FMT_S16P : swri_noise_shaping_int16 ( s , conv_src , preout , & s - > dither . noise , out_count ) ; break ;
case AV_SAMPLE_FMT_S32P : swri_noise_shaping_int32 ( s , conv_src , preout , & s - > dither . noise , out_count ) ; break ;
case AV_SAMPLE_FMT_FLTP : swri_noise_shaping_float ( s , conv_src , preout , & s - > dither . noise , out_count ) ; break ;
case AV_SAMPLE_FMT_DBLP : swri_noise_shaping_double ( s , conv_src , preout , & s - > dither . noise , out_count ) ; break ;
}
}
s - > dither . noise_pos + = out_count ;
}
//FIXME packed doesnt need more than 1 chan here!
swri_audio_convert ( s - > out_convert , out , conv_src , out_count ) ;
}
return out_count ;
}
int swr_convert ( struct SwrContext * s , uint8_t * out_arg [ SWR_CH_MAX ] , int out_count ,
const uint8_t * in_arg [ SWR_CH_MAX ] , int in_count ) {
AudioData * in = & s - > in ;
AudioData * out = & s - > out ;
while ( s - > drop_output > 0 ) {
int ret ;
uint8_t * tmp_arg [ SWR_CH_MAX ] ;
# define MAX_DROP_STEP 16384
if ( ( ret = swri_realloc_audio ( & s - > drop_temp , FFMIN ( s - > drop_output , MAX_DROP_STEP ) ) ) < 0 )
return ret ;
reversefill_audiodata ( & s - > drop_temp , tmp_arg ) ;
s - > drop_output * = - 1 ; //FIXME find a less hackish solution
ret = swr_convert ( s , tmp_arg , FFMIN ( - s - > drop_output , MAX_DROP_STEP ) , in_arg , in_count ) ; //FIXME optimize but this is as good as never called so maybe it doesnt matter
s - > drop_output * = - 1 ;
in_count = 0 ;
if ( ret > 0 ) {
s - > drop_output - = ret ;
continue ;
}
if ( s - > drop_output | | ! out_arg )
return 0 ;
}
if ( ! in_arg ) {
if ( s - > resample ) {
if ( ! s - > flushed )
s - > resampler - > flush ( s ) ;
s - > resample_in_constraint = 0 ;
s - > flushed = 1 ;
} else if ( ! s - > in_buffer_count ) {
return 0 ;
}
} else
fill_audiodata ( in , ( void * ) in_arg ) ;
fill_audiodata ( out , out_arg ) ;
if ( s - > resample ) {
int ret = swr_convert_internal ( s , out , out_count , in , in_count ) ;
if ( ret > 0 & & ! s - > drop_output )
s - > outpts + = ret * ( int64_t ) s - > in_sample_rate ;
return ret ;
} else {
AudioData tmp = * in ;
int ret2 = 0 ;
int ret , size ;
size = FFMIN ( out_count , s - > in_buffer_count ) ;
if ( size ) {
buf_set ( & tmp , & s - > in_buffer , s - > in_buffer_index ) ;
ret = swr_convert_internal ( s , out , size , & tmp , size ) ;
if ( ret < 0 )
return ret ;
ret2 = ret ;
s - > in_buffer_count - = ret ;
s - > in_buffer_index + = ret ;
buf_set ( out , out , ret ) ;
out_count - = ret ;
if ( ! s - > in_buffer_count )
s - > in_buffer_index = 0 ;
}
if ( in_count ) {
size = s - > in_buffer_index + s - > in_buffer_count + in_count - out_count ;
if ( in_count > out_count ) { //FIXME move after swr_convert_internal
if ( size > s - > in_buffer . count
& & s - > in_buffer_count + in_count - out_count < = s - > in_buffer_index ) {
buf_set ( & tmp , & s - > in_buffer , s - > in_buffer_index ) ;
copy ( & s - > in_buffer , & tmp , s - > in_buffer_count ) ;
s - > in_buffer_index = 0 ;
} else
if ( ( ret = swri_realloc_audio ( & s - > in_buffer , size ) ) < 0 )
return ret ;
}
if ( out_count ) {
size = FFMIN ( in_count , out_count ) ;
ret = swr_convert_internal ( s , out , size , in , size ) ;
if ( ret < 0 )
return ret ;
buf_set ( in , in , ret ) ;
in_count - = ret ;
ret2 + = ret ;
}
if ( in_count ) {
buf_set ( & tmp , & s - > in_buffer , s - > in_buffer_index + s - > in_buffer_count ) ;
copy ( & tmp , in , in_count ) ;
s - > in_buffer_count + = in_count ;
}
}
if ( ret2 > 0 & & ! s - > drop_output )
s - > outpts + = ret2 * ( int64_t ) s - > in_sample_rate ;
return ret2 ;
}
}
int swr_drop_output ( struct SwrContext * s , int count ) {
s - > drop_output + = count ;
if ( s - > drop_output < = 0 )
return 0 ;
av_log ( s , AV_LOG_VERBOSE , " discarding %d audio samples \n " , count ) ;
return swr_convert ( s , NULL , s - > drop_output , NULL , 0 ) ;
}
int swr_inject_silence ( struct SwrContext * s , int count ) {
int ret , i ;
uint8_t * tmp_arg [ SWR_CH_MAX ] ;
if ( count < = 0 )
return 0 ;
# define MAX_SILENCE_STEP 16384
while ( count > MAX_SILENCE_STEP ) {
if ( ( ret = swr_inject_silence ( s , MAX_SILENCE_STEP ) ) < 0 )
return ret ;
count - = MAX_SILENCE_STEP ;
}
if ( ( ret = swri_realloc_audio ( & s - > silence , count ) ) < 0 )
return ret ;
if ( s - > silence . planar ) for ( i = 0 ; i < s - > silence . ch_count ; i + + ) {
memset ( s - > silence . ch [ i ] , s - > silence . bps = = 1 ? 0x80 : 0 , count * s - > silence . bps ) ;
} else
memset ( s - > silence . ch [ 0 ] , s - > silence . bps = = 1 ? 0x80 : 0 , count * s - > silence . bps * s - > silence . ch_count ) ;
reversefill_audiodata ( & s - > silence , tmp_arg ) ;
av_log ( s , AV_LOG_VERBOSE , " adding %d audio samples of silence \n " , count ) ;
ret = swr_convert ( s , NULL , 0 , ( const uint8_t * * ) tmp_arg , count ) ;
return ret ;
}
int64_t swr_get_delay ( struct SwrContext * s , int64_t base ) {
if ( s - > resampler & & s - > resample ) {
return s - > resampler - > get_delay ( s , base ) ;
} else {
return ( s - > in_buffer_count * base + ( s - > in_sample_rate > > 1 ) ) / s - > in_sample_rate ;
}
}
int swr_set_compensation ( struct SwrContext * s , int sample_delta , int compensation_distance ) {
int ret ;
if ( ! s | | compensation_distance < 0 )
return AVERROR ( EINVAL ) ;
if ( ! compensation_distance & & sample_delta )
return AVERROR ( EINVAL ) ;
if ( ! s - > resample ) {
s - > flags | = SWR_FLAG_RESAMPLE ;
ret = swr_init ( s ) ;
if ( ret < 0 )
return ret ;
}
if ( ! s - > resampler - > set_compensation ) {
return AVERROR ( EINVAL ) ;
} else {
return s - > resampler - > set_compensation ( s - > resample , sample_delta , compensation_distance ) ;
}
}
int64_t swr_next_pts ( struct SwrContext * s , int64_t pts ) {
if ( pts = = INT64_MIN )
return s - > outpts ;
if ( s - > min_compensation > = FLT_MAX ) {
return ( s - > outpts = pts - swr_get_delay ( s , s - > in_sample_rate * ( int64_t ) s - > out_sample_rate ) ) ;
} else {
int64_t delta = pts - swr_get_delay ( s , s - > in_sample_rate * ( int64_t ) s - > out_sample_rate ) - s - > outpts + s - > drop_output * ( int64_t ) s - > in_sample_rate ;
double fdelta = delta / ( double ) ( s - > in_sample_rate * ( int64_t ) s - > out_sample_rate ) ;
if ( fabs ( fdelta ) > s - > min_compensation ) {
if ( ! s - > outpts | | fabs ( fdelta ) > s - > min_hard_compensation ) {
int ret ;
if ( delta > 0 ) ret = swr_inject_silence ( s , delta / s - > out_sample_rate ) ;
else ret = swr_drop_output ( s , - delta / s - > in_sample_rate ) ;
if ( ret < 0 ) {
av_log ( s , AV_LOG_ERROR , " Failed to compensate for timestamp delta of %f \n " , fdelta ) ;
}
} else if ( s - > soft_compensation_duration & & s - > max_soft_compensation ) {
int duration = s - > out_sample_rate * s - > soft_compensation_duration ;
double max_soft_compensation = s - > max_soft_compensation / ( s - > max_soft_compensation < 0 ? - s - > in_sample_rate : 1 ) ;
int comp = av_clipf ( fdelta , - max_soft_compensation , max_soft_compensation ) * duration ;
av_log ( s , AV_LOG_VERBOSE , " compensating audio timestamp drift:%f compensation:%d in:%d \n " , fdelta , comp , duration ) ;
swr_set_compensation ( s , comp , duration ) ;
}
}
return s - > outpts ;
}
}