You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3372 lines
119 KiB

/*
* Matroska file demuxer
* Copyright (c) 2003-2008 The FFmpeg Project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Matroska file demuxer
* @author Ronald Bultje <rbultje@ronald.bitfreak.net>
* @author with a little help from Moritz Bunkus <moritz@bunkus.org>
* @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
* @see specs available on the Matroska project page: http://www.matroska.org/
*/
#include "config.h"
#include <inttypes.h>
#include <stdio.h>
#if CONFIG_BZLIB
#include <bzlib.h>
#endif
#if CONFIG_ZLIB
#include <zlib.h>
#endif
#include "libavutil/avstring.h"
#include "libavutil/base64.h"
#include "libavutil/dict.h"
#include "libavutil/intfloat.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/lzo.h"
#include "libavutil/mathematics.h"
#include "libavcodec/bytestream.h"
#include "libavcodec/flac.h"
#include "libavcodec/mpeg4audio.h"
#include "avformat.h"
#include "avio_internal.h"
#include "internal.h"
#include "isom.h"
#include "matroska.h"
#include "oggdec.h"
/* For ff_codec_get_id(). */
#include "riff.h"
#include "rmsipr.h"
typedef enum {
EBML_NONE,
EBML_UINT,
EBML_FLOAT,
EBML_STR,
EBML_UTF8,
EBML_BIN,
EBML_NEST,
EBML_PASS,
EBML_STOP,
EBML_SINT,
EBML_TYPE_COUNT
} EbmlType;
typedef const struct EbmlSyntax {
uint32_t id;
EbmlType type;
int list_elem_size;
int data_offset;
union {
uint64_t u;
double f;
const char *s;
const struct EbmlSyntax *n;
} def;
} EbmlSyntax;
typedef struct {
int nb_elem;
void *elem;
} EbmlList;
typedef struct {
int size;
uint8_t *data;
int64_t pos;
} EbmlBin;
typedef struct {
uint64_t version;
uint64_t max_size;
uint64_t id_length;
char *doctype;
uint64_t doctype_version;
} Ebml;
typedef struct {
uint64_t algo;
EbmlBin settings;
} MatroskaTrackCompression;
typedef struct {
uint64_t algo;
EbmlBin key_id;
} MatroskaTrackEncryption;
typedef struct {
uint64_t scope;
uint64_t type;
MatroskaTrackCompression compression;
MatroskaTrackEncryption encryption;
} MatroskaTrackEncoding;
typedef struct {
double frame_rate;
uint64_t display_width;
uint64_t display_height;
uint64_t pixel_width;
uint64_t pixel_height;
EbmlBin color_space;
uint64_t stereo_mode;
uint64_t alpha_mode;
} MatroskaTrackVideo;
typedef struct {
double samplerate;
double out_samplerate;
uint64_t bitdepth;
uint64_t channels;
/* real audio header (extracted from extradata) */
int coded_framesize;
int sub_packet_h;
int frame_size;
int sub_packet_size;
int sub_packet_cnt;
int pkt_cnt;
uint64_t buf_timecode;
uint8_t *buf;
} MatroskaTrackAudio;
typedef struct {
uint64_t uid;
uint64_t type;
} MatroskaTrackPlane;
typedef struct {
EbmlList combine_planes;
} MatroskaTrackOperation;
typedef struct {
uint64_t num;
uint64_t uid;
uint64_t type;
char *name;
char *codec_id;
EbmlBin codec_priv;
char *language;
double time_scale;
uint64_t default_duration;
uint64_t flag_default;
uint64_t flag_forced;
uint64_t seek_preroll;
MatroskaTrackVideo video;
MatroskaTrackAudio audio;
MatroskaTrackOperation operation;
EbmlList encodings;
uint64_t codec_delay;
AVStream *stream;
int64_t end_timecode;
int ms_compat;
uint64_t max_block_additional_id;
} MatroskaTrack;
typedef struct {
uint64_t uid;
char *filename;
char *mime;
EbmlBin bin;
AVStream *stream;
} MatroskaAttachment;
typedef struct {
uint64_t start;
uint64_t end;
uint64_t uid;
char *title;
AVChapter *chapter;
} MatroskaChapter;
typedef struct {
uint64_t track;
uint64_t pos;
} MatroskaIndexPos;
typedef struct {
uint64_t time;
EbmlList pos;
} MatroskaIndex;
typedef struct {
char *name;
char *string;
char *lang;
uint64_t def;
EbmlList sub;
} MatroskaTag;
typedef struct {
char *type;
uint64_t typevalue;
uint64_t trackuid;
uint64_t chapteruid;
uint64_t attachuid;
} MatroskaTagTarget;
typedef struct {
MatroskaTagTarget target;
EbmlList tag;
} MatroskaTags;
typedef struct {
uint64_t id;
uint64_t pos;
} MatroskaSeekhead;
typedef struct {
uint64_t start;
uint64_t length;
} MatroskaLevel;
typedef struct {
uint64_t timecode;
EbmlList blocks;
} MatroskaCluster;
typedef struct {
AVFormatContext *ctx;
/* EBML stuff */
int num_levels;
MatroskaLevel levels[EBML_MAX_DEPTH];
int level_up;
uint32_t current_id;
uint64_t time_scale;
double duration;
char *title;
char *muxingapp;
EbmlBin date_utc;
EbmlList tracks;
EbmlList attachments;
EbmlList chapters;
EbmlList index;
EbmlList tags;
EbmlList seekhead;
/* byte position of the segment inside the stream */
int64_t segment_start;
/* the packet queue */
AVPacket **packets;
int num_packets;
AVPacket *prev_pkt;
int done;
/* What to skip before effectively reading a packet. */
int skip_to_keyframe;
uint64_t skip_to_timecode;
/* File has a CUES element, but we defer parsing until it is needed. */
int cues_parsing_deferred;
int current_cluster_num_blocks;
int64_t current_cluster_pos;
MatroskaCluster current_cluster;
/* File has SSA subtitles which prevent incremental cluster parsing. */
int contains_ssa;
} MatroskaDemuxContext;
typedef struct {
uint64_t duration;
int64_t reference;
uint64_t non_simple;
EbmlBin bin;
uint64_t additional_id;
EbmlBin additional;
int64_t discard_padding;
} MatroskaBlock;
static EbmlSyntax ebml_header[] = {
{ EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
{ EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
{ EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
{ EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
{ EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
{ EBML_ID_EBMLVERSION, EBML_NONE },
{ EBML_ID_DOCTYPEVERSION, EBML_NONE },
{ 0 }
};
static EbmlSyntax ebml_syntax[] = {
{ EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
{ 0 }
};
static EbmlSyntax matroska_info[] = {
{ MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
{ MATROSKA_ID_DURATION, EBML_FLOAT, 0, offsetof(MatroskaDemuxContext, duration) },
{ MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
{ MATROSKA_ID_WRITINGAPP, EBML_NONE },
{ MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
{ MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
{ MATROSKA_ID_SEGMENTUID, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_track_video[] = {
{ MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
{ MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
{ MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
{ MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
{ MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
{ MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
{ MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
{ MATROSKA_ID_VIDEOPIXELCROPB, EBML_NONE },
{ MATROSKA_ID_VIDEOPIXELCROPT, EBML_NONE },
{ MATROSKA_ID_VIDEOPIXELCROPL, EBML_NONE },
{ MATROSKA_ID_VIDEOPIXELCROPR, EBML_NONE },
{ MATROSKA_ID_VIDEODISPLAYUNIT, EBML_NONE },
{ MATROSKA_ID_VIDEOFLAGINTERLACED, EBML_NONE },
{ MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, stereo_mode), { .u = MATROSKA_VIDEO_STEREOMODE_TYPE_NB } },
{ MATROSKA_ID_VIDEOASPECTRATIO, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_track_audio[] = {
{ MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
{ MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
{ MATROSKA_ID_AUDIOBITDEPTH, EBML_UINT, 0, offsetof(MatroskaTrackAudio, bitdepth) },
{ MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
{ 0 }
};
static EbmlSyntax matroska_track_encoding_compression[] = {
{ MATROSKA_ID_ENCODINGCOMPALGO, EBML_UINT, 0, offsetof(MatroskaTrackCompression, algo), { .u = 0 } },
{ MATROSKA_ID_ENCODINGCOMPSETTINGS, EBML_BIN, 0, offsetof(MatroskaTrackCompression, settings) },
{ 0 }
};
static EbmlSyntax matroska_track_encoding_encryption[] = {
{ MATROSKA_ID_ENCODINGENCALGO, EBML_UINT, 0, offsetof(MatroskaTrackEncryption,algo), {.u = 0} },
{ MATROSKA_ID_ENCODINGENCKEYID, EBML_BIN, 0, offsetof(MatroskaTrackEncryption,key_id) },
{ MATROSKA_ID_ENCODINGENCAESSETTINGS, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGALGO, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGHASHALGO, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGKEYID, EBML_NONE },
{ MATROSKA_ID_ENCODINGSIGNATURE, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_track_encoding[] = {
{ MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
{ MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
{ MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
{ MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
{ MATROSKA_ID_ENCODINGORDER, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_track_encodings[] = {
{ MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
{ 0 }
};
static EbmlSyntax matroska_track_plane[] = {
{ MATROSKA_ID_TRACKPLANEUID, EBML_UINT, 0, offsetof(MatroskaTrackPlane,uid) },
{ MATROSKA_ID_TRACKPLANETYPE, EBML_UINT, 0, offsetof(MatroskaTrackPlane,type) },
{ 0 }
};
static EbmlSyntax matroska_track_combine_planes[] = {
{ MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
{ 0 }
};
static EbmlSyntax matroska_track_operation[] = {
{ MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
{ 0 }
};
static EbmlSyntax matroska_track[] = {
{ MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
{ MATROSKA_ID_TRACKNAME, EBML_UTF8, 0, offsetof(MatroskaTrack, name) },
{ MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
{ MATROSKA_ID_TRACKTYPE, EBML_UINT, 0, offsetof(MatroskaTrack, type) },
{ MATROSKA_ID_CODECID, EBML_STR, 0, offsetof(MatroskaTrack, codec_id) },
{ MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
{ MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
{ MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
{ MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
{ MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
{ MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
{ MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
{ MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
{ MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
{ MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
{ MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
{ MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
{ MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
{ MATROSKA_ID_TRACKFLAGENABLED, EBML_NONE },
{ MATROSKA_ID_TRACKFLAGLACING, EBML_NONE },
{ MATROSKA_ID_CODECNAME, EBML_NONE },
{ MATROSKA_ID_CODECDECODEALL, EBML_NONE },
{ MATROSKA_ID_CODECINFOURL, EBML_NONE },
{ MATROSKA_ID_CODECDOWNLOADURL, EBML_NONE },
{ MATROSKA_ID_TRACKMINCACHE, EBML_NONE },
{ MATROSKA_ID_TRACKMAXCACHE, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_tracks[] = {
{ MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
{ 0 }
};
static EbmlSyntax matroska_attachment[] = {
{ MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) },
{ MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
{ MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
{ MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
{ MATROSKA_ID_FILEDESC, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_attachments[] = {
{ MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
{ 0 }
};
static EbmlSyntax matroska_chapter_display[] = {
{ MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
{ MATROSKA_ID_CHAPLANG, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_chapter_entry[] = {
{ MATROSKA_ID_CHAPTERTIMESTART, EBML_UINT, 0, offsetof(MatroskaChapter, start), { .u = AV_NOPTS_VALUE } },
{ MATROSKA_ID_CHAPTERTIMEEND, EBML_UINT, 0, offsetof(MatroskaChapter, end), { .u = AV_NOPTS_VALUE } },
{ MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) },
{ MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
{ MATROSKA_ID_CHAPTERFLAGHIDDEN, EBML_NONE },
{ MATROSKA_ID_CHAPTERFLAGENABLED, EBML_NONE },
{ MATROSKA_ID_CHAPTERPHYSEQUIV, EBML_NONE },
{ MATROSKA_ID_CHAPTERATOM, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_chapter[] = {
{ MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
{ MATROSKA_ID_EDITIONUID, EBML_NONE },
{ MATROSKA_ID_EDITIONFLAGHIDDEN, EBML_NONE },
{ MATROSKA_ID_EDITIONFLAGDEFAULT, EBML_NONE },
{ MATROSKA_ID_EDITIONFLAGORDERED, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_chapters[] = {
{ MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
{ 0 }
};
static EbmlSyntax matroska_index_pos[] = {
{ MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
{ MATROSKA_ID_CUECLUSTERPOSITION, EBML_UINT, 0, offsetof(MatroskaIndexPos, pos) },
{ MATROSKA_ID_CUERELATIVEPOSITION,EBML_NONE },
{ MATROSKA_ID_CUEDURATION, EBML_NONE },
{ MATROSKA_ID_CUEBLOCKNUMBER, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_index_entry[] = {
{ MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
{ MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
{ 0 }
};
static EbmlSyntax matroska_index[] = {
{ MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
{ 0 }
};
static EbmlSyntax matroska_simpletag[] = {
{ MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
{ MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
{ MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
{ MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
{ MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
{ MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
{ 0 }
};
static EbmlSyntax matroska_tagtargets[] = {
{ MATROSKA_ID_TAGTARGETS_TYPE, EBML_STR, 0, offsetof(MatroskaTagTarget, type) },
{ MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
{ MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
{ MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
{ MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
{ 0 }
};
static EbmlSyntax matroska_tag[] = {
{ MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
{ MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
{ 0 }
};
static EbmlSyntax matroska_tags[] = {
{ MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
{ 0 }
};
static EbmlSyntax matroska_seekhead_entry[] = {
{ MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
{ MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
{ 0 }
};
static EbmlSyntax matroska_seekhead[] = {
{ MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
{ 0 }
};
static EbmlSyntax matroska_segment[] = {
{ MATROSKA_ID_INFO, EBML_NEST, 0, 0, { .n = matroska_info } },
{ MATROSKA_ID_TRACKS, EBML_NEST, 0, 0, { .n = matroska_tracks } },
{ MATROSKA_ID_ATTACHMENTS, EBML_NEST, 0, 0, { .n = matroska_attachments } },
{ MATROSKA_ID_CHAPTERS, EBML_NEST, 0, 0, { .n = matroska_chapters } },
{ MATROSKA_ID_CUES, EBML_NEST, 0, 0, { .n = matroska_index } },
{ MATROSKA_ID_TAGS, EBML_NEST, 0, 0, { .n = matroska_tags } },
{ MATROSKA_ID_SEEKHEAD, EBML_NEST, 0, 0, { .n = matroska_seekhead } },
{ MATROSKA_ID_CLUSTER, EBML_STOP },
{ 0 }
};
static EbmlSyntax matroska_segments[] = {
{ MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
{ 0 }
};
static EbmlSyntax matroska_blockmore[] = {
{ MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
{ MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
{ 0 }
};
static EbmlSyntax matroska_blockadditions[] = {
{ MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
{ 0 }
};
static EbmlSyntax matroska_blockgroup[] = {
{ MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
{ MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
{ MATROSKA_ID_BLOCKDURATION, EBML_UINT, 0, offsetof(MatroskaBlock, duration) },
{ MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
{ MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference) },
{ MATROSKA_ID_CODECSTATE, EBML_NONE },
{ 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
{ 0 }
};
static EbmlSyntax matroska_cluster[] = {
{ MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
{ MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
{ MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_clusters[] = {
{ MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
{ MATROSKA_ID_INFO, EBML_NONE },
{ MATROSKA_ID_CUES, EBML_NONE },
{ MATROSKA_ID_TAGS, EBML_NONE },
{ MATROSKA_ID_SEEKHEAD, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_cluster_incremental_parsing[] = {
{ MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
{ MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
{ MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
{ MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
{ MATROSKA_ID_INFO, EBML_NONE },
{ MATROSKA_ID_CUES, EBML_NONE },
{ MATROSKA_ID_TAGS, EBML_NONE },
{ MATROSKA_ID_SEEKHEAD, EBML_NONE },
{ MATROSKA_ID_CLUSTER, EBML_STOP },
{ 0 }
};
static EbmlSyntax matroska_cluster_incremental[] = {
{ MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
{ MATROSKA_ID_BLOCKGROUP, EBML_STOP },
{ MATROSKA_ID_SIMPLEBLOCK, EBML_STOP },
{ MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
{ MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
{ 0 }
};
static EbmlSyntax matroska_clusters_incremental[] = {
{ MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
{ MATROSKA_ID_INFO, EBML_NONE },
{ MATROSKA_ID_CUES, EBML_NONE },
{ MATROSKA_ID_TAGS, EBML_NONE },
{ MATROSKA_ID_SEEKHEAD, EBML_NONE },
{ 0 }
};
static const char *const matroska_doctypes[] = { "matroska", "webm" };
static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
{
AVIOContext *pb = matroska->ctx->pb;
uint32_t id;
matroska->current_id = 0;
matroska->num_levels = 0;
/* seek to next position to resync from */
if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
goto eof;
id = avio_rb32(pb);
// try to find a toplevel element
while (!avio_feof(pb)) {
if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
id == MATROSKA_ID_SEEKHEAD || id == MATROSKA_ID_ATTACHMENTS ||
id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
matroska->current_id = id;
return 0;
}
id = (id << 8) | avio_r8(pb);
}
eof:
matroska->done = 1;
return AVERROR_EOF;
}
/*
* Return: Whether we reached the end of a level in the hierarchy or not.
*/
static int ebml_level_end(MatroskaDemuxContext *matroska)
{
AVIOContext *pb = matroska->ctx->pb;
int64_t pos = avio_tell(pb);
if (matroska->num_levels > 0) {
MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
if (pos - level->start >= level->length || matroska->current_id) {
matroska->num_levels--;
return 1;
}
}
return 0;
}
/*
* Read: an "EBML number", which is defined as a variable-length
* array of bytes. The first byte indicates the length by giving a
* number of 0-bits followed by a one. The position of the first
* "one" bit inside the first byte indicates the length of this
* number.
* Returns: number of bytes read, < 0 on error
*/
static int ebml_read_num(MatroskaDemuxContext *matroska, AVIOContext *pb,
int max_size, uint64_t *number)
{
int read = 1, n = 1;
uint64_t total = 0;
/* The first byte tells us the length in bytes - avio_r8() can normally
* return 0, but since that's not a valid first ebmlID byte, we can
* use it safely here to catch EOS. */
if (!(total = avio_r8(pb))) {
/* we might encounter EOS here */
if (!avio_feof(pb)) {
int64_t pos = avio_tell(pb);
av_log(matroska->ctx, AV_LOG_ERROR,
"Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
pos, pos);
return pb->error ? pb->error : AVERROR(EIO);
}
return AVERROR_EOF;
}
/* get the length of the EBML number */
read = 8 - ff_log2_tab[total];
if (read > max_size) {
int64_t pos = avio_tell(pb) - 1;
av_log(matroska->ctx, AV_LOG_ERROR,
"Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
(uint8_t) total, pos, pos);
return AVERROR_INVALIDDATA;
}
/* read out length */
total ^= 1 << ff_log2_tab[total];
while (n++ < read)
total = (total << 8) | avio_r8(pb);
*number = total;
return read;
}
/**
* Read a EBML length value.
* This needs special handling for the "unknown length" case which has multiple
* encodings.
*/
static int ebml_read_length(MatroskaDemuxContext *matroska, AVIOContext *pb,
uint64_t *number)
{
int res = ebml_read_num(matroska, pb, 8, number);
if (res > 0 && *number + 1 == 1ULL << (7 * res))
*number = 0xffffffffffffffULL;
return res;
}
/*
* Read the next element as an unsigned int.
* 0 is success, < 0 is failure.
*/
static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
{
int n = 0;
if (size > 8)
return AVERROR_INVALIDDATA;
/* big-endian ordering; build up number */
*num = 0;
while (n++ < size)
*num = (*num << 8) | avio_r8(pb);
return 0;
}
/*
* Read the next element as a signed int.
* 0 is success, < 0 is failure.
*/
static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
{
int n = 1;
if (size > 8)
return AVERROR_INVALIDDATA;
if (size == 0) {
*num = 0;
} else {
*num = sign_extend(avio_r8(pb), 8);
/* big-endian ordering; build up number */
while (n++ < size)
*num = (*num << 8) | avio_r8(pb);
}
return 0;
}
/*
* Read the next element as a float.
* 0 is success, < 0 is failure.
*/
static int ebml_read_float(AVIOContext *pb, int size, double *num)
{
if (size == 0)
*num = 0;
else if (size == 4)
*num = av_int2float(avio_rb32(pb));
else if (size == 8)
*num = av_int2double(avio_rb64(pb));
else
return AVERROR_INVALIDDATA;
return 0;
}
/*
* Read the next element as an ASCII string.
* 0 is success, < 0 is failure.
*/
static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
{
char *res;
/* EBML strings are usually not 0-terminated, so we allocate one
* byte more, read the string and NULL-terminate it ourselves. */
if (!(res = av_malloc(size + 1)))
return AVERROR(ENOMEM);
if (avio_read(pb, (uint8_t *) res, size) != size) {
av_free(res);
return AVERROR(EIO);
}
(res)[size] = '\0';
av_free(*str);
*str = res;
return 0;
}
/*
* Read the next element as binary data.
* 0 is success, < 0 is failure.
*/
static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
{
av_fast_padded_malloc(&bin->data, &bin->size, length);
if (!bin->data)
return AVERROR(ENOMEM);
bin->size = length;
bin->pos = avio_tell(pb);
if (avio_read(pb, bin->data, length) != length) {
av_freep(&bin->data);
bin->size = 0;
return AVERROR(EIO);
}
return 0;
}
/*
* Read the next element, but only the header. The contents
* are supposed to be sub-elements which can be read separately.
* 0 is success, < 0 is failure.
*/
static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
{
AVIOContext *pb = matroska->ctx->pb;
MatroskaLevel *level;
if (matroska->num_levels >= EBML_MAX_DEPTH) {
av_log(matroska->ctx, AV_LOG_ERROR,
"File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
return AVERROR(ENOSYS);
}
level = &matroska->levels[matroska->num_levels++];
level->start = avio_tell(pb);
level->length = length;
return 0;
}
/*
* Read signed/unsigned "EBML" numbers.
* Return: number of bytes processed, < 0 on error
*/
static int matroska_ebmlnum_uint(MatroskaDemuxContext *matroska,
uint8_t *data, uint32_t size, uint64_t *num)
{
AVIOContext pb;
ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
}
/*
* Same as above, but signed.
*/
static int matroska_ebmlnum_sint(MatroskaDemuxContext *matroska,
uint8_t *data, uint32_t size, int64_t *num)
{
uint64_t unum;
int res;
/* read as unsigned number first */
if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
return res;
/* make signed (weird way) */
*num = unum - ((1LL << (7 * res - 1)) - 1);
return res;
}
static int ebml_parse_elem(MatroskaDemuxContext *matroska,
EbmlSyntax *syntax, void *data);
static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
uint32_t id, void *data)
{
int i;
for (i = 0; syntax[i].id; i++)
if (id == syntax[i].id)
break;
if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
matroska->num_levels > 0 &&
matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
return 0; // we reached the end of an unknown size cluster
if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
av_log(matroska->ctx, AV_LOG_INFO, "Unknown entry 0x%"PRIX32"\n", id);
if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
return ebml_parse_elem(matroska, &syntax[i], data);
}
static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
void *data)
{
if (!matroska->current_id) {
uint64_t id;
int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
if (res < 0)
return res;
matroska->current_id = id | 1 << 7 * res;
}
return ebml_parse_id(matroska, syntax, matroska->current_id, data);
}
static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
void *data)
{
int i, res = 0;
for (i = 0; syntax[i].id; i++)
switch (syntax[i].type) {
case EBML_UINT:
*(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
break;
case EBML_FLOAT:
*(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
break;
case EBML_STR:
case EBML_UTF8:
// the default may be NULL
if (syntax[i].def.s) {
uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
*dst = av_strdup(syntax[i].def.s);
if (!*dst)
return AVERROR(ENOMEM);
}
break;
}
while (!res && !ebml_level_end(matroska))
res = ebml_parse(matroska, syntax, data);
return res;
}
static int ebml_parse_elem(MatroskaDemuxContext *matroska,
EbmlSyntax *syntax, void *data)
{
static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
[EBML_UINT] = 8,
[EBML_FLOAT] = 8,
// max. 16 MB for strings
[EBML_STR] = 0x1000000,
[EBML_UTF8] = 0x1000000,
// max. 256 MB for binary data
[EBML_BIN] = 0x10000000,
// no limits for anything else
};
AVIOContext *pb = matroska->ctx->pb;
uint32_t id = syntax->id;
uint64_t length;
int res;
void *newelem;
data = (char *) data + syntax->data_offset;
if (syntax->list_elem_size) {
EbmlList *list = data;
newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
if (!newelem)
return AVERROR(ENOMEM);
list->elem = newelem;
data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
memset(data, 0, syntax->list_elem_size);
list->nb_elem++;
}
if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
matroska->current_id = 0;
if ((res = ebml_read_length(matroska, pb, &length)) < 0)
return res;
if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
length, max_lengths[syntax->type], syntax->type);
return AVERROR_INVALIDDATA;
}
}
switch (syntax->type) {
case EBML_UINT:
res = ebml_read_uint(pb, length, data);
break;
case EBML_SINT:
res = ebml_read_sint(pb, length, data);
break;
case EBML_FLOAT:
res = ebml_read_float(pb, length, data);
break;
case EBML_STR:
case EBML_UTF8:
res = ebml_read_ascii(pb, length, data);
break;
case EBML_BIN:
res = ebml_read_binary(pb, length, data);
break;
case EBML_NEST:
if ((res = ebml_read_master(matroska, length)) < 0)
return res;
if (id == MATROSKA_ID_SEGMENT)
matroska->segment_start = avio_tell(matroska->ctx->pb);
return ebml_parse_nest(matroska, syntax->def.n, data);
case EBML_PASS:
return ebml_parse_id(matroska, syntax->def.n, id, data);
case EBML_STOP:
return 1;
default:
if (ffio_limit(pb, length) != length)
return AVERROR(EIO);
return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
}
if (res == AVERROR_INVALIDDATA)
av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
else if (res == AVERROR(EIO))
av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
return res;
}
static void ebml_free(EbmlSyntax *syntax, void *data)
{
int i, j;
for (i = 0; syntax[i].id; i++) {
void *data_off = (char *) data + syntax[i].data_offset;
switch (syntax[i].type) {
case EBML_STR:
case EBML_UTF8:
av_freep(data_off);
break;
case EBML_BIN:
av_freep(&((EbmlBin *) data_off)->data);
break;
case EBML_NEST:
if (syntax[i].list_elem_size) {
EbmlList *list = data_off;
char *ptr = list->elem;
for (j = 0; j < list->nb_elem;
j++, ptr += syntax[i].list_elem_size)
ebml_free(syntax[i].def.n, ptr);
av_free(list->elem);
} else
ebml_free(syntax[i].def.n, data_off);
default:
break;
}
}
}
/*
* Autodetecting...
*/
static int matroska_probe(AVProbeData *p)
{
uint64_t total = 0;
int len_mask = 0x80, size = 1, n = 1, i;
/* EBML header? */
if (AV_RB32(p->buf) != EBML_ID_HEADER)
return 0;
/* length of header */
total = p->buf[4];
while (size <= 8 && !(total & len_mask)) {
size++;
len_mask >>= 1;
}
if (size > 8)
return 0;
total &= (len_mask - 1);
while (n < size)
total = (total << 8) | p->buf[4 + n++];
/* Does the probe data contain the whole header? */
if (p->buf_size < 4 + size + total)
return 0;
/* The header should contain a known document type. For now,
* we don't parse the whole header but simply check for the
* availability of that array of characters inside the header.
* Not fully fool-proof, but good enough. */
for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
int probelen = strlen(matroska_doctypes[i]);
if (total < probelen)
continue;
for (n = 4 + size; n <= 4 + size + total - probelen; n++)
if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
return AVPROBE_SCORE_MAX;
}
// probably valid EBML header but no recognized doctype
return AVPROBE_SCORE_EXTENSION;
}
static MatroskaTrack *matroska_find_track_by_num(MatroskaDemuxContext *matroska,
int num)
{
MatroskaTrack *tracks = matroska->tracks.elem;
int i;
for (i = 0; i < matroska->tracks.nb_elem; i++)
if (tracks[i].num == num)
return &tracks[i];
av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
return NULL;
}
static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
MatroskaTrack *track)
{
MatroskaTrackEncoding *encodings = track->encodings.elem;
uint8_t *data = *buf;
int isize = *buf_size;
uint8_t *pkt_data = NULL;
uint8_t av_unused *newpktdata;
int pkt_size = isize;
int result = 0;
int olen;
if (pkt_size >= 10000000U)
return AVERROR_INVALIDDATA;
switch (encodings[0].compression.algo) {
case MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP:
{
int header_size = encodings[0].compression.settings.size;
uint8_t *header = encodings[0].compression.settings.data;
if (header_size && !header) {
av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
return -1;
}
if (!header_size)
return 0;
pkt_size = isize + header_size;
pkt_data = av_malloc(pkt_size);
if (!pkt_data)
return AVERROR(ENOMEM);
memcpy(pkt_data, header, header_size);
memcpy(pkt_data + header_size, data, isize);
break;
}
#if CONFIG_LZO
case MATROSKA_TRACK_ENCODING_COMP_LZO:
do {
olen = pkt_size *= 3;
newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
if (!newpktdata) {
result = AVERROR(ENOMEM);
goto failed;
}
pkt_data = newpktdata;
result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
} while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
if (result) {
result = AVERROR_INVALIDDATA;
goto failed;
}
pkt_size -= olen;
break;
#endif
#if CONFIG_ZLIB
case MATROSKA_TRACK_ENCODING_COMP_ZLIB:
{
z_stream zstream = { 0 };
if (inflateInit(&zstream) != Z_OK)
return -1;
zstream.next_in = data;
zstream.avail_in = isize;
do {
pkt_size *= 3;
newpktdata = av_realloc(pkt_data, pkt_size);
if (!newpktdata) {
inflateEnd(&zstream);
goto failed;
}
pkt_data = newpktdata;
zstream.avail_out = pkt_size - zstream.total_out;
zstream.next_out = pkt_data + zstream.total_out;
if (pkt_data) {
result = inflate(&zstream, Z_NO_FLUSH);
} else
result = Z_MEM_ERROR;
} while (result == Z_OK && pkt_size < 10000000);
pkt_size = zstream.total_out;
inflateEnd(&zstream);
if (result != Z_STREAM_END) {
if (result == Z_MEM_ERROR)
result = AVERROR(ENOMEM);
else
result = AVERROR_INVALIDDATA;
goto failed;
}
break;
}
#endif
#if CONFIG_BZLIB
case MATROSKA_TRACK_ENCODING_COMP_BZLIB:
{
bz_stream bzstream = { 0 };
if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
return -1;
bzstream.next_in = data;
bzstream.avail_in = isize;
do {
pkt_size *= 3;
newpktdata = av_realloc(pkt_data, pkt_size);
if (!newpktdata) {
BZ2_bzDecompressEnd(&bzstream);
goto failed;
}
pkt_data = newpktdata;
bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
bzstream.next_out = pkt_data + bzstream.total_out_lo32;
if (pkt_data) {
result = BZ2_bzDecompress(&bzstream);
} else
result = BZ_MEM_ERROR;
} while (result == BZ_OK && pkt_size < 10000000);
pkt_size = bzstream.total_out_lo32;
BZ2_bzDecompressEnd(&bzstream);
if (result != BZ_STREAM_END) {
if (result == BZ_MEM_ERROR)
result = AVERROR(ENOMEM);
else
result = AVERROR_INVALIDDATA;
goto failed;
}
break;
}
#endif
default:
return AVERROR_INVALIDDATA;
}
*buf = pkt_data;
*buf_size = pkt_size;
return 0;
failed:
av_free(pkt_data);
return result;
}
static void matroska_convert_tag(AVFormatContext *s, EbmlList *list,
AVDictionary **metadata, char *prefix)
{
MatroskaTag *tags = list->elem;
char key[1024];
int i;
for (i = 0; i < list->nb_elem; i++) {
const char *lang = tags[i].lang &&
strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
if (!tags[i].name) {
av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
continue;
}
if (prefix)
snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
else
av_strlcpy(key, tags[i].name, sizeof(key));
if (tags[i].def || !lang) {
av_dict_set(metadata, key, tags[i].string, 0);
if (tags[i].sub.nb_elem)
matroska_convert_tag(s, &tags[i].sub, metadata, key);
}
if (lang) {
av_strlcat(key, "-", sizeof(key));
av_strlcat(key, lang, sizeof(key));
av_dict_set(metadata, key, tags[i].string, 0);
if (tags[i].sub.nb_elem)
matroska_convert_tag(s, &tags[i].sub, metadata, key);
}
}
ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
}
static void matroska_convert_tags(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTags *tags = matroska->tags.elem;
int i, j;
for (i = 0; i < matroska->tags.nb_elem; i++) {
if (tags[i].target.attachuid) {
MatroskaAttachment *attachment = matroska->attachments.elem;
for (j = 0; j < matroska->attachments.nb_elem; j++)
if (attachment[j].uid == tags[i].target.attachuid &&
attachment[j].stream)
matroska_convert_tag(s, &tags[i].tag,
&attachment[j].stream->metadata, NULL);
} else if (tags[i].target.chapteruid) {
MatroskaChapter *chapter = matroska->chapters.elem;
for (j = 0; j < matroska->chapters.nb_elem; j++)
if (chapter[j].uid == tags[i].target.chapteruid &&
chapter[j].chapter)
matroska_convert_tag(s, &tags[i].tag,
&chapter[j].chapter->metadata, NULL);
} else if (tags[i].target.trackuid) {
MatroskaTrack *track = matroska->tracks.elem;
for (j = 0; j < matroska->tracks.nb_elem; j++)
if (track[j].uid == tags[i].target.trackuid && track[j].stream)
matroska_convert_tag(s, &tags[i].tag,
&track[j].stream->metadata, NULL);
} else {
matroska_convert_tag(s, &tags[i].tag, &s->metadata,
tags[i].target.type);
}
}
}
static int matroska_parse_seekhead_entry(MatroskaDemuxContext *matroska,
int idx)
{
EbmlList *seekhead_list = &matroska->seekhead;
uint32_t level_up = matroska->level_up;
uint32_t saved_id = matroska->current_id;
MatroskaSeekhead *seekhead = seekhead_list->elem;
int64_t before_pos = avio_tell(matroska->ctx->pb);
MatroskaLevel level;
int64_t offset;
int ret = 0;
if (idx >= seekhead_list->nb_elem ||
seekhead[idx].id == MATROSKA_ID_SEEKHEAD ||
seekhead[idx].id == MATROSKA_ID_CLUSTER)
return 0;
/* seek */
offset = seekhead[idx].pos + matroska->segment_start;
if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
/* We don't want to lose our seekhead level, so we add
* a dummy. This is a crude hack. */
if (matroska->num_levels == EBML_MAX_DEPTH) {
av_log(matroska->ctx, AV_LOG_INFO,
"Max EBML element depth (%d) reached, "
"cannot parse further.\n", EBML_MAX_DEPTH);
ret = AVERROR_INVALIDDATA;
} else {
level.start = 0;
level.length = (uint64_t) -1;
matroska->levels[matroska->num_levels] = level;
matroska->num_levels++;
matroska->current_id = 0;
ret = ebml_parse(matroska, matroska_segment, matroska);
/* remove dummy level */
while (matroska->num_levels) {
uint64_t length = matroska->levels[--matroska->num_levels].length;
if (length == (uint64_t) -1)
break;
}
}
}
/* seek back */
avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
matroska->level_up = level_up;
matroska->current_id = saved_id;
return ret;
}
static void matroska_execute_seekhead(MatroskaDemuxContext *matroska)
{
EbmlList *seekhead_list = &matroska->seekhead;
int64_t before_pos = avio_tell(matroska->ctx->pb);
int i;
// we should not do any seeking in the streaming case
if (!matroska->ctx->pb->seekable ||
(matroska->ctx->flags & AVFMT_FLAG_IGNIDX))
return;
for (i = 0; i < seekhead_list->nb_elem; i++) {
MatroskaSeekhead *seekhead = seekhead_list->elem;
if (seekhead[i].pos <= before_pos)
continue;
// defer cues parsing until we actually need cue data.
if (seekhead[i].id == MATROSKA_ID_CUES) {
matroska->cues_parsing_deferred = 1;
continue;
}
if (matroska_parse_seekhead_entry(matroska, i) < 0) {
// mark index as broken
matroska->cues_parsing_deferred = -1;
break;
}
}
}
static void matroska_add_index_entries(MatroskaDemuxContext *matroska)
{
EbmlList *index_list;
MatroskaIndex *index;
int index_scale = 1;
int i, j;
index_list = &matroska->index;
index = index_list->elem;
if (index_list->nb_elem &&
index[0].time > 1E14 / matroska->time_scale) {
av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
index_scale = matroska->time_scale;
}
for (i = 0; i < index_list->nb_elem; i++) {
EbmlList *pos_list = &index[i].pos;
MatroskaIndexPos *pos = pos_list->elem;
for (j = 0; j < pos_list->nb_elem; j++) {
MatroskaTrack *track = matroska_find_track_by_num(matroska,
pos[j].track);
if (track && track->stream)
av_add_index_entry(track->stream,
pos[j].pos + matroska->segment_start,
index[i].time / index_scale, 0, 0,
AVINDEX_KEYFRAME);
}
}
}
static void matroska_parse_cues(MatroskaDemuxContext *matroska) {
EbmlList *seekhead_list = &matroska->seekhead;
MatroskaSeekhead *seekhead = seekhead_list->elem;
int i;
for (i = 0; i < seekhead_list->nb_elem; i++)
if (seekhead[i].id == MATROSKA_ID_CUES)
break;
av_assert1(i <= seekhead_list->nb_elem);
if (matroska_parse_seekhead_entry(matroska, i) < 0)
matroska->cues_parsing_deferred = -1;
matroska_add_index_entries(matroska);
}
static int matroska_aac_profile(char *codec_id)
{
static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
int profile;
for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
if (strstr(codec_id, aac_profiles[profile]))
break;
return profile + 1;
}
static int matroska_aac_sri(int samplerate)
{
int sri;
for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
break;
return sri;
}
static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
{
char buffer[32];
/* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
time_t creation_time = date_utc / 1000000000 + 978307200;
struct tm *ptm = gmtime(&creation_time);
if (!ptm) return;
strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm);
av_dict_set(metadata, "creation_time", buffer, 0);
}
static int matroska_parse_flac(AVFormatContext *s,
MatroskaTrack *track,
int *offset)
{
AVStream *st = track->stream;
uint8_t *p = track->codec_priv.data;
int size = track->codec_priv.size;
if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
track->codec_priv.size = 0;
return 0;
}
*offset = 8;
track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
p += track->codec_priv.size;
size -= track->codec_priv.size;
/* parse the remaining metadata blocks if present */
while (size >= 4) {
int block_last, block_type, block_size;
flac_parse_block_header(p, &block_last, &block_type, &block_size);
p += 4;
size -= 4;
if (block_size > size)
return 0;
/* check for the channel mask */
if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
AVDictionary *dict = NULL;
AVDictionaryEntry *chmask;
ff_vorbis_comment(s, &dict, p, block_size, 0);
chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
if (chmask) {
uint64_t mask = strtol(chmask->value, NULL, 0);
if (!mask || mask & ~0x3ffffULL) {
av_log(s, AV_LOG_WARNING,
"Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
} else
st->codec->channel_layout = mask;
}
av_dict_free(&dict);
}
p += block_size;
size -= block_size;
}
return 0;
}
static int matroska_parse_tracks(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTrack *tracks = matroska->tracks.elem;
AVStream *st;
int i, j, ret;
int k;
for (i = 0; i < matroska->tracks.nb_elem; i++) {
MatroskaTrack *track = &tracks[i];
enum AVCodecID codec_id = AV_CODEC_ID_NONE;
EbmlList *encodings_list = &track->encodings;
MatroskaTrackEncoding *encodings = encodings_list->elem;
uint8_t *extradata = NULL;
int extradata_size = 0;
int extradata_offset = 0;
uint32_t fourcc = 0;
AVIOContext b;
char* key_id_base64 = NULL;
int bit_depth = -1;
/* Apply some sanity checks. */
if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
track->type != MATROSKA_TRACK_TYPE_AUDIO &&
track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
track->type != MATROSKA_TRACK_TYPE_METADATA) {
av_log(matroska->ctx, AV_LOG_INFO,
"Unknown or unsupported track type %"PRIu64"\n",
track->type);
continue;
}
if (!track->codec_id)
continue;
if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
if (!track->default_duration && track->video.frame_rate > 0)
track->default_duration = 1000000000 / track->video.frame_rate;
if (track->video.display_width == -1)
track->video.display_width = track->video.pixel_width;
if (track->video.display_height == -1)
track->video.display_height = track->video.pixel_height;
if (track->video.color_space.size == 4)
fourcc = AV_RL32(track->video.color_space.data);
} else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
if (!track->audio.out_samplerate)
track->audio.out_samplerate = track->audio.samplerate;
}
if (encodings_list->nb_elem > 1) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Multiple combined encodings not supported");
} else if (encodings_list->nb_elem == 1) {
if (encodings[0].type) {
if (encodings[0].encryption.key_id.size > 0) {
/* Save the encryption key id to be stored later as a
metadata tag. */
const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
key_id_base64 = av_malloc(b64_size);
if (key_id_base64 == NULL)
return AVERROR(ENOMEM);
av_base64_encode(key_id_base64, b64_size,
encodings[0].encryption.key_id.data,
encodings[0].encryption.key_id.size);
} else {
encodings[0].scope = 0;
av_log(matroska->ctx, AV_LOG_ERROR,
"Unsupported encoding type");
}
} else if (
#if CONFIG_ZLIB
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
#endif
#if CONFIG_BZLIB
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_BZLIB &&
#endif
#if CONFIG_LZO
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_LZO &&
#endif
encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP) {
encodings[0].scope = 0;
av_log(matroska->ctx, AV_LOG_ERROR,
"Unsupported encoding type");
} else if (track->codec_priv.size && encodings[0].scope & 2) {
uint8_t *codec_priv = track->codec_priv.data;
int ret = matroska_decode_buffer(&track->codec_priv.data,
&track->codec_priv.size,
track);
if (ret < 0) {
track->codec_priv.data = NULL;
track->codec_priv.size = 0;
av_log(matroska->ctx, AV_LOG_ERROR,
"Failed to decode codec private data\n");
}
if (codec_priv != track->codec_priv.data)
av_free(codec_priv);
}
}
for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
strlen(ff_mkv_codec_tags[j].str))) {
codec_id = ff_mkv_codec_tags[j].id;
break;
}
}
st = track->stream = avformat_new_stream(s, NULL);
if (!st) {
av_free(key_id_base64);
return AVERROR(ENOMEM);
}
if (key_id_base64) {
/* export encryption key id as base64 metadata tag */
av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
av_freep(&key_id_base64);
}
if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
track->codec_priv.size >= 40 &&
track->codec_priv.data) {
track->ms_compat = 1;
bit_depth = AV_RL16(track->codec_priv.data + 14);
fourcc = AV_RL32(track->codec_priv.data + 16);
codec_id = ff_codec_get_id(ff_codec_bmp_tags,
fourcc);
if (!codec_id)
codec_id = ff_codec_get_id(ff_codec_movvideo_tags,
fourcc);
extradata_offset = 40;
} else if (!strcmp(track->codec_id, "A_MS/ACM") &&
track->codec_priv.size >= 14 &&
track->codec_priv.data) {
int ret;
ffio_init_context(&b, track->codec_priv.data,
track->codec_priv.size,
0, NULL, NULL, NULL, NULL);
ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size);
if (ret < 0)
return ret;
codec_id = st->codec->codec_id;
extradata_offset = FFMIN(track->codec_priv.size, 18);
} else if (!strcmp(track->codec_id, "A_QUICKTIME")
&& (track->codec_priv.size >= 86)
&& (track->codec_priv.data)) {
fourcc = AV_RL32(track->codec_priv.data + 4);
codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
if (ff_codec_get_id(ff_codec_movaudio_tags, AV_RL32(track->codec_priv.data))) {
fourcc = AV_RL32(track->codec_priv.data);
codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
}
} else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
(track->codec_priv.size >= 21) &&
(track->codec_priv.data)) {
fourcc = AV_RL32(track->codec_priv.data + 4);
codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
if (ff_codec_get_id(ff_codec_movvideo_tags, AV_RL32(track->codec_priv.data))) {
fourcc = AV_RL32(track->codec_priv.data);
codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
}
if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI "))
codec_id = AV_CODEC_ID_SVQ3;
} else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
switch (track->audio.bitdepth) {
case 8:
codec_id = AV_CODEC_ID_PCM_U8;
break;
case 24:
codec_id = AV_CODEC_ID_PCM_S24BE;
break;
case 32:
codec_id = AV_CODEC_ID_PCM_S32BE;
break;
}
} else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
switch (track->audio.bitdepth) {
case 8:
codec_id = AV_CODEC_ID_PCM_U8;
break;
case 24:
codec_id = AV_CODEC_ID_PCM_S24LE;
break;
case 32:
codec_id = AV_CODEC_ID_PCM_S32LE;
break;
}
} else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
track->audio.bitdepth == 64) {
codec_id = AV_CODEC_ID_PCM_F64LE;
} else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
int profile = matroska_aac_profile(track->codec_id);
int sri = matroska_aac_sri(track->audio.samplerate);
extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
if (!extradata)
return AVERROR(ENOMEM);
extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
if (strstr(track->codec_id, "SBR")) {
sri = matroska_aac_sri(track->audio.out_samplerate);
extradata[2] = 0x56;
extradata[3] = 0xE5;
extradata[4] = 0x80 | (sri << 3);
extradata_size = 5;
} else
extradata_size = 2;
} else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - FF_INPUT_BUFFER_PADDING_SIZE) {
/* Only ALAC's magic cookie is stored in Matroska's track headers.
* Create the "atom size", "tag", and "tag version" fields the
* decoder expects manually. */
extradata_size = 12 + track->codec_priv.size;
extradata = av_mallocz(extradata_size +
FF_INPUT_BUFFER_PADDING_SIZE);
if (!extradata)
return AVERROR(ENOMEM);
AV_WB32(extradata, extradata_size);
memcpy(&extradata[4], "alac", 4);
AV_WB32(&extradata[8], 0);
memcpy(&extradata[12], track->codec_priv.data,
track->codec_priv.size);
} else if (codec_id == AV_CODEC_ID_TTA) {
extradata_size = 30;
extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!extradata)
return AVERROR(ENOMEM);
ffio_init_context(&b, extradata, extradata_size, 1,
NULL, NULL, NULL, NULL);
avio_write(&b, "TTA1", 4);
avio_wl16(&b, 1);
avio_wl16(&b, track->audio.channels);
avio_wl16(&b, track->audio.bitdepth);
if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
return AVERROR_INVALIDDATA;
avio_wl32(&b, track->audio.out_samplerate);
avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
track->audio.out_samplerate,
AV_TIME_BASE * 1000));
} else if (codec_id == AV_CODEC_ID_RV10 ||
codec_id == AV_CODEC_ID_RV20 ||
codec_id == AV_CODEC_ID_RV30 ||
codec_id == AV_CODEC_ID_RV40) {
extradata_offset = 26;
} else if (codec_id == AV_CODEC_ID_RA_144) {
track->audio.out_samplerate = 8000;
track->audio.channels = 1;
} else if ((codec_id == AV_CODEC_ID_RA_288 ||
codec_id == AV_CODEC_ID_COOK ||
codec_id == AV_CODEC_ID_ATRAC3 ||
codec_id == AV_CODEC_ID_SIPR)
&& track->codec_priv.data) {
int flavor;
ffio_init_context(&b, track->codec_priv.data,
track->codec_priv.size,
0, NULL, NULL, NULL, NULL);
avio_skip(&b, 22);
flavor = avio_rb16(&b);
track->audio.coded_framesize = avio_rb32(&b);
avio_skip(&b, 12);
track->audio.sub_packet_h = avio_rb16(&b);
track->audio.frame_size = avio_rb16(&b);
track->audio.sub_packet_size = avio_rb16(&b);
if (flavor < 0 ||
track->audio.coded_framesize <= 0 ||
track->audio.sub_packet_h <= 0 ||
track->audio.frame_size <= 0 ||
track->audio.sub_packet_size <= 0)
return AVERROR_INVALIDDATA;
track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
track->audio.frame_size);
if (!track->audio.buf)
return AVERROR(ENOMEM);
if (codec_id == AV_CODEC_ID_RA_288) {
st->codec->block_align = track->audio.coded_framesize;
track->codec_priv.size = 0;
} else {
if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
st->codec->bit_rate = sipr_bit_rate[flavor];
}
st->codec->block_align = track->audio.sub_packet_size;
extradata_offset = 78;
}
} else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
ret = matroska_parse_flac(s, track, &extradata_offset);
if (ret < 0)
return ret;
} else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
fourcc = AV_RL32(track->codec_priv.data);
}
track->codec_priv.size -= extradata_offset;
if (codec_id == AV_CODEC_ID_NONE)
av_log(matroska->ctx, AV_LOG_INFO,
"Unknown/unsupported AVCodecID %s.\n", track->codec_id);
if (track->time_scale < 0.01)
track->time_scale = 1.0;
avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
1000 * 1000 * 1000); /* 64 bit pts in ns */
/* convert the delay from ns to the track timebase */
track->codec_delay = av_rescale_q(track->codec_delay,
(AVRational){ 1, 1000000000 },
st->time_base);
st->codec->codec_id = codec_id;
if (strcmp(track->language, "und"))
av_dict_set(&st->metadata, "language", track->language, 0);
av_dict_set(&st->metadata, "title", track->name, 0);
if (track->flag_default)
st->disposition |= AV_DISPOSITION_DEFAULT;
if (track->flag_forced)
st->disposition |= AV_DISPOSITION_FORCED;
if (!st->codec->extradata) {
if (extradata) {
st->codec->extradata = extradata;
st->codec->extradata_size = extradata_size;
} else if (track->codec_priv.data && track->codec_priv.size > 0) {
if (ff_alloc_extradata(st->codec, track->codec_priv.size))
return AVERROR(ENOMEM);
memcpy(st->codec->extradata,
track->codec_priv.data + extradata_offset,
track->codec_priv.size);
}
}
if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
st->codec->codec_type = AVMEDIA_TYPE_VIDEO;
st->codec->codec_tag = fourcc;
if (bit_depth >= 0)
st->codec->bits_per_coded_sample = bit_depth;
st->codec->width = track->video.pixel_width;
st->codec->height = track->video.pixel_height;
av_reduce(&st->sample_aspect_ratio.num,
&st->sample_aspect_ratio.den,
st->codec->height * track->video.display_width,
st->codec->width * track->video.display_height,
255);
if (st->codec->codec_id != AV_CODEC_ID_HEVC)
st->need_parsing = AVSTREAM_PARSE_HEADERS;
if (track->default_duration) {
av_reduce(&st->avg_frame_rate.num, &st->avg_frame_rate.den,
1000000000, track->default_duration, 30000);
#if FF_API_R_FRAME_RATE
if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000L
&& st->avg_frame_rate.num > st->avg_frame_rate.den * 5L)
st->r_frame_rate = st->avg_frame_rate;
#endif
}
/* export stereo mode flag as metadata tag */
if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
/* export alpha mode flag as metadata tag */
if (track->video.alpha_mode)
av_dict_set(&st->metadata, "alpha_mode", "1", 0);
/* if we have virtual track, mark the real tracks */
for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
char buf[32];
if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
continue;
snprintf(buf, sizeof(buf), "%s_%d",
ff_matroska_video_stereo_plane[planes[j].type], i);
for (k=0; k < matroska->tracks.nb_elem; k++)
if (planes[j].uid == tracks[k].uid) {
av_dict_set(&s->streams[k]->metadata,
"stereo_mode", buf, 0);
break;
}
}
// add stream level stereo3d side data if it is a supported format
if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
if (ret < 0)
return ret;
}
} else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
st->codec->codec_type = AVMEDIA_TYPE_AUDIO;
st->codec->sample_rate = track->audio.out_samplerate;
st->codec->channels = track->audio.channels;
if (!st->codec->bits_per_coded_sample)
st->codec->bits_per_coded_sample = track->audio.bitdepth;
if (st->codec->codec_id != AV_CODEC_ID_AAC)
st->need_parsing = AVSTREAM_PARSE_HEADERS;
if (track->codec_delay > 0) {
st->codec->delay = av_rescale_q(track->codec_delay,
st->time_base,
(AVRational){1, st->codec->sample_rate});
}
if (track->seek_preroll > 0) {
av_codec_set_seek_preroll(st->codec,
av_rescale_q(track->seek_preroll,
(AVRational){1, 1000000000},
(AVRational){1, st->codec->sample_rate}));
}
} else if (codec_id == AV_CODEC_ID_WEBVTT) {
st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
st->disposition |= AV_DISPOSITION_CAPTIONS;
} else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
} else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
st->disposition |= AV_DISPOSITION_METADATA;
}
} else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
subtitles: introduce ASS codec id and use it. Currently, we have a AV_CODEC_ID_SSA, which matches the way the ASS/SSA markup is muxed in a standalone .ass/.ssa file. This means the AVPacket data starts with a "Dialogue:" string, followed by a timing information (start and end of the event as string) and a trailing CRLF after each line. One packet can contain several lines. We'll refer to this layout as "SSA" or "SSA lines". In matroska, this markup is not stored as such: it has no "Dialogue:" prefix, it contains a ReadOrder field, the timing information is not in the payload, and it doesn't contain the trailing CRLF. See [1] for more info. We'll refer to this layout as "ASS". Since we have only one common codec for both formats, the matroska demuxer is constructing an AVPacket following the "SSA lines" format. This causes several problems, so it was decided to change this into clean ASS packets. Some insight about what is changed or unchanged in this commit: CODECS ------ - the decoding process still writes "SSA lines" markup inside the ass fields of the subtitles rectangles (sub->rects[n]->ass), which is still the current common way of representing decoded subtitles markup. It is meant to change later. - new ASS codec id: AV_CODEC_ID_ASS (which is different from the legacy AV_CODEC_ID_SSA) - lavc/assdec: the "ass" decoder is renamed into "ssa" (instead of "ass") for consistency with the codec id and allows to add a real ass decoder. This ass decoder receives clean ASS lines (so it starts with a ReadOrder, is followed by the Layer, etc). We make sure this is decoded properly in a new ass-line rectangle of the decoded subtitles (the ssa decoder OTOH is doing a simple straightforward copy). Using the packet timing instead of data string makes sure the ass-line now contains the appropriate timing. - lavc/assenc: just like the ass decoder, the "ssa" encoder is renamed into "ssa" (instead of "ass") for consistency with the codec id, and allows to add a real "ass" encoder. One important thing about this encoder is that it only supports one ass rectangle: we could have put several dialogue events in the AVPacket (separated by a \0 for instance) but this would have cause trouble for the muxer which needs not only the start time, but also the duration: typically, you have merged events with the same start time (stored in the AVPacket->pts) but a different duration. At the moment, only the matroska do the merge with the SSA-line codec. We will need to make sure all the decoders in the future can't add more than one rectangle (and only one Dialogue line in it obviously). FORMATS ------- - lavf/assenc: the .ass/.ssa muxer can take both SSA and ASS packets. In the case of ASS packets as input, it adds the timing based on the AVPacket pts and duration, and mux it with "Dialogue:", trailing CRLF, etc. - lavf/assdec: unchanged; it currently still only outputs SSA-lines packets. - lavf/mkv: the demuxer can now output ASS packets without the need of any "SSA-lines" reconstruction hack. It will become the default at next libavformat bump, and the SSA support will be dropped from the demuxer. The muxer can take ASS packets since it's muxed normally, and still supports the old SSA packets. All the SSA support and hacks in Matroska code will be dropped at next lavf bump. [1]: http://www.matroska.org/technical/specs/subtitles/ssa.html
12 years ago
if (st->codec->codec_id == AV_CODEC_ID_ASS)
matroska->contains_ssa = 1;
}
}
return 0;
}
static int matroska_read_header(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
EbmlList *attachments_list = &matroska->attachments;
EbmlList *chapters_list = &matroska->chapters;
MatroskaAttachment *attachments;
MatroskaChapter *chapters;
uint64_t max_start = 0;
int64_t pos;
Ebml ebml = { 0 };
int i, j, res;
matroska->ctx = s;
/* First read the EBML header. */
if (ebml_parse(matroska, ebml_syntax, &ebml) ||
ebml.version > EBML_VERSION ||
ebml.max_size > sizeof(uint64_t) ||
ebml.id_length > sizeof(uint32_t) ||
ebml.doctype_version > 3 ||
!ebml.doctype) {
av_log(matroska->ctx, AV_LOG_ERROR,
"EBML header using unsupported features\n"
"(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
ebml.version, ebml.doctype, ebml.doctype_version);
ebml_free(ebml_syntax, &ebml);
return AVERROR_PATCHWELCOME;
} else if (ebml.doctype_version == 3) {
av_log(matroska->ctx, AV_LOG_WARNING,
"EBML header using unsupported features\n"
"(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
ebml.version, ebml.doctype, ebml.doctype_version);
}
for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
if (!strcmp(ebml.doctype, matroska_doctypes[i]))
break;
if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
ebml_free(ebml_syntax, &ebml);
return AVERROR_INVALIDDATA;
}
}
ebml_free(ebml_syntax, &ebml);
/* The next thing is a segment. */
pos = avio_tell(matroska->ctx->pb);
res = ebml_parse(matroska, matroska_segments, matroska);
// try resyncing until we find a EBML_STOP type element.
while (res != 1) {
res = matroska_resync(matroska, pos);
if (res < 0)
return res;
pos = avio_tell(matroska->ctx->pb);
res = ebml_parse(matroska, matroska_segment, matroska);
}
matroska_execute_seekhead(matroska);
if (!matroska->time_scale)
matroska->time_scale = 1000000;
if (matroska->duration)
matroska->ctx->duration = matroska->duration * matroska->time_scale *
1000 / AV_TIME_BASE;
av_dict_set(&s->metadata, "title", matroska->title, 0);
av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
if (matroska->date_utc.size == 8)
matroska_metadata_creation_time(&s->metadata, AV_RB64(matroska->date_utc.data));
res = matroska_parse_tracks(s);
if (res < 0)
return res;
attachments = attachments_list->elem;
for (j = 0; j < attachments_list->nb_elem; j++) {
if (!(attachments[j].filename && attachments[j].mime &&
attachments[j].bin.data && attachments[j].bin.size > 0)) {
av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
} else {
AVStream *st = avformat_new_stream(s, NULL);
if (!st)
break;
av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
st->codec->codec_id = AV_CODEC_ID_NONE;
st->codec->codec_type = AVMEDIA_TYPE_ATTACHMENT;
if (ff_alloc_extradata(st->codec, attachments[j].bin.size))
break;
memcpy(st->codec->extradata, attachments[j].bin.data,
attachments[j].bin.size);
for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
strlen(ff_mkv_mime_tags[i].str))) {
st->codec->codec_id = ff_mkv_mime_tags[i].id;
break;
}
}
attachments[j].stream = st;
}
}
chapters = chapters_list->elem;
for (i = 0; i < chapters_list->nb_elem; i++)
if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
(max_start == 0 || chapters[i].start > max_start)) {
chapters[i].chapter =
avpriv_new_chapter(s, chapters[i].uid,
(AVRational) { 1, 1000000000 },
chapters[i].start, chapters[i].end,
chapters[i].title);
if (chapters[i].chapter) {
av_dict_set(&chapters[i].chapter->metadata,
"title", chapters[i].title, 0);
}
max_start = chapters[i].start;
}
matroska_add_index_entries(matroska);
matroska_convert_tags(s);
return 0;
}
/*
* Put one packet in an application-supplied AVPacket struct.
* Returns 0 on success or -1 on failure.
*/
static int matroska_deliver_packet(MatroskaDemuxContext *matroska,
AVPacket *pkt)
{
if (matroska->num_packets > 0) {
memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
av_free(matroska->packets[0]);
if (matroska->num_packets > 1) {
void *newpackets;
memmove(&matroska->packets[0], &matroska->packets[1],
(matroska->num_packets - 1) * sizeof(AVPacket *));
newpackets = av_realloc(matroska->packets,
(matroska->num_packets - 1) *
sizeof(AVPacket *));
if (newpackets)
matroska->packets = newpackets;
} else {
av_freep(&matroska->packets);
matroska->prev_pkt = NULL;
}
matroska->num_packets--;
return 0;
}
return -1;
}
/*
* Free all packets in our internal queue.
*/
static void matroska_clear_queue(MatroskaDemuxContext *matroska)
{
matroska->prev_pkt = NULL;
if (matroska->packets) {
int n;
for (n = 0; n < matroska->num_packets; n++) {
av_free_packet(matroska->packets[n]);
av_free(matroska->packets[n]);
}
av_freep(&matroska->packets);
matroska->num_packets = 0;
}
}
static int matroska_parse_laces(MatroskaDemuxContext *matroska, uint8_t **buf,
int *buf_size, int type,
uint32_t **lace_buf, int *laces)
{
int res = 0, n, size = *buf_size;
uint8_t *data = *buf;
uint32_t *lace_size;
if (!type) {
*laces = 1;
*lace_buf = av_mallocz(sizeof(int));
if (!*lace_buf)
return AVERROR(ENOMEM);
*lace_buf[0] = size;
return 0;
}
av_assert0(size > 0);
*laces = *data + 1;
data += 1;
size -= 1;
lace_size = av_mallocz(*laces * sizeof(int));
if (!lace_size)
return AVERROR(ENOMEM);
switch (type) {
case 0x1: /* Xiph lacing */
{
uint8_t temp;
uint32_t total = 0;
for (n = 0; res == 0 && n < *laces - 1; n++) {
while (1) {
if (size <= total) {
res = AVERROR_INVALIDDATA;
break;
}
temp = *data;
total += temp;
lace_size[n] += temp;
data += 1;
size -= 1;
if (temp != 0xff)
break;
}
}
if (size <= total) {
res = AVERROR_INVALIDDATA;
break;
}
lace_size[n] = size - total;
break;
}
case 0x2: /* fixed-size lacing */
if (size % (*laces)) {
res = AVERROR_INVALIDDATA;
break;
}
for (n = 0; n < *laces; n++)
lace_size[n] = size / *laces;
break;
case 0x3: /* EBML lacing */
{
uint64_t num;
uint64_t total;
n = matroska_ebmlnum_uint(matroska, data, size, &num);
if (n < 0 || num > INT_MAX) {
av_log(matroska->ctx, AV_LOG_INFO,
"EBML block data error\n");
res = n<0 ? n : AVERROR_INVALIDDATA;
break;
}
data += n;
size -= n;
total = lace_size[0] = num;
for (n = 1; res == 0 && n < *laces - 1; n++) {
int64_t snum;
int r;
r = matroska_ebmlnum_sint(matroska, data, size, &snum);
if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
av_log(matroska->ctx, AV_LOG_INFO,
"EBML block data error\n");
res = r<0 ? r : AVERROR_INVALIDDATA;
break;
}
data += r;
size -= r;
lace_size[n] = lace_size[n - 1] + snum;
total += lace_size[n];
}
if (size <= total) {
res = AVERROR_INVALIDDATA;
break;
}
lace_size[*laces - 1] = size - total;
break;
}
}
*buf = data;
*lace_buf = lace_size;
*buf_size = size;
return res;
}
static int matroska_parse_rm_audio(MatroskaDemuxContext *matroska,
MatroskaTrack *track, AVStream *st,
uint8_t *data, int size, uint64_t timecode,
int64_t pos)
{
int a = st->codec->block_align;
int sps = track->audio.sub_packet_size;
int cfs = track->audio.coded_framesize;
int h = track->audio.sub_packet_h;
int y = track->audio.sub_packet_cnt;
int w = track->audio.frame_size;
int x;
if (!track->audio.pkt_cnt) {
if (track->audio.sub_packet_cnt == 0)
track->audio.buf_timecode = timecode;
if (st->codec->codec_id == AV_CODEC_ID_RA_288) {
if (size < cfs * h / 2) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Corrupt int4 RM-style audio packet size\n");
return AVERROR_INVALIDDATA;
}
for (x = 0; x < h / 2; x++)
memcpy(track->audio.buf + x * 2 * w + y * cfs,
data + x * cfs, cfs);
} else if (st->codec->codec_id == AV_CODEC_ID_SIPR) {
if (size < w) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Corrupt sipr RM-style audio packet size\n");
return AVERROR_INVALIDDATA;
}
memcpy(track->audio.buf + y * w, data, w);
} else {
if (size < sps * w / sps || h<=0 || w%sps) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Corrupt generic RM-style audio packet size\n");
return AVERROR_INVALIDDATA;
}
for (x = 0; x < w / sps; x++)
memcpy(track->audio.buf +
sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
data + x * sps, sps);
}
if (++track->audio.sub_packet_cnt >= h) {
if (st->codec->codec_id == AV_CODEC_ID_SIPR)
ff_rm_reorder_sipr_data(track->audio.buf, h, w);
track->audio.sub_packet_cnt = 0;
track->audio.pkt_cnt = h * w / a;
}
}
while (track->audio.pkt_cnt) {
AVPacket *pkt = NULL;
if (!(pkt = av_mallocz(sizeof(AVPacket))) || av_new_packet(pkt, a) < 0) {
av_free(pkt);
return AVERROR(ENOMEM);
}
memcpy(pkt->data,
track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
a);
pkt->pts = track->audio.buf_timecode;
track->audio.buf_timecode = AV_NOPTS_VALUE;
pkt->pos = pos;
pkt->stream_index = st->index;
dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
}
return 0;
}
/* reconstruct full wavpack blocks from mangled matroska ones */
static int matroska_parse_wavpack(MatroskaTrack *track, uint8_t *src,
uint8_t **pdst, int *size)
{
uint8_t *dst = NULL;
int dstlen = 0;
int srclen = *size;
uint32_t samples;
uint16_t ver;
int ret, offset = 0;
if (srclen < 12 || track->stream->codec->extradata_size < 2)
return AVERROR_INVALIDDATA;
ver = AV_RL16(track->stream->codec->extradata);
samples = AV_RL32(src);
src += 4;
srclen -= 4;
while (srclen >= 8) {
int multiblock;
uint32_t blocksize;
uint8_t *tmp;
uint32_t flags = AV_RL32(src);
uint32_t crc = AV_RL32(src + 4);
src += 8;
srclen -= 8;
multiblock = (flags & 0x1800) != 0x1800;
if (multiblock) {
if (srclen < 4) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
blocksize = AV_RL32(src);
src += 4;
srclen -= 4;
} else
blocksize = srclen;
if (blocksize > srclen) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
tmp = av_realloc(dst, dstlen + blocksize + 32);
if (!tmp) {
ret = AVERROR(ENOMEM);
goto fail;
}
dst = tmp;
dstlen += blocksize + 32;
AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
AV_WL16(dst + offset + 8, ver); // version
AV_WL16(dst + offset + 10, 0); // track/index_no
AV_WL32(dst + offset + 12, 0); // total samples
AV_WL32(dst + offset + 16, 0); // block index
AV_WL32(dst + offset + 20, samples); // number of samples
AV_WL32(dst + offset + 24, flags); // flags
AV_WL32(dst + offset + 28, crc); // crc
memcpy(dst + offset + 32, src, blocksize); // block data
src += blocksize;
srclen -= blocksize;
offset += blocksize + 32;
}
*pdst = dst;
*size = dstlen;
return 0;
fail:
av_freep(&dst);
return ret;
}
static int matroska_parse_webvtt(MatroskaDemuxContext *matroska,
MatroskaTrack *track,
AVStream *st,
uint8_t *data, int data_len,
uint64_t timecode,
uint64_t duration,
int64_t pos)
{
AVPacket *pkt;
uint8_t *id, *settings, *text, *buf;
int id_len, settings_len, text_len;
uint8_t *p, *q;
int err;
if (data_len <= 0)
return AVERROR_INVALIDDATA;
p = data;
q = data + data_len;
id = p;
id_len = -1;
while (p < q) {
if (*p == '\r' || *p == '\n') {
id_len = p - id;
if (*p == '\r')
p++;
break;
}
p++;
}
if (p >= q || *p != '\n')
return AVERROR_INVALIDDATA;
p++;
settings = p;
settings_len = -1;
while (p < q) {
if (*p == '\r' || *p == '\n') {
settings_len = p - settings;
if (*p == '\r')
p++;
break;
}
p++;
}
if (p >= q || *p != '\n')
return AVERROR_INVALIDDATA;
p++;
text = p;
text_len = q - p;
while (text_len > 0) {
const int len = text_len - 1;
const uint8_t c = p[len];
if (c != '\r' && c != '\n')
break;
text_len = len;
}
if (text_len <= 0)
return AVERROR_INVALIDDATA;
pkt = av_mallocz(sizeof(*pkt));
err = av_new_packet(pkt, text_len);
if (err < 0) {
av_free(pkt);
return AVERROR(err);
}
memcpy(pkt->data, text, text_len);
if (id_len > 0) {
buf = av_packet_new_side_data(pkt,
AV_PKT_DATA_WEBVTT_IDENTIFIER,
id_len);
if (!buf) {
av_free(pkt);
return AVERROR(ENOMEM);
}
memcpy(buf, id, id_len);
}
if (settings_len > 0) {
buf = av_packet_new_side_data(pkt,
AV_PKT_DATA_WEBVTT_SETTINGS,
settings_len);
if (!buf) {
av_free(pkt);
return AVERROR(ENOMEM);
}
memcpy(buf, settings, settings_len);
}
// Do we need this for subtitles?
// pkt->flags = AV_PKT_FLAG_KEY;
pkt->stream_index = st->index;
pkt->pts = timecode;
// Do we need this for subtitles?
// pkt->dts = timecode;
pkt->duration = duration;
pkt->pos = pos;
dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
matroska->prev_pkt = pkt;
return 0;
}
static int matroska_parse_frame(MatroskaDemuxContext *matroska,
MatroskaTrack *track, AVStream *st,
uint8_t *data, int pkt_size,
uint64_t timecode, uint64_t lace_duration,
int64_t pos, int is_keyframe,
uint8_t *additional, uint64_t additional_id, int additional_size,
int64_t discard_padding)
{
MatroskaTrackEncoding *encodings = track->encodings.elem;
uint8_t *pkt_data = data;
int offset = 0, res;
AVPacket *pkt;
if (encodings && !encodings->type && encodings->scope & 1) {
res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
if (res < 0)
return res;
}
if (st->codec->codec_id == AV_CODEC_ID_WAVPACK) {
uint8_t *wv_data;
res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
if (res < 0) {
av_log(matroska->ctx, AV_LOG_ERROR,
"Error parsing a wavpack block.\n");
goto fail;
}
if (pkt_data != data)
av_freep(&pkt_data);
pkt_data = wv_data;
}
if (st->codec->codec_id == AV_CODEC_ID_PRORES &&
AV_RB32(&data[4]) != MKBETAG('i', 'c', 'p', 'f'))
offset = 8;
pkt = av_mallocz(sizeof(AVPacket));
/* XXX: prevent data copy... */
if (av_new_packet(pkt, pkt_size + offset) < 0) {
av_free(pkt);
res = AVERROR(ENOMEM);
goto fail;
}
if (st->codec->codec_id == AV_CODEC_ID_PRORES && offset == 8) {
uint8_t *buf = pkt->data;
bytestream_put_be32(&buf, pkt_size);
bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
}
memcpy(pkt->data + offset, pkt_data, pkt_size);
if (pkt_data != data)
av_freep(&pkt_data);
pkt->flags = is_keyframe;
pkt->stream_index = st->index;
if (additional_size > 0) {
uint8_t *side_data = av_packet_new_side_data(pkt,
AV_PKT_DATA_MATROSKA_BLOCKADDITIONAL,
additional_size + 8);
if (!side_data) {
av_free_packet(pkt);
av_free(pkt);
return AVERROR(ENOMEM);
}
AV_WB64(side_data, additional_id);
memcpy(side_data + 8, additional, additional_size);
}
if (discard_padding) {
uint8_t *side_data = av_packet_new_side_data(pkt,
AV_PKT_DATA_SKIP_SAMPLES,
10);
if (!side_data) {
av_free_packet(pkt);
av_free(pkt);
return AVERROR(ENOMEM);
}
AV_WL32(side_data, 0);
AV_WL32(side_data + 4, av_rescale_q(discard_padding,
(AVRational){1, 1000000000},
(AVRational){1, st->codec->sample_rate}));
}
if (track->ms_compat)
pkt->dts = timecode;
else
pkt->pts = timecode;
pkt->pos = pos;
if (st->codec->codec_id == AV_CODEC_ID_SUBRIP) {
/*
* For backward compatibility.
* Historically, we have put subtitle duration
* in convergence_duration, on the off chance
* that the time_scale is less than 1us, which
* could result in a 32bit overflow on the
* normal duration field.
*/
pkt->convergence_duration = lace_duration;
}
if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE ||
lace_duration <= INT_MAX) {
/*
* For non subtitle tracks, just store the duration
* as normal.
*
* If it's a subtitle track and duration value does
* not overflow a uint32, then also store it normally.
*/
pkt->duration = lace_duration;
}
subtitles: introduce ASS codec id and use it. Currently, we have a AV_CODEC_ID_SSA, which matches the way the ASS/SSA markup is muxed in a standalone .ass/.ssa file. This means the AVPacket data starts with a "Dialogue:" string, followed by a timing information (start and end of the event as string) and a trailing CRLF after each line. One packet can contain several lines. We'll refer to this layout as "SSA" or "SSA lines". In matroska, this markup is not stored as such: it has no "Dialogue:" prefix, it contains a ReadOrder field, the timing information is not in the payload, and it doesn't contain the trailing CRLF. See [1] for more info. We'll refer to this layout as "ASS". Since we have only one common codec for both formats, the matroska demuxer is constructing an AVPacket following the "SSA lines" format. This causes several problems, so it was decided to change this into clean ASS packets. Some insight about what is changed or unchanged in this commit: CODECS ------ - the decoding process still writes "SSA lines" markup inside the ass fields of the subtitles rectangles (sub->rects[n]->ass), which is still the current common way of representing decoded subtitles markup. It is meant to change later. - new ASS codec id: AV_CODEC_ID_ASS (which is different from the legacy AV_CODEC_ID_SSA) - lavc/assdec: the "ass" decoder is renamed into "ssa" (instead of "ass") for consistency with the codec id and allows to add a real ass decoder. This ass decoder receives clean ASS lines (so it starts with a ReadOrder, is followed by the Layer, etc). We make sure this is decoded properly in a new ass-line rectangle of the decoded subtitles (the ssa decoder OTOH is doing a simple straightforward copy). Using the packet timing instead of data string makes sure the ass-line now contains the appropriate timing. - lavc/assenc: just like the ass decoder, the "ssa" encoder is renamed into "ssa" (instead of "ass") for consistency with the codec id, and allows to add a real "ass" encoder. One important thing about this encoder is that it only supports one ass rectangle: we could have put several dialogue events in the AVPacket (separated by a \0 for instance) but this would have cause trouble for the muxer which needs not only the start time, but also the duration: typically, you have merged events with the same start time (stored in the AVPacket->pts) but a different duration. At the moment, only the matroska do the merge with the SSA-line codec. We will need to make sure all the decoders in the future can't add more than one rectangle (and only one Dialogue line in it obviously). FORMATS ------- - lavf/assenc: the .ass/.ssa muxer can take both SSA and ASS packets. In the case of ASS packets as input, it adds the timing based on the AVPacket pts and duration, and mux it with "Dialogue:", trailing CRLF, etc. - lavf/assdec: unchanged; it currently still only outputs SSA-lines packets. - lavf/mkv: the demuxer can now output ASS packets without the need of any "SSA-lines" reconstruction hack. It will become the default at next libavformat bump, and the SSA support will be dropped from the demuxer. The muxer can take ASS packets since it's muxed normally, and still supports the old SSA packets. All the SSA support and hacks in Matroska code will be dropped at next lavf bump. [1]: http://www.matroska.org/technical/specs/subtitles/ssa.html
12 years ago
dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
matroska->prev_pkt = pkt;
return 0;
fail:
if (pkt_data != data)
av_freep(&pkt_data);
return res;
}
static int matroska_parse_block(MatroskaDemuxContext *matroska, uint8_t *data,
int size, int64_t pos, uint64_t cluster_time,
uint64_t block_duration, int is_keyframe,
uint8_t *additional, uint64_t additional_id, int additional_size,
int64_t cluster_pos, int64_t discard_padding)
{
uint64_t timecode = AV_NOPTS_VALUE;
MatroskaTrack *track;
int res = 0;
AVStream *st;
int16_t block_time;
uint32_t *lace_size = NULL;
int n, flags, laces = 0;
uint64_t num;
int trust_default_duration = 1;
if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
return n;
}
data += n;
size -= n;
track = matroska_find_track_by_num(matroska, num);
if (!track || !track->stream) {
av_log(matroska->ctx, AV_LOG_INFO,
"Invalid stream %"PRIu64" or size %u\n", num, size);
return AVERROR_INVALIDDATA;
} else if (size <= 3)
return 0;
st = track->stream;
if (st->discard >= AVDISCARD_ALL)
return res;
av_assert1(block_duration != AV_NOPTS_VALUE);
block_time = sign_extend(AV_RB16(data), 16);
data += 2;
flags = *data++;
size -= 3;
if (is_keyframe == -1)
is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
if (cluster_time != (uint64_t) -1 &&
(block_time >= 0 || cluster_time >= -block_time)) {
timecode = cluster_time + block_time - track->codec_delay;
if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
timecode < track->end_timecode)
is_keyframe = 0; /* overlapping subtitles are not key frame */
if (is_keyframe)
av_add_index_entry(st, cluster_pos, timecode, 0, 0,
AVINDEX_KEYFRAME);
}
if (matroska->skip_to_keyframe &&
track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
if (timecode < matroska->skip_to_timecode)
return res;
if (is_keyframe)
matroska->skip_to_keyframe = 0;
else if (!st->skip_to_keyframe) {
av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
matroska->skip_to_keyframe = 0;
}
}
res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
&lace_size, &laces);
if (res)
goto end;
if (track->audio.samplerate == 8000) {
// If this is needed for more codecs, then add them here
if (st->codec->codec_id == AV_CODEC_ID_AC3) {
if (track->audio.samplerate != st->codec->sample_rate || !st->codec->frame_size)
trust_default_duration = 0;
}
}
if (!block_duration && trust_default_duration)
block_duration = track->default_duration * laces / matroska->time_scale;
if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
track->end_timecode =
FFMAX(track->end_timecode, timecode + block_duration);
for (n = 0; n < laces; n++) {
int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
if (lace_size[n] > size) {
av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
break;
}
if ((st->codec->codec_id == AV_CODEC_ID_RA_288 ||
st->codec->codec_id == AV_CODEC_ID_COOK ||
st->codec->codec_id == AV_CODEC_ID_SIPR ||
st->codec->codec_id == AV_CODEC_ID_ATRAC3) &&
st->codec->block_align && track->audio.sub_packet_size) {
res = matroska_parse_rm_audio(matroska, track, st, data,
lace_size[n],
timecode, pos);
if (res)
goto end;
} else if (st->codec->codec_id == AV_CODEC_ID_WEBVTT) {
res = matroska_parse_webvtt(matroska, track, st,
data, lace_size[n],
timecode, lace_duration,
pos);
if (res)
goto end;
} else {
res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
timecode, lace_duration, pos,
!n ? is_keyframe : 0,
additional, additional_id, additional_size,
discard_padding);
if (res)
goto end;
}
if (timecode != AV_NOPTS_VALUE)
timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
data += lace_size[n];
size -= lace_size[n];
}
end:
av_free(lace_size);
return res;
}
static int matroska_parse_cluster_incremental(MatroskaDemuxContext *matroska)
{
EbmlList *blocks_list;
MatroskaBlock *blocks;
int i, res;
res = ebml_parse(matroska,
matroska_cluster_incremental_parsing,
&matroska->current_cluster);
if (res == 1) {
/* New Cluster */
if (matroska->current_cluster_pos)
ebml_level_end(matroska);
ebml_free(matroska_cluster, &matroska->current_cluster);
memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
matroska->current_cluster_num_blocks = 0;
matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
matroska->prev_pkt = NULL;
/* sizeof the ID which was already read */
if (matroska->current_id)
matroska->current_cluster_pos -= 4;
res = ebml_parse(matroska,
matroska_clusters_incremental,
&matroska->current_cluster);
/* Try parsing the block again. */
if (res == 1)
res = ebml_parse(matroska,
matroska_cluster_incremental_parsing,
&matroska->current_cluster);
}
if (!res &&
matroska->current_cluster_num_blocks <
matroska->current_cluster.blocks.nb_elem) {
blocks_list = &matroska->current_cluster.blocks;
blocks = blocks_list->elem;
matroska->current_cluster_num_blocks = blocks_list->nb_elem;
i = blocks_list->nb_elem - 1;
if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
uint8_t* additional = blocks[i].additional.size > 0 ?
blocks[i].additional.data : NULL;
if (!blocks[i].non_simple)
blocks[i].duration = 0;
res = matroska_parse_block(matroska, blocks[i].bin.data,
blocks[i].bin.size, blocks[i].bin.pos,
matroska->current_cluster.timecode,
blocks[i].duration, is_keyframe,
additional, blocks[i].additional_id,
blocks[i].additional.size,
matroska->current_cluster_pos,
blocks[i].discard_padding);
}
}
return res;
}
static int matroska_parse_cluster(MatroskaDemuxContext *matroska)
{
MatroskaCluster cluster = { 0 };
EbmlList *blocks_list;
MatroskaBlock *blocks;
int i, res;
int64_t pos;
if (!matroska->contains_ssa)
return matroska_parse_cluster_incremental(matroska);
pos = avio_tell(matroska->ctx->pb);
matroska->prev_pkt = NULL;
if (matroska->current_id)
pos -= 4; /* sizeof the ID which was already read */
res = ebml_parse(matroska, matroska_clusters, &cluster);
blocks_list = &cluster.blocks;
blocks = blocks_list->elem;
for (i = 0; i < blocks_list->nb_elem; i++)
if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
res = matroska_parse_block(matroska, blocks[i].bin.data,
blocks[i].bin.size, blocks[i].bin.pos,
cluster.timecode, blocks[i].duration,
is_keyframe, NULL, 0, 0, pos,
blocks[i].discard_padding);
}
ebml_free(matroska_cluster, &cluster);
return res;
}
static int matroska_read_packet(AVFormatContext *s, AVPacket *pkt)
{
MatroskaDemuxContext *matroska = s->priv_data;
while (matroska_deliver_packet(matroska, pkt)) {
int64_t pos = avio_tell(matroska->ctx->pb);
if (matroska->done)
return AVERROR_EOF;
if (matroska_parse_cluster(matroska) < 0)
matroska_resync(matroska, pos);
}
return 0;
}
static int matroska_read_seek(AVFormatContext *s, int stream_index,
int64_t timestamp, int flags)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTrack *tracks = matroska->tracks.elem;
AVStream *st = s->streams[stream_index];
int i, index, index_sub, index_min;
/* Parse the CUES now since we need the index data to seek. */
if (matroska->cues_parsing_deferred > 0) {
matroska->cues_parsing_deferred = 0;
matroska_parse_cues(matroska);
}
if (!st->nb_index_entries)
goto err;
timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
SEEK_SET);
matroska->current_id = 0;
while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
matroska_clear_queue(matroska);
if (matroska_parse_cluster(matroska) < 0)
break;
}
}
matroska_clear_queue(matroska);
if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
goto err;
index_min = index;
for (i = 0; i < matroska->tracks.nb_elem; i++) {
tracks[i].audio.pkt_cnt = 0;
tracks[i].audio.sub_packet_cnt = 0;
tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
tracks[i].end_timecode = 0;
if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
tracks[i].stream->discard != AVDISCARD_ALL) {
index_sub = av_index_search_timestamp(
tracks[i].stream, st->index_entries[index].timestamp,
AVSEEK_FLAG_BACKWARD);
while (index_sub >= 0 &&
index_min > 0 &&
tracks[i].stream->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
st->index_entries[index].timestamp - tracks[i].stream->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
index_min--;
}
}
avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
matroska->current_id = 0;
if (flags & AVSEEK_FLAG_ANY) {
st->skip_to_keyframe = 0;
matroska->skip_to_timecode = timestamp;
} else {
st->skip_to_keyframe = 1;
matroska->skip_to_timecode = st->index_entries[index].timestamp;
}
matroska->skip_to_keyframe = 1;
matroska->done = 0;
matroska->num_levels = 0;
ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
return 0;
err:
// slightly hackish but allows proper fallback to
// the generic seeking code.
matroska_clear_queue(matroska);
matroska->current_id = 0;
st->skip_to_keyframe =
matroska->skip_to_keyframe = 0;
matroska->done = 0;
matroska->num_levels = 0;
return -1;
}
static int matroska_read_close(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
MatroskaTrack *tracks = matroska->tracks.elem;
int n;
matroska_clear_queue(matroska);
for (n = 0; n < matroska->tracks.nb_elem; n++)
if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
av_free(tracks[n].audio.buf);
ebml_free(matroska_cluster, &matroska->current_cluster);
ebml_free(matroska_segment, matroska);
return 0;
}
typedef struct {
int64_t start_time_ns;
int64_t end_time_ns;
int64_t start_offset;
int64_t end_offset;
} CueDesc;
/* This function searches all the Cues and returns the CueDesc corresponding the
* the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
* end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
*/
static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
MatroskaDemuxContext *matroska = s->priv_data;
CueDesc cue_desc;
int i;
int nb_index_entries = s->streams[0]->nb_index_entries;
AVIndexEntry *index_entries = s->streams[0]->index_entries;
if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
for (i = 1; i < nb_index_entries; i++) {
if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
index_entries[i].timestamp * matroska->time_scale > ts) {
break;
}
}
--i;
cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
if (i != nb_index_entries - 1) {
cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
} else {
cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
// FIXME: this needs special handling for files where Cues appear
// before Clusters. the current logic assumes Cues appear after
// Clusters.
cue_desc.end_offset = cues_start - matroska->segment_start;
}
return cue_desc;
}
static int webm_clusters_start_with_keyframe(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
int64_t cluster_pos, before_pos;
int index, rv = 1;
if (s->streams[0]->nb_index_entries <= 0) return 0;
// seek to the first cluster using cues.
index = av_index_search_timestamp(s->streams[0], 0, 0);
if (index < 0) return 0;
cluster_pos = s->streams[0]->index_entries[index].pos;
before_pos = avio_tell(s->pb);
while (1) {
int64_t cluster_id = 0, cluster_length = 0;
AVPacket *pkt;
avio_seek(s->pb, cluster_pos, SEEK_SET);
// read cluster id and length
ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id);
ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
if (cluster_id != 0xF43B675) { // done with all clusters
break;
}
avio_seek(s->pb, cluster_pos, SEEK_SET);
matroska->current_id = 0;
matroska_clear_queue(matroska);
if (matroska_parse_cluster(matroska) < 0 ||
matroska->num_packets <= 0) {
break;
}
pkt = matroska->packets[0];
cluster_pos += cluster_length + 12; // 12 is the offset of the cluster id and length.
if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
rv = 0;
break;
}
}
avio_seek(s->pb, before_pos, SEEK_SET);
return rv;
}
static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
double min_buffer, double* buffer,
double* sec_to_download, AVFormatContext *s,
int64_t cues_start)
{
double nano_seconds_per_second = 1000000000.0;
double time_sec = time_ns / nano_seconds_per_second;
int rv = 0;
int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
int64_t end_time_ns = time_ns + time_to_search_ns;
double sec_downloaded = 0.0;
CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
if (desc_curr.start_time_ns == -1)
return -1;
*sec_to_download = 0.0;
// Check for non cue start time.
if (time_ns > desc_curr.start_time_ns) {
int64_t cue_nano = desc_curr.end_time_ns - time_ns;
double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
double timeToDownload = (cueBytes * 8.0) / bps;
sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
*sec_to_download += timeToDownload;
// Check if the search ends within the first cue.
if (desc_curr.end_time_ns >= end_time_ns) {
double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
sec_downloaded = percent_to_sub * sec_downloaded;
*sec_to_download = percent_to_sub * *sec_to_download;
}
if ((sec_downloaded + *buffer) <= min_buffer) {
return 1;
}
// Get the next Cue.
desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
}
while (desc_curr.start_time_ns != -1) {
int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
double desc_sec = desc_ns / nano_seconds_per_second;
double bits = (desc_bytes * 8.0);
double time_to_download = bits / bps;
sec_downloaded += desc_sec - time_to_download;
*sec_to_download += time_to_download;
if (desc_curr.end_time_ns >= end_time_ns) {
double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
sec_downloaded = percent_to_sub * sec_downloaded;
*sec_to_download = percent_to_sub * *sec_to_download;
if ((sec_downloaded + *buffer) <= min_buffer)
rv = 1;
break;
}
if ((sec_downloaded + *buffer) <= min_buffer) {
rv = 1;
break;
}
desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
}
*buffer = *buffer + sec_downloaded;
return rv;
}
/* This function computes the bandwidth of the WebM file with the help of
* buffer_size_after_time_downloaded() function. Both of these functions are
* adapted from WebM Tools project and are adapted to work with FFmpeg's
* Matroska parsing mechanism.
*
* Returns the bandwidth of the file on success; -1 on error.
* */
static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
{
MatroskaDemuxContext *matroska = s->priv_data;
AVStream *st = s->streams[0];
double bandwidth = 0.0;
int i;
for (i = 0; i < st->nb_index_entries; i++) {
int64_t prebuffer_ns = 1000000000;
int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
double nano_seconds_per_second = 1000000000.0;
int64_t prebuffered_ns = time_ns + prebuffer_ns;
double prebuffer_bytes = 0.0;
int64_t temp_prebuffer_ns = prebuffer_ns;
int64_t pre_bytes, pre_ns;
double pre_sec, prebuffer, bits_per_second;
CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
// Start with the first Cue.
CueDesc desc_end = desc_beg;
// Figure out how much data we have downloaded for the prebuffer. This will
// be used later to adjust the bits per sample to try.
while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
// Prebuffered the entire Cue.
prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
}
if (desc_end.start_time_ns == -1) {
// The prebuffer is larger than the duration.
if (matroska->duration * matroska->time_scale >= prebuffered_ns)
return -1;
bits_per_second = 0.0;
} else {
// The prebuffer ends in the last Cue. Estimate how much data was
// prebuffered.
pre_bytes = desc_end.end_offset - desc_end.start_offset;
pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
pre_sec = pre_ns / nano_seconds_per_second;
prebuffer_bytes +=
pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
prebuffer = prebuffer_ns / nano_seconds_per_second;
// Set this to 0.0 in case our prebuffer buffers the entire video.
bits_per_second = 0.0;
do {
int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
double desc_sec = desc_ns / nano_seconds_per_second;
double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
// Drop the bps by the percentage of bytes buffered.
double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
double mod_bits_per_second = calc_bits_per_second * percent;
if (prebuffer < desc_sec) {
double search_sec =
(double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
// Add 1 so the bits per second should be a little bit greater than file
// datarate.
int64_t bps = (int64_t)(mod_bits_per_second) + 1;
const double min_buffer = 0.0;
double buffer = prebuffer;
double sec_to_download = 0.0;
int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
min_buffer, &buffer, &sec_to_download,
s, cues_start);
if (rv < 0) {
return -1;
} else if (rv == 0) {
bits_per_second = (double)(bps);
break;
}
}
desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
} while (desc_end.start_time_ns != -1);
}
if (bandwidth < bits_per_second) bandwidth = bits_per_second;
}
return (int64_t)bandwidth;
}
static int webm_dash_manifest_cues(AVFormatContext *s)
{
MatroskaDemuxContext *matroska = s->priv_data;
EbmlList *seekhead_list = &matroska->seekhead;
MatroskaSeekhead *seekhead = seekhead_list->elem;
char *buf;
int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth;
int i;
// determine cues start and end positions
for (i = 0; i < seekhead_list->nb_elem; i++)
if (seekhead[i].id == MATROSKA_ID_CUES)
break;
if (i >= seekhead_list->nb_elem) return -1;
before_pos = avio_tell(matroska->ctx->pb);
cues_start = seekhead[i].pos + matroska->segment_start;
if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
// cues_end is computed as cues_start + cues_length + length of the
// Cues element ID + EBML length of the Cues element. cues_end is
// inclusive and the above sum is reduced by 1.
uint64_t cues_length = 0, cues_id = 0, bytes_read = 0;
bytes_read += ebml_read_num(matroska, matroska->ctx->pb, 4, &cues_id);
bytes_read += ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
cues_end = cues_start + cues_length + bytes_read - 1;
}
avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
if (cues_start == -1 || cues_end == -1) return -1;
// parse the cues
matroska_parse_cues(matroska);
// cues start
av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0);
// cues end
av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0);
// bandwidth
bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
if (bandwidth < 0) return -1;
av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0);
// check if all clusters start with key frames
av_dict_set_int(&s->streams[0]->metadata, CLUSTER_KEYFRAME, webm_clusters_start_with_keyframe(s), 0);
// store cue point timestamps as a comma separated list for checking subsegment alignment in
// the muxer. assumes that each timestamp cannot be more than 20 characters long.
buf = av_malloc(s->streams[0]->nb_index_entries * 20 * sizeof(char));
if (!buf) return -1;
strcpy(buf, "");
for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
snprintf(buf, (i + 1) * 20 * sizeof(char),
"%s%" PRId64, buf, s->streams[0]->index_entries[i].timestamp);
if (i != s->streams[0]->nb_index_entries - 1)
strncat(buf, ",", sizeof(char));
}
av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
av_free(buf);
return 0;
}
static int webm_dash_manifest_read_header(AVFormatContext *s)
{
char *buf;
int ret = matroska_read_header(s);
MatroskaTrack *tracks;
MatroskaDemuxContext *matroska = s->priv_data;
if (ret) {
av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
return -1;
}
// initialization range
// 5 is the offset of Cluster ID.
av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, avio_tell(s->pb) - 5, 0);
// basename of the file
buf = strrchr(s->filename, '/');
if (!buf) return -1;
av_dict_set(&s->streams[0]->metadata, FILENAME, ++buf, 0);
// duration
buf = av_asprintf("%g", matroska->duration);
if (!buf) return AVERROR(ENOMEM);
av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
av_free(buf);
// track number
tracks = matroska->tracks.elem;
av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0);
// parse the cues and populate Cue related fields
return webm_dash_manifest_cues(s);
}
static int webm_dash_manifest_read_packet(AVFormatContext *s, AVPacket *pkt)
{
return AVERROR_EOF;
}
AVInputFormat ff_matroska_demuxer = {
.name = "matroska,webm",
.long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
.extensions = "mkv,mk3d,mka,mks",
.priv_data_size = sizeof(MatroskaDemuxContext),
.read_probe = matroska_probe,
.read_header = matroska_read_header,
.read_packet = matroska_read_packet,
.read_close = matroska_read_close,
.read_seek = matroska_read_seek,
.mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
};
AVInputFormat ff_webm_dash_manifest_demuxer = {
.name = "webm_dash_manifest",
.long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
.priv_data_size = sizeof(MatroskaDemuxContext),
.read_header = webm_dash_manifest_read_header,
.read_packet = webm_dash_manifest_read_packet,
.read_close = matroska_read_close,
};